#11111112112112112122121212122122212121212212212121211211
draw_histogram()

Define the draw_histogram() function which is passed a Python
dictionary as a parameter. The keys of the dictionary are single
letters

and the corresponding values are integers, e.g., {"b": 5, "a": 6,
"c": 3}. For each key:value pair iIn the dictionary the function
prints

the key, followed by ": ', followed by a series of stars. The
number of stars printed is given by the value corresponding to
the key.

The keys are printed in alphabetical order. Note that the key 1is
not printed i1f the corresponding value 1s a number less than 1.

For example, the following code:

print(*'1.")

draw_histogram({*a*: 2, "c": 7, "b": 5})

print(*'2.")

draw_histogram({*a*: 0, "c": 5, "b": 7, *"f": 0})

- KExkkX

- KEAkAAkkAkAKX
= KExkkXx

1

a

b:

C: Fr*khkhk
2

b

C

222
print_word_ length _dictionary()

Define the print_word_length_dictionary() function which 1s
passed a tuple of strings as a parameter.

The print word length _dictionary() function creates a dictionary
where the keys are the lengths of the

words encountered in the tuple, and the values are a list of
words of that length. The function then

-

prints the keys and values In this dictionary such that:

- Each key/value pair i1s printed on a separate line.

- The keys (word lengths) are printed in ascending order of
magnitude.

- The values (list of words) are sorted in alphabetical order.

For example the following code:

print_word length _dictionary(("*hello™,"world", " students", "computer"”
, 'science', "auckland", '"‘cats'))
prints

4: ["cats™]

5: [Fhello®, “world"]

7: ["science™]

8: ["auckland®, “computer®, "students®]

333
print_most_common()

Define the print_most _common() function which i1s passed two
parameters, a dictionary containing words and their corresponding
frequencies, e.g.,

{"and":15, "talon":7, "frog':1, 'cat':15, "'tests':1l, ''dog':2,
"bat':14, "rat':15}

and, an integer, the length of the key words to be considered.
The function first prints the length of the key words to be
considered, followed

by ' letter words: ', then prints a sorted list of all the key
words of the required length from the dictionary which have the
highest frequency

followed by the frequency.

For example, the following code:

word_frequencies = {"fish":9, "parrot':8, 'frog":9, 'cat':9,
"stork™:1, "dog":4, "bat':9, ''rat':3}

print_most _common(word_frequencies, 3)

print_most _common(word_frequencies, 4)

print_most _common(word_frequencies, 5)

print_most _common(word_frequencies, 6)

print_most _common(word_frequencies, 7)

prints the following four lines of output:

-2-

3 letter words: ["bat®, "cat"] 9

4 letter words: [“fish®, “"frog®] 9
5 letter words: ["stork®"] 1

6 letter words: [“parrot™] 8

7 letter words: [] O

#

A44444444044444440444444444444444444444444444444444
get _names_marks tuple _dict()

H e
#

Define the get names _marks tuple dict() function which i1s passed
a Ffilename as a parameter. The file contains lines of text

where each line is made up of a student name followed by a series
of numbers representing their marks.

An example input file i1s shown below ("'ShortNamesAndNums.txt'):

The get names marks_tuple dict() function returns a dictionary
with the student names as the keys and the corresponding

values which are tuples of their five best marks. The marks in
the tuple must be sorted In ascending order. For example,

the line of text "Lara 65 54 79 83 25 58 76" becomes the
dictionary entry with the keyword *Lara"™ and the corresponding
value 1s a tuple made up of the 5 best marks i1n ascending order
"Lara': (68, 65, 76, 79, 83). You can assume that there

are always enough marks 1In each line of the input file.

Note: the testing code makes use of the
print_dict _in_key order(a_dict) which prints the dictionary pairs
In sorted key order.

For example, the following code:

names_and_marks _dict =
get _names_marks_tuple_dict(''ShortNamesAndNums.txt'™)
print_dict_in_key order(names_and_marks_dict)

prints:

Elaine : (47, 49, 52, 53, 61)
Lara : (68, 65, 76, 79, 83)
Ryu : (80, 81, 82, 85, 91)
Tom : (29, 44, 45, 49, 54)
wayne : (71, 82, 83, 96, 97)

555

-3-

remove_long_synonyms()

Define the remove_long synonyms() function which i1s passed a
dictionary as a parameter. The keys of the parameter dictionary
are words and the corresponding values are lists of synonyms

(synonyms are words which have the same or nearly the same
meaning) .

The function removes all the synonyms which have 7 or more
characters from each corresponding list of synonyms. As well,
the function sorts each corresponding list of synonyms.

For example, the following code:

synonyms_dict = {"look": ["gaze®, "see*, "glance®", “watch-",
"peruse’],

"put*: ["place®, "set", "attach®", "keep®, "save", "set aside”,
"effect”, “achieve®", "do", “build-],

"beautiful": ["pretty”, “lovely®, "handsome®, “"dazzling”,
"splendid®, "magnificent"],

*slow": [“unhurried®, “gradual®, "leisurely®, "late”,
"behind®, “tedious®, "slack"],

"dangerous®: ["perilous®, "hazardous®, “uncertain-]
+
remove_long_synonyms(synonyms_dict)
print(""1.")
print_dict _in_key order(synonyms dict)
synonyms_dict = {"come®: ["approach®, "advance®, “near”,
"arrive”, “"reach"],

"show®: [“display”, "exhibit®, "present”, "point to-,
"Indicate®, "explain®, "prove®, “"demonstrate®, "expose’],

"good®": ["excellent®, "fine®", "superior®, “wonderful”®,
*grand®, “superb®, “edifying"],

"bad”: [“evil®, “"immoral®, “wicked®, "contaminated-”,
"spoiled”, "defective®, “substandard®, “faulty®, "improper-®,
"inappropriate”]

by
remove_ long_synonyms(synonyms_dict)
print(*'2.")
print_dict _in_key order(synonyms _dict)
prints:

1.

beautiful : [“lovely®, "pretty”]

dangerous : []

look : ["gaze®, “"glance®, "peruse”, "see”, "watch"]
put : ["attach®, "build®, "do*, "effect", “"keep®, "place-”,
"save®, "set"]

slow : ["behind®, "late", "slack"]

2.

bad : [T"evil®, "faulty®, “"wicked"]

come : ["arrive®, "near®, “reach"]

good : ["fine", “"grand®, "superb®]

show : [“expose®, "prove”]

666
contains_keys and values()

Define the contains keys and values() function which 1s passed
two dict objects as parameters, dictl and dict2.

The two parameter dictionaries both have corresponding values
which are lists of elements (nhumbers or strings).

The function return True 1T the following two conditions are met:

dictl contains all the keys which are in dict2 (dictl may contain
extra keys),

and,

the elements in all the corresponding value lists of dict2 are
also elements 1n one or more of the corresponding

value lists of dictl. Note: when testing this part of the
condition, the elements can be In any order and iIn any

of the corresponding value lists, e.g., 1T one of the
corresponding values lists of dict2 i1s [4, 2] and any one

of the corresponding value lists of dictl contains the element 4
and any one of the corresponding value lists of

dictl contains the element 2, this part of the condition is

-5-

satisftied.
The function returns False i1n all other cases.

For example, the following code:

dictl = {}
dict2 = {}
print(*"1.", contains_keys and values(dictl, dict2))

dictl = {""a": [4, 3] , "d": [6, 2], "z'": [1, "t": [2, 23]}
dict2 = {"z": [2, 3, 6, 23], "a": [4]}
print(*'2.", contains_keys and values(dictl, dict2))

dictl = {"a": [6, 3], "p": [1}
dict2 = {"a": [3, 6, 3], "p": [6, 1]}
print(*'3.", contains_keys and values(dictl, dict2))

dictl = {"a": [6, 31, "p": [1}
dict2 = {"a": [3, 6, 3], "p": ["a 1}
print(*'4.", contains_keys and values(dictl, dict2))

dictl = {"a": [6, 3], "p": ["a"], "t": ["s"1}
dict2 = {"a": [3, 6, 3], "p": ["a"], "s": ["a"]}
print("'5.", contains_keys and values(dictl, dict2))

prints:

1. True

2. True

3. False

4. False

5. False

__

TTTT777
get_triples_dict()

Define the get _triples _dict() function which 1s passed a string
of text as a parameter. The function first

converts the parameter string to lower case and then returns a
dictionary with keys which are all the unique

consecutive three alphabetic characters from the text, and the
corresponding values are the number of times

the three consecutive alphabetic characters appear in the text.
Use the i1salpha() method to check if a

character i1s alphabetic or not. The dictionary should only

-6-

contain entries which occur more than once.
After your dictionary has been created and populated, you need to
remove any key-value pairs which have a
corresponding value of 1.
duper™ the algorithm proceeds as follows:

Character "s":
Character "u":
Character "p-*
Character "e":
Character "r-
Character ",":
1, "per®: 1}

Character " ":
1, "per®: 1}

Character "d-":

Dictionary is

Character
Dictionary 1s

Character
Dictionary 1s

Character
Dictionary 1s

Character
Dictionary 1s

u :

p -

e :

r:

For example,

1T the text is "'Super,

String is "'s', Dictionary is {}
String i1s "'su', Dictionary is {}
String is "'sup’", change string to "up’,
Dictionary i1s {"sup”: 1}
String is "upe', change string to "'pe",
Dictionary i1s {"sup": 1, “upe”: 1}
String is "per’, change string to "er",
Dictionary i1s {"sup": 1, “upe®: 1, "per-:
1}
String i1s "er", Dictionary i1s {"sup": 1, “upe-:
String i1s "er", Dictionary i1s {"sup": 1, “upe-:
String i1s "erd", change string to ''rd",
{"sup®: 1, "upe": 1, "per": 1, "erd": 1}
String is "rdu”, change string to "'du’,
{"sup®: 1, “upe*: 1, "per": 1, “erd-":
1, "rdu*: 1}
String is "dup’, change string to "up’,
{"sup®: 1, “upe*: 1, "per~: 1, “erd": 1, "rdu: 1,
"dup®: 1}
String is "upe', change string to "'pe",
{"sup®: 1, “upe*: 2, "per": 1, “erd": 1, "rdu: 1,
"dup®: 1}
String is "per’, change string to "er",
{"sup®: 1, “upe*: 2, "per": 2, “erd": 1, "rdu: 1,
"dup®: 1}

Remove all entries with a value of 1: Dictionary is {"upe”: 2,

"per*: 2}

For example, executing the following code::

print(*'1.")

print_dict _in_key order(get triples dict("super, duper®))

print("*\n2.'")

print_dict_in_key order(get_triples_dict(""'ABC ABC ABC™))

print("*\n3."")

print_dict_in_key order(get_triples dict("'Sometimes the smallest
things make more room In your heart'))

-7-

print("*\n4.'")

print _dict _in_key order(get triples dict(*'"My favourite painting
IS the painting 1 did of my dog In that painting in my den™))
prints (output 1s shown here i1n four separate columsn):

1. 2. 3. 4.
per - 2 abc - 3 est - 2 ain -
upe - 2 bca - 2 sma - 2 epa -
cab - 2 gin -
ing -
int -
myd -
ngi -
ntr -
pai -
tin -

WWWWNEARWNNW

