
Lecture 28 – Docstrings,
Doctests

COMPSCI 101
Principles of Programming

Learning outcomes
 At the end of this lecture, students should be able to
 use Doctest by including simple tests in function docstrings

2

docstring
 A docstring is a special kind of string used to provide documentation

 Appears at the top of every program
 three double-quotes are used to surround the docstring
 All programs should include a docstring at the beginning of the program
 The docstring contains the author and usually a version number
 As well as the docstring describing the purpose of the program, amost

important recommendation is the common sense: be short, clear and concise!

3

"""

"""Prints the minutes given hours and minutes

Author: Adriana Ferraro

"""

def main():

hours = 5

minutes = 23

total_minutes = hours * 60 + minutes

print(total_minutes)

main()

docstring

def get_the_fib(which_fib):

Errors
 No matter how smart or how careful you are, errors are

your constant companion.
 With practice, you will get better at not making errors, and

much, much better at finding and correcting them.
 There are three kinds of errors:
 syntax errors,
 runtime errors, and
 logic errors.

4

Syntax Errors
 These are errors where Python finds something wrong with your

program, and you can't execute it.
 mostly typos - missing punctuation , wrong indentation, case sensitive …

 Syntax errors are the easiest to find and correct. The compiler will
tell you where it got into trouble. Usually the error is on the exact
line indicated by the compiler, or on the line just before it;
def main():

number = 4
print(number)
for i in range(1, number)

print("hello"
main() File "Example01.py", line 4

for i in range(1, number)
^

SyntaxError: invalid syntax

No output regarding the
number

Missing colon, missing ')'

5

Execution/Runtime Errors
 If there are no syntax errors, Python may detect an error while

your program is running
 For example: IndexError, Division by 0 etc
 Runtime errors are moderate in difficulty. Python tells you where it

discovered that your program went wrong, but you need to trace
back from there to figure out where the problem originated.

def main():
number = 0
print(number)
print(230 / number)

main()

0
Traceback (most recent call last):
File "Example01.py", line 6, in <module>

main()
File "Example01.py", line 4, in main

print(230 / number)
ZeroDivisionError: division by zerothe interpreter tries to give

useful information

Output:

6

Logical Errors
 A logical error, or bug, is when your program compiles and runs,

but does the wrong thing.
 The Python system, of course, has no idea what your program is

supposed to do, so it provides no additional information to help
you find the error.

 Logical errors are often difficult to find and correct.
 Example: We would like to print a string in a reverse order:

 The expected output is “l a c I g o l”

def main():
word = "logical"
for i in range(len("word")-1, -1, -1):

print(word[i], end=" ")

main()

i g o l

Actual
Output!

What is
wrong?

7

DEMO
Example01.py

Types of errors continued
 Logical – harder to find, harder to correct

 Complete the output for code A and code B above?
 Which was the intention?

8

x = int(input("x: "))

y = int(input("y: "))

if x > 10:

if y == x:

print("Fine")

else:

print("So what?")

x: 3

y: 3

x = int(input("x: "))

y = int(input("y: "))

if x > 10:

if y == x:

print("Fine")

else:

print("So what?")

x: 3

y: 3

A B

Expensive Fireworks (1996)
 In 1996, code from the Ariane 4

rocket is reused in the Ariane 5, but
the new rocket's faster engines trigger
a bug in an arithmetic routine inside
the flight computer.

 The error is in code to convert 64-bit
floating-point numbers to a 16-bit
signed integers. The faster engines
cause the 64-bit numbers to be larger,
triggering an overflow condition that
crashes the flight computer.

 As a result, the rocket's primary
processor overpowers the rocket's
engines and causes the rocket to
disintegrate only 40 seconds after
launch.

Testing is important!

9

The Fibonacci Sequence
 The Fibonacci Sequence is the series of numbers:
 1, 1, 2, 3, 5, 8, 13, 21, 34, ...
 The next number is found by adding up the two numbers before it.
 The 2 is found by adding the two numbers before it (1+1)
 Similarly, the 3 is found by adding the two numbers before it (1+2),
 And the 5 is (2+3),
 and so on!
 Here is a longer list:

10

n 1 2 3 4 5 6 7 8 9 10 11 12

1 1 2 3 5 8 13 21 34 55 89 144

First Attempt:
 Complete the following function which prints the fibonacci

numbers up to but not including up_to_number:

11

def print_fibs(up_to_number):

prev_fib = 1

next_fib = 1

while next_fib < up_to_number:

print(next_fib, end=" ")

prev_fib, next_fib = next_fib, next_fib + prev_fib

print("up to 20:", end = " ")

print_fibs(20)

print("up to -4:",end = " ")

print_fibs(-4)

...

up to 20: 1 2 3 5 8 13

up to -4:

up to 0:

up to 1:

up to 2: 1

Missing some
values

DEMO
Example02.py

In order to test the correctness of the
function, we need to check with different

parameters (valid and invalid values)

Example 3
 Returns a list of the required number (given by how_many)

of fibonacci numbers:

12

def get_fibs_list(how_many):
def get_fibs_list(how_many):

prev_fib = 0
next_fib = 1
fib_list = []

while len(fib_list) < how_many:

prev_fib, next_fib = next_fib, next_fib + prev_fib
return fib_list

print("List of first 5 fib numbers:", get_fibs_list(5))
...

List of first 5 fib numbers [1, 1, 2, 3, 5]
List of first 0 fib numbers: []
List of first ‐2 fib numbers: []

DEMO
Example02.py

Example 4
 Returns the nth (given by which_fib) fibonacci number:

13

DEMO
Example02.py

def get_the_fib(which_fib):
if which_fib < 1:

return 0
prev_fib = 0
next_fib = 1
term_number = 0
while term_number < which_fib:

prev_fib, next_fib = next_fib, next_fib + prev_fib
term_number += 1

return next_fib

print("Get fib number 6:", get_the_fib(6))

Get fib number 6: 13
Get fib number 0: 0
Get fib number ‐2: 0
Get fib number 4: 5

n 1 2 3 4 5 6 7 8 9 10 11 12

1 1 2 3 5 8 13 21 34 55 89 144

Using the interactive interpreter
 Note: The interactive interpreter can be used to check and

run Python code interactively.

14

>>> def get_result(command, what_to_do, where):

return command + " " + what_to_do + " in the " + where

>>> get_result("a", "b", "c")

'a b in the c'

>>> get_result("come", "sing", "hall")

'come sing in the hall'

>>> get_result("go", "jump", "pond")

'go jump in the pond

Remember – using docstrings
 We used docstrings to state the purpose of the program and to

print the module author.
 This is the program documentation.
 Remember: be short, clear and concise! Other programmers, who

use/improve your module, will be using your docstring as documentation.
 Docstrings can also be added to our functions. A docstring containing

the purpose of the function should be added to the docstring.

15

def get_the_fib(which_fib):

"""Returns the nth (given by which_fib) Fibonacci number.

"""

prev_fib = 0
next_fib = 1
...

Testing using doctest module
 Put all your test cases into your docstrings

def cube(x):
"""
returns ...
>>> cube(0)
0
>>> cube(1)
1
>>> cube(2)
8
>>> cube(10)
1000
"""
return x * x

import doctest
doctest.testmod()

File "Example02.py", line 7, in __main__.cube
Failed example:

cube(2)
Expected:

8
Got:

4

File "Example02.py", line 9, in __main__.cube
Failed example:

cube(10)
Expected:

1000
Got:

100
**
…
Test Failed 2 failures.

Test Failed

Test Failed

Test
cases

16

DEMO
Example03.py

Doctests – does the testing
 If we want to include doctests in functions, we need to

include the following two statements at the end of our code:

17

"""

def get_the_fib(which_fib):
...

import doctest
doctest.testmod()

import doctest – imports the doctest module
doctest.testmod() – starts the testing of the module

These two statements are the last
two statements of the program

Doctests –testmod() does the testing
 A docstring can also contain testing code.
 Any code in our function docstrings which looks like interactive

code,
 i.e., any line in the docstring which starts with the interactive interpreter

prompt, ">>>" will be executed and the outcome of the code will be
compared with the stated expected outcome.

18

"""

def get_the_fib(which_fib):
"""Returns the nth (given by which_fib) Fibonacci number.
>>> this code will be executed by testmod()
this is the expected outcome from executing the previous line of code
"""
…

import doctest
doctest.testmod()

Running a program which contains
doctests

 Note that in the program a main() function can be included
or it can be left out if you just wish to just run the doctests.

 When you run the doctests (e.g., run the program on the
previous slide), there is no output if the tests cause no
problem, i.e., if the outcome of the tests is exactly the
same as the outcome stated.

 If the outcome of the test is different, then the test fails and
the doctest gives useful information.

19

Testing using the doctest module
 Put all your test cases right into your doc strings
 When this program is run, there is no output because all the

doctests pass.
def cube(x):

"""
returns ...
>>> cube(0)
0
>>> cube(1)
1
>>> cube(2)
8
>>> cube(10)
1000
"""
return x * x * x

import doctest
doctest.testmod()

python Example03.py
C:\Python33\Python "Example03.py"
Process started >>>
<<< Process finished. (Exit code 0)

No output!

20

Running with “–v”
 Run your program using -v option, and doctest prints a

detailed log of what it’s trying, and prints a summary at the
end:
def cube(x):

"""
returns ...
>>> cube(0)
0
>>> cube(1)
1
>>> cube(2)
8
>>> cube(10)
1000
"""
return x * x * x

import doctest
doctest.testmod()

python Example02.py -v
…
Trying:

cube(2)
Expecting:

8
ok
Trying:

cube(10)
Expecting:

1000
ok
…
4 passed and 0 failed.
Test passed.

21

Common Problem 1
 No blank space after the '>>>' prompt sign:

def my_function(a, b):
"""
>>>my_function(2, 3)
6
"""
return a * b

Traceback (most recent call last):
File "Example03.py", line 12, in

<module>
doctest.testmod()

…

Missing space

22

DEMO
Example05.py

 If the outcome doesn't match exactly (including trailing
spaces), the test fails, e.g.,
 Example: embedded whitespace can also cause tricky problems with

tests. This example has a single extra space after the 6.

unnoticed in the source file
and invisible in the test

failure report

Common Problem 2

def my_function(a, b):
"""
>>> my_function(2, 3)
6
>>> my_function('a', 3)
'aaa'
"""
return a * b

import doctest
doctest.testmod()

Failed example:
my_function(2, 3)

Expected:
6

Got:
6

**

1 items had failures:

1 of 2 in __main__.my_function
Test Failed 1 failures.

An extra space

23

DEMO
Example06.py

Common Problem 3
 No blank line after the expected outcome – in this case any

text on the next line is considered to be part of the output,
e.g.,

def my_function(a, b):
"""
>>> my_function(2, 3)
6
more comment
>>> my_function('a', 3)
'aaa'
"""
return a * b

...

Failed example:
my_function(2, 3)

Expected:
6
more comment

Got:
6

**

1 items had failures:

1 of 2 in __main__.my_function
Test Failed 1 failures.

Doctest considers that the line
"more comment" is part of the
output. Therefore the test fails.

24

DEMO
Example07.py

Blank lines are used to delimit tests.
 In real world applications, output usually includes whitespace

such as blank lines, tabs, and extra spacing to make it more
readable.

 Blank lines, in particular, cause issues with doctest because
they are used to delimit tests.

def my_function(a, b):
"""
>>> my_function(2, 3)
6

>>> my_function('a', 3)
'aaa'

"""
return a * b

...

Process started >>>
<<< Process finished. (Exit code 0)

delimit tests

25

Common Problem! - 4
 Write a function which takes a list of input lines, and prints

them double-spaced with blank lines between.
def double_space(lines):

"""Prints a list of lines double-spaced.

>>> double_space(['Line one.', 'Line two.'])
Line one.

Line two.

"""
for l in lines:

print(l)
print()

return

import doctest
doctest.testmod()

Expected:
Line one.
Line two.

Got:
Line one.
<BLANKLINE>
Line two.
<BLANKLINE>

**

1 items had failures:

1 of 1 in __main__.double_space
Test Failed 1 failures.

interprets the blank
line after Line one. in
the docstring as the
end of the sample

output

26

DEMO
Example08.py

Solution
 Using <BLANKLINE>

def double_space(lines):
"""Prints a list of lines double-spaced.
>>> double_space(['Line one.', 'Line two.'])
Line one.
<BLANKLINE>
Line two.
<BLANKLINE>

"""
for l in lines:

print(l)
print()

return

import doctest
doctest.testmod()

27

doctests – exercise 1

28

def get_the_fib(which_fib):
"""Returns the nth Fibonacci number.

>>> get_the_fib(8)
21
>>> get_the_fib(5)
5
"""
if which_fib < 1:

return 0

prev_fib = 0

next_fib = 1

fib_number = 0

while fib_number < which_fib:

prev_fib, next_fib = next_fib, next_fib + prev_fib

fib_number += 1

return next_fib

import doctest
doctest.testmod()

Do the two doctests pass or fail?

Exercise01.py

doctests – exercise 2

29

def get_fibs_list(how_many):

"""Returns a list of Fibonacci numbers.

The parameter is the number of terms in the list.

"""
prev_fib = 0
next_fib = 1
fib_list = []

while len(fib_list) < how_many:
fib_list.append(next_fib)
prev_fib, next_fib = next_fib, next_fib + prev_fib

return fib_list

import doctest

doctest.testmod()

Write two (useful and different)
doctests for the get_fibs_list() function.

Exercise02.py

Converting Celsius - Fahrenheit
 Often, before writing the code, we know what outcomes we

are expecting. These expected outcomes can be added to the
function being developed using doctests.

30

def c_to_f(celsius):
"""Returns the parameter degrees
converted to fahrenheit.

>>> c_to_f(0)
32.0
>>> c_to_f(37.8)

>>> c_to_f(‐32)

"""
import doctest
doctest.testmod()

Exercise03.py

Summary
 In a Python program:
 docstrings can be associated with modules and with functions
 simple tests can can be added to the docstring of a function. These

tests are automatically carried out.

31

