Welcome to COMPSCI111/111G!

Summer School 2018

Today's class

- Introduction to COMPSCI111/111G
 - People
 - Assessment
 - Labs
 - Test and exam
- Introduction to computer hardware

Lecturers

- Damir Azhar
 - ► damir.azhar@auckland.ac.nz
 - 303, Level 4, room 411
- Angela Chang
 - angela@cs.auckland.ac.nz
 - ▶ 303, Level 4, room 414
- We all have an open door policy, visit anytime or email for an appointment

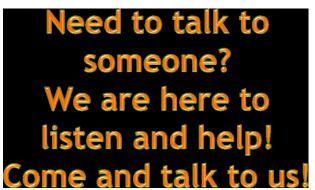
Course coordinator and lab supervisor

- Ann Cameron
 - ▶ 303, Level 4, room 413
 - ▶ a.cameron@auckland.ac.nz
 - Open door policy, visit anytime or email for an appointment
- Contact Ann if you have questions about the course or labs

Computer Science Support Network

Radu Nicolescu 303-587 Ext: 86831 E-mail: r.nicolescu@auckland.ac.nz

Ann Cameron Room: 303S.479 Ext: 84947


E-mail: ann@cs.auckland.ac.nz

Pat Riddle Room: 303S.392 Ext: 87093 Email: pat@cs.auckland.ac.nz

Paul Denny Room: 3035.465 Ext: 87087 Email: paul@cs.auckland.ac.nz

Angela Chang Room 494 Ext: 86620

Email: angela@cs.auckland.ac.nz

Andrew Luxton-Reilly. Room: 303S.479 Ext: 85654 Email: andrew@cs.auckland.ac.nz

Marks for COMPSCI111/111G

- Theory: exam and test
- Practical: labs
- Need to pass half of the theory and half of the practical in order to pass the course

Exam (60%)

Test (20%)

Labs (20%)

Test

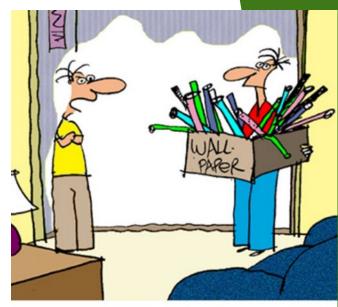
- Wednesday 24th January, 2018 from 6:30pm -7:30pm
- ► Location: Fisher & Paykel Appliances Auditorium in the Owen G. Glenn Building (RM 260-115)
- ▶ Test is worth 20% of your final grade

Labs

- An opportunity to practise what you learn in lectures
 - 2 compulsory 3-hour labs each week
 - 9 labs together worth 20% of final mark
 - ▶ 10% of each lab's mark is given for arriving on time and completing a certain portion of the lab
 - Hand in lab assignment before start of next lab
 - Definitely worth staying for the full 3 hours
- Before labs start next Monday (8th January) please:
 - Find the First Floor Teaching Lab (FTL 303S-175)
 - Make sure you have a USB drive

Exam

▶ Date and location will be announced by the Examinations Office

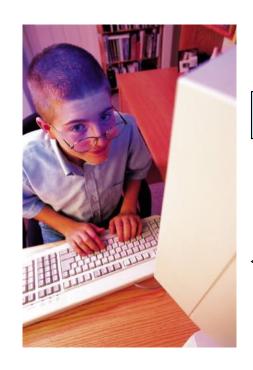

Places to find information

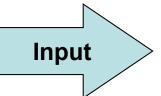
- Canvas announcements
- ► The course website: www.cs.auckland.ac.nz/courses/compsci111ssc
- Coursebook: available on the home page of the course website
- ► The Computer Science student forum: http://forums.cs.auckland.ac.nz
- ► Any of the COMPSCI111/111G teaching staff ©
 - Please use your University email account when emailing us

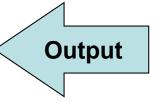
Class representative

CLASS REP

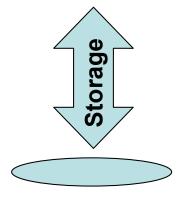
"Yes, I did say I wanted to change the wallpaper on my desktop. But not that type. You don't know much about computers, do you?"


Computer Hardware


Lecture 1 - COMPSCI111/111G SS 2017


Today's lecture

- Identifying the key components in a computer
- Understanding how these components work
- Using this knowledge to understand computer specs

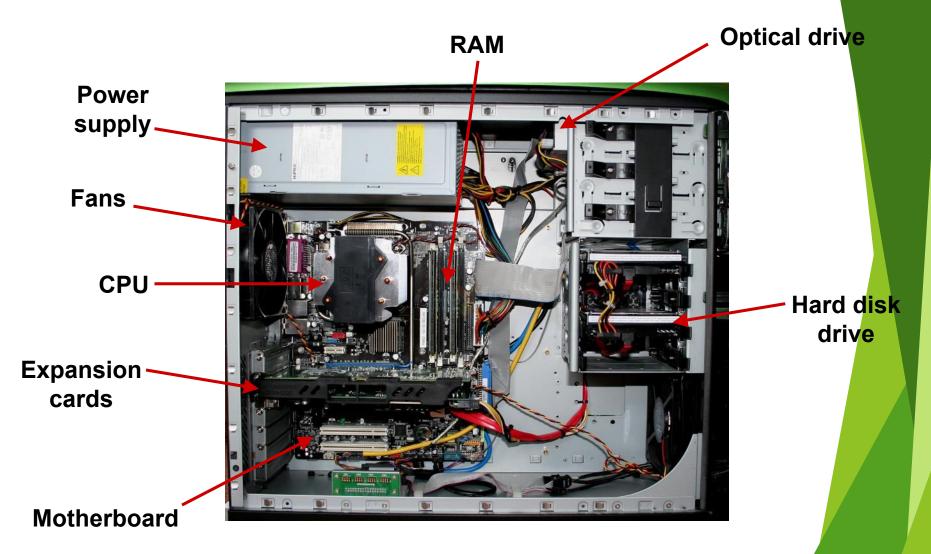

Overview of a computer

Processing

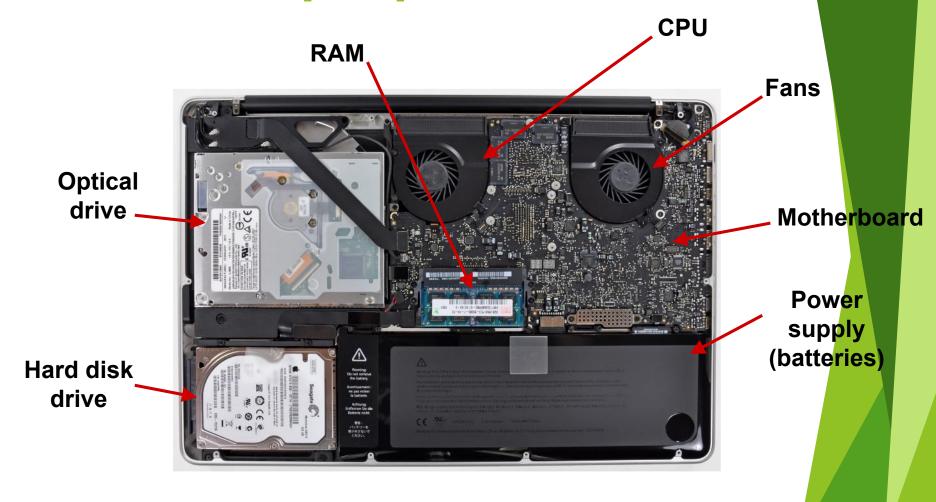
Communication

Computer hardware

- "Those parts of the system that you can hit with a hammer (not advised) are called hardware"
- Key design principle of modularity


Form factors

System units come in lots of different form factors



Inside the system unit

Inside a laptop

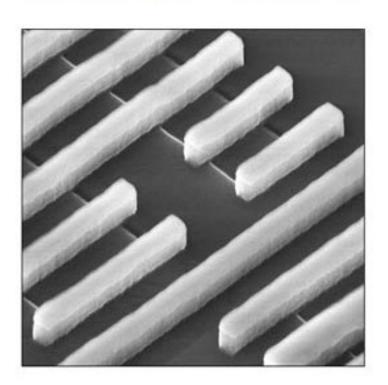
Power supply unit

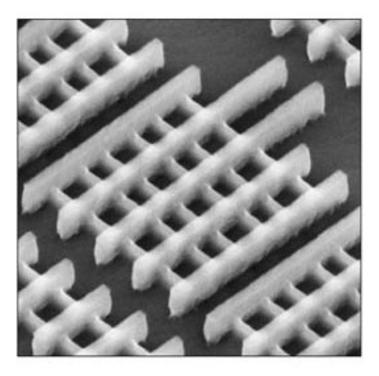
Converts AC voltage to DC voltage for use within the computer

Motherboard

The main circuit board to which all components are connected, allowing them to communicate with each other

Central processing unit (CPU)

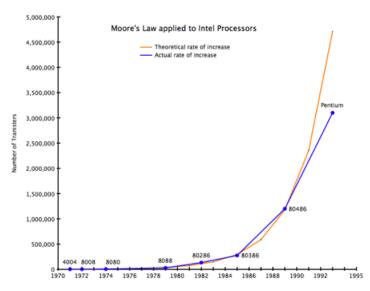

- The 'brain' of a computer. Processes data in a computer using its instruction set
- Performance can be measured in:
 - Instructions per second
 - Clock speed (Hertz Hz)
- CPUs must be kept cool, generally using a heatsink and fan



CPUs - transistors

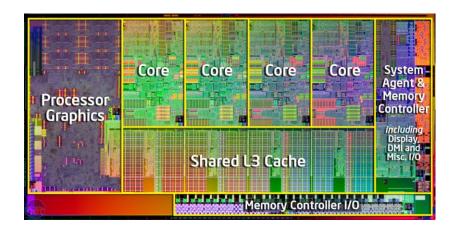
32 nm Planar Transistors

22 nm Tri-Gate Transistors



CPUs - Moore's Law

- Gordon Moore (Intel co-founder) stated in a 1965 paper:
 - 'The number of transistors on a single integrated circuit doubles approximately every 18 months, while the price remains the same.'
- ▶ So...
 - ▶ In 3 years, CPUs will be 4 times faster
 - ▶ In 15 years, CPUs will be 1000 times faster


CPUs - Moore's Law

- Moore's Law has been an important guide for many parts of the tech industry, especially in CPU manufacturing
- More difficult to keep up with Moore's Law as we reach the limits of CPU fabrication technology

CPUs - other measures

- Power efficiency and heat are just as important as clock speed
- Modern CPUs have multiple cores, increasing their processing capacity
- New kinds of processors, such as system on chip (SoC) are commonly used in mobile and embedded devices

Primary memory

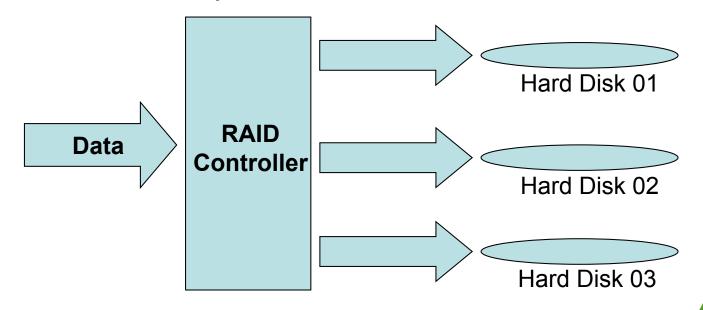
- Used to store data for quick access by CPU
- Main form of primary memory is Random Access Memory (RAM)
- RAM is volatile memory
- More RAM improves a computer's speed by providing more quick access memory
- Capacity is measured in bytes, clock speed measured in Hz
- Many types of RAM; common type is DDR3 SDRAM

Secondary memory

- Used to store files for repeated access over time
- Also known as non-volatile storage; the storage medium retains its contents without needing a supply of electricity
- Many forms of secondary storage:
 - Hard disk drive (HDD)
 - Solid state drive (SSD)
 - ► CDs, DVDs, Blu-ray
 - USB drives, external HDDs

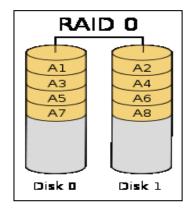
Hard Disk Drive (HDD)

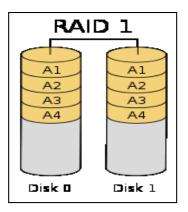
- Stores data on spinning magnetic disks. Data is read and written by moving heads
- Advantages:
 - Cheap storage medium
 - Widely used and supported
 - Can have very large capacity drives
 - Long operating life
- Disadvantages:
 - Noisy operation
 - Can consume more power than SSDs
 - Fragile, needs to be handled carefully

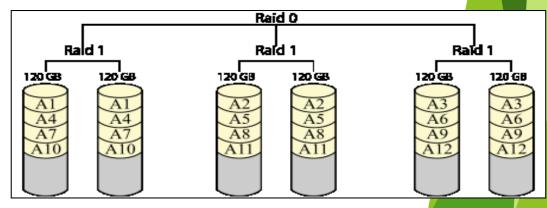

Solid State Drive (SSD)

- Stores data on flash memory, the same technology used by USB drives
- Advantages:
 - Silent operation
 - Higher read/write speeds when compared to HDDs
 - Low power usage
 - More durable
 - Use less space
- Disadvantages:
 - Costlier than HDDs
 - Can wear out faster than HDDs

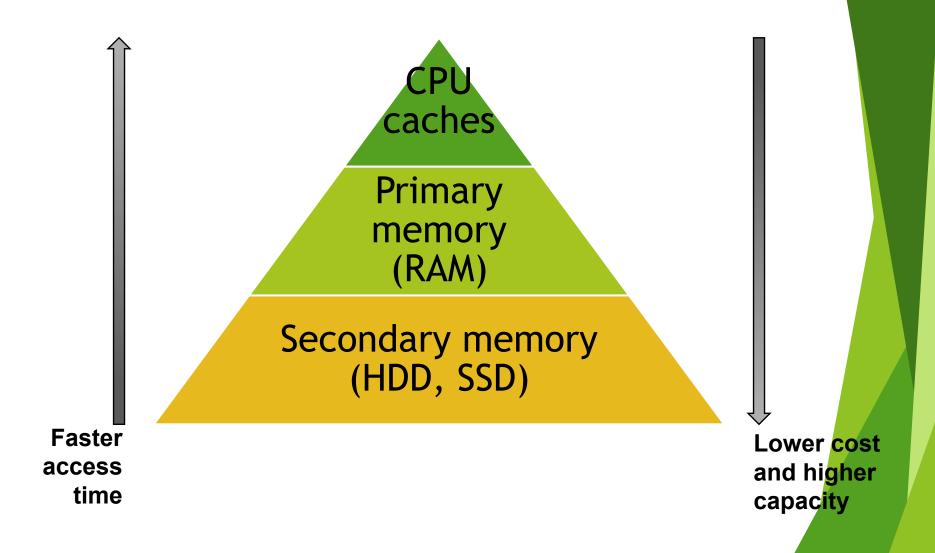
Redundant Array of Independent Disks (RAID)


- RAID pools HDDs/SSDs together to form a larger, more reliable data storage mechanism
- Each RAID configuration has its own strengths and drawbacks
- RAID is commonly used in servers




RAID configurations

- Numerous configurations, we're focusing on two:
 - RAID 0 data stripes used to increase speed
 - RAID 1 data redundancy used to increase reliability
- RAID 10 combines RAID 0 and RAID 1 together


RAID 10

Memory hierarchy

Memory capacity

Measured in bytes

Plain Text (approx.)

1 byte

— 1 KB

– 1 MB

— 1 GB

Music (approx.)

— 1 GB

DVD (approx.)

— 1 GB

1 character - using ASCII standard for encoding

13 lines/1000 characters in our course notes

300 pages

175 phone books

2 hours

20 minutes

Expansion cards

- Additional circuit board that provides extra functionality
- Examples: sound card, graphics card, network card
- Plugged into motherboard using slots that follow certain standards:
 - ► ISA
 - ► PCI-E
 - AGP

Graphics card

- Used to perform graphics processing and run the computer's monitors
- Consists of:
 - ► GPU (either part of CPU or separate graphics card)
 - Video memory
 - Heatsink and fan
 - Ports

Input devices

Peripherals that allow the computer to receive input from the outside world, mainly from the user

- Common input devices:
 - Keyboard
 - Mouse
 - Webcam
- Other input devices:
 - ▶ Voice recognition
 - Biometric scanners
 - ► RFID tags

Output devices

Peripherals that present information processed by the computer to the user

- Output devices include:
 - Computer monitor
 - Printer
 - Speakers
 - Touchscreens
- New forms of output include:
 - Virtual reality
 - Augmented reality

Connectors and buses

- All peripherals are connected to the motherboard via ports
- Ports form part of a bus
- Wired connections:
 - USB (Universal Serial Bus)
 - Thunderbolt high speed connector
 - Ethernet
 - VGA, DVI and HDMI for monitors
- Wireless connections:
 - Wi-Fi
 - Bluetooth

Computer specs

How much primary memory does this computer have?

How many cores does the processor have?

Does this computer have a motherboard?

What kind of graphics card does this computer have?

ThinkPad T460p 14" High Performance Laptop

This 14" laptop is enhanced with performance-boosting processors, memory, and graphics, to give you superior productivity from a device that's still thin and light enough for travel.

- Up to 6th Generation Intel®
 Core™ i7 quad-core H processor
- Up to Windows 10 Pro
- **Up to 8 hours battery life with 47.5Wh
- Up to 32GB DDR4 memory
- 14" anti-glare display, up to WQHD (2560x1440) IPS
- Up to 256GB PCle SSD storage or 512GB SATA SSD storage
- 2x2 802.11 ac WiFi, Bluetooth®
 4.1
- Up to NVIDIA GeForce 940MX
 2GB discrete graphics
- Starting at 1.81 kg (4 lbs) / 24.4mm
- Ports: 3 USB 3.0 (one powered),
 HDMI, miniDP, 4-in-1 card
 reader, optional Smart Card

Computer specs

- How much primary memory does this computer have?
 - 32GB of DDR4 RAM
- How many cores does the processor have?
 - Quad = 4 cores
- Does this computer have a motherboard?
 - Yes, all computers have a motherboard which connects everything together
- What kind of graphics card does this computer have?
 - Discrete NVIDIA graphics card

ThinkPad T460p 14" High Performance Laptop

This 14" laptop is enhanced with performance-boosting processors, memory, and graphics, to give you superior productivity from a device that's still thin and light enough for travel.

- Up to 6th Generation Intel®
 Core™ i7 quad-core H processor
- Up to Windows 10 Pro
- **Up to 8 hours battery life with 47.5Wh
- Up to 32GB DDR4 memory
- 14" anti-glare display, up to WQHD (2560x1440) IPS
- Up to 256GB PCle SSD storage or 512GB SATA SSD storage
- 2x2 802.11 ac WiFi, Bluetooth®
 4.1
- Up to NVIDIA GeForce 940MX
 2GB discrete graphics
- Starting at 1.81 kg (4 lbs) / 24.4mm
- Ports: 3 USB 3.0 (one powered),
 HDMI, miniDP, 4-in-1 card
 reader, optional Smart Card

Summary

- Computers process input from the user and other sources and provide output
- Computer systems are designed using the principle of modularity
- System units are made up of a number of components working together:
 - Power supply
 - Motherboard
 - ► CPU
 - Primary and secondary memory
 - Connectors and buses

