Bits, bytes and digital information

Lecture 2 - COMPSCI111/111G SS 2018

Today's lecture

- Understand the difference between analogue and digital information
- Convert between decimal numbers and binary numbers

Analogue vs digital information

- Information in the real world is continuous
 - Continuous signal

- Information stored by a computer is digital
 - Represented by discrete numbers

Encoding information

- Real world information is stored by a computer using numbers
- Visual information

- 1. Give each pixel colour a number.
- 2. Let the computer draw the numbers as coloured pixels (eg. black = 0).

Encoding information

Sound information

- 1. Give each sample a number (height of green box).
- 2. Let the computer move the loudspeaker membrane according to the samples.

Numbers and Computing

Numbers are used to represent all information manipulated by a computer.

- Computers use the binary number system:
 - Binary values are either 0 or 1.
- ▶ We use the decimal number system:
 - 0 to 9 are decimal values.

Number Systems

- Base:
 - Specifies the number of digits used by the system.
 - Binary is base 2.
 - Decimal is base 10.

- Positional notation:
 - Describes how numbers are written.

$$d_n d_{n-1} \cdots d_1$$
 Most significant digit Least significant digit

Positional Notation

Any number can be expressed as:

$$d_n * b^{n-1} + d_{n-1} * b^{n-2} + \dots + d_1 * b^0$$

where d_i is the digit at position i, and b is the base.

Decimal Examples

$$6*10^{2} + 5*10^{1} + 7*10^{0}$$

$$\downarrow$$

$$600 + 50 + 7 = 657$$

$$9*10^{3} + 3*10^{2} + 0*10^{1} + 8*10^{0}$$

$$\downarrow$$

$$9000 + 300 + 0 + 8 = 9308$$

Storing Decimal Numbers in a Computer

- Series of dials:
 - Each dial goes from 0 to 9.
- Information is stored digitally:
 - Finite number of states 10 per dial.
 - No in-between states.
- Decimal number system:
 - 1st dial from right: 10⁰
 - 2nd dial from right: 10¹
 - 3rd dial from right: 10²
 - etc.

$$6 * 10^2 + 3 * 10^1 + 8 * 10^0 = 638$$

Exercises

The following two questions relate to dials that have 10 different states, as discussed in the previous slide.

Given a machine that uses 4 dials, how many different numbers can we represent?

If we want to represent 256 different values, how many dials do we need?

Switches

- A dial is complicated.
 - Each dial has 10 different states (0 9).
 - Physically creating circuits that distinguish all states is complicated.
 - Would need to distinguish 10 different strengths of electricity (voltages).
- Switches are simple.
 - Each switch is off or on (0 or 1).
 - Physically creating the circuits is easy.
 - Switch off: electrical current cannot flow.
 - Switch on: electrical current can flow.

0

1

Bits and Bytes

- Each binary number is known as a Binary digIT, or bit.
- A bit can be either a 0 or a 1

Bits are used in groups.

A group of eight bits is referred to as a byte.

Using Binary Numbers

How many different values/states can we have with:

Exercises

How many different values can we represent with a byte?

▶ If we want to represent 30 different values, how many bits would we need?

Converting binary to decimal

110

$$1 * 2^{2} + 1 * 2^{1} + 0 * 2^{0}$$

$$\downarrow$$

$$4 + 2 + 0 = 6$$

► 10110 $1 * 2^{4} + 0 * 2^{3} + 1 * 2^{2} + 1 * 2^{1} + 0 * 2^{0}$ ↓ 16 + 0 + 4 + 2 + 0 = 22

Converting from decimal to binary

35

) J

Read the remainders from the bottom up.

2	106	_
2	53	0
2	26	1
2	13	0
2	6	1
2	3	0
2	1	1
	0	1

106

Read the remainders from the bottom up.

▶ 35 is 100011 in binary

▶ 106 is 1101010 in binary

Exercises

What is the decimal equivalent of 101111?

▶ What is the binary equivalent of 123?

Prefixes

- A group of 8 bits is a byte
 - ▶ A group of 4 bits is a **nibble**
- Bytes are the common unit of measurement for memory capacity
- There are two sets of prefixes:
 - Decimal
 - Binary

Decimal prefixes

10 ⁿ	Prefix	Symbol	Decimal
1	none		1
10 ³	kilo	K	1000
10 ⁶	mega	М	1,000,000
10 ⁹	giga	G	1,000,000,000
10 ¹²	tera	Т	1,000,000,000
10 ¹⁵	peta	Р	1,000,000,000,000
10 ¹⁸	exa	E	1,000,000,000,000,000
10 ²¹	zetta	Z	1,000,000,000,000,000,000

Binary prefixes

2 ⁿ	Prefix	Symbol	Decimal
2 ⁰	none		1
2 ¹⁰	kibi	Ki	1024
2 ²⁰	mebi	Mi	1,048,576
2 ³⁰	gibi	Gi	1,073,741,824
2 ⁴⁰	tebi	Ti	1,099,511,627,776
2 ⁵⁰	pebi	Pi	1,125,899,906,842,624
2 ⁶⁰	exbi	Ei	1,152,921,504,606,846,976
2 ⁷⁰	zebi	Zi	1,180,591,620,717,411,303,424

Prefixes in Computer Science

- Both decimal and binary prefixes are used in Computer Science
- Decimal prefixes are preferred because they are easier to calculate, however binary prefixes are more accurate

Binary prefix	Decimal prefix	Value (bytes)
8 bits	1 byte	same
1 KiB (1 x 2 ¹⁰ bytes)	1 KB (1 x 10³ bytes)	1024 ≠ 1000
1 MiB (1 x 2 ²⁰ bytes)	1 MB (1 x 10 ⁶ bytes)	1,048,576 ≠ 1,000,00 0

Example - hard disk sizes

- A 160GB hard disk is equivalent to 149.01GiB
 - \triangleright 160GB = 160 x 10⁹
 - \blacktriangleright 149.01GiB = (160 x 10⁹) ÷ 2³⁰

Exercises

▶ Which has more bytes, 1KB or 1KiB?

► How many bytes are in 128MB?

Summary

- Computers use the binary number system
 - We can convert numbers between decimal and binary
- Decimal prefixes and binary prefixes are used for counting large numbers of bytes