
COMPSCI 101
Principles of Programming

Lecture 24 - Using the Python interpreter, Python 
sequences



Learning outcomes
 At the end of this lecture, students should be able to:
 recognise sequences and the common features of sequences
 use the interactive Python interpreter to check python statements 

and functions
 use the interactive Python interpreter to look up Python help

2



Sequences: strings, lists and tuples
 Sequence types
 There are five types of sequences in Python.  In CompSci 101 we 

use three of these: strings, lists and tuples.

 Sequences allow you to store multiple values in an organized and 
efficient fashion. 

 The indices of the elements of a sequence start at 0.  The indices 
can be negative (to access elements from the end of the sequence).

 The order of the elements in a sequence is important.
 Each element of a sequence can be accessed using square brackets 

and the index number, e.g., 

3

a_tuple = (3, 4, 8)
a_list = [3, 4, 8]
a_string = "348"

a_tuple = (3, 4, 8)
print(a_tuple[2])
middle = a_list[1]
last = a_string[-1]



Sequences continued
 Sequences can be sliced:

 The len(), min(), max() functions can be applied to sequences 
(sum() can be used with tuples and lists).

4

a_tuple = (3, 4, 8, 7, 2)
a_list = [3, 4, 8, 0, 1]
a_string = "3and 4"
a_tuple2 = a_tuple[0:3:2]
a_list2 = a_list[1:3]
print(a_tuple2, a_list2, a_string[5:1:-2])

a_tuple_list = [(3, 'c'), (9,'a'), (1, 'z')]
print(len(a_tuple))
print(len(a_string))
print(max(a_tuple))
print(max(a_string))
print(len(a_tuple_list))
print(max(a_tuple_list))

5
6
8
n
3
(9, 'a')

(3, 8) [4, 8] 4d



Sequences continued
 The +, *, and 'in' operators can all be used with sequences

5

a_tuple = (3, 4) * 3 + (2, 1)
a_list = [3, 0, 1] + [6, 2] * 2
a_string = "3 & 4" * 2 + "end"
print(a_tuple)
print(a_list)
print(a_string)

print(4 not in a_tuple, 24 in a_list, "23" in a_string)

(3, 4, 3, 4, 3, 4, 2, 1)
[3, 0, 1, 6, 2, 6, 2]]
3 & 43 & 4end
False False False



Iterating through the elements of 
sequences

 A for … in … loop can be used to visit each element of a 
sequence, e.g., 

6

a_tuple = (3, 4, 8, 7, 2)
a_list = [3, 4, 8, 24, 1]

total = 0
for number in a_tuple:

total += number
print("1.", total)

total = 0
for number in a_list:

total += number
print("2.", total )

1. 24
2. 40



Iterating through the elements of 
strings

 A for … in … loop is used to visit each character in a string 
sequence.  The elements of a string sequence are the 
characters making up the string.

7

word = "wonderful"
number = 0

for letter in word:
if letter in "aeiou":

number += 1

print(number)

3



Iterating through the characters of a 
sequence – Exercise 1

 Complete the get_num_uniques() function which returns 
the number of unique elements in the sequence (including 
non alphabetic characters).

8

def get_num_uniques(a_sequence):
uniques = []
for

if
uniques.

return len(uniques)

def use_get_num_uniques():
words = "Number of unique elements:"
print(words, get_num_uniques("green apple"))
print(words, get_num_uniques("abcdefg") )
print(words, get_num_uniques("abbbbbb") )
print(words, get_num_uniques((3, 4, 3, 3, 4, 6, 3, 7, 8, 4)) )
print(words, get_num_uniques([3, 4, 3, 3, 4, 6, 3, 7, 8, 4]) )

main()

Number of unique elements: 8
Number of unique elements: 7
Number of unique elements: 2
Number of unique elements: 5
Number of unique elements: 5



Iterating through the characters of a 
string – Exercise 2

 Complete the count_longer_words() function to find the 
count of words that are longer than the parameter word 
from a given list of words.

9

def count_longer_words(a_list, word):
count = 0
for 

if

return count

def main():
print(count_longer_words(['Double', 'letters', 'in', 'green', 'apple'], 'go'))
print(count_longer_words(['Number', 'of', 'unique', 'elements'], 'go'))

main()

4
3



Iterating through the characters of a 
string – Exercise 3

 Complete the count_doubles() function which returns 
the number of double letters (a letter followed by the same 
letter) excluding double spaces, in the string passed as a 
parameter.

10

def count_doubles(text):
count = 0
...

def main():
print("Double letters in green apple", count_doubles("green apple"))
print("Double letters in abcdefg", count_doubles("abcdefg"))
print("Double letters in abbbbbb", count_doubles("abbbbbb"))"

main()
Double letters in green apple 2
Double letters in abcdefg 0
Double letters in abbbbbb 3



Compilers and interpreters
 Compilers
 Compilers convert source code into machine code and store the 

machine code in a file. The machine code can then be run directly 
by the operating system as an executable program (… .exe file).

 Interpreters
 Interpreters bypass the compilation process and convert and 

execute the code directly statement by statement.
 Python is an interpreted language, i.e., the Python interpreter reads 

and executes each statement of the Python source program 
statement by statement:

 this is why even if you can have an error in the program further down, the 
program executes until it hits that error.

11



Python IDLE
 IDLE (Integrated DeveLopment Environment) is an integrated 

development environment for Python.  This is the 
development environment provided when you download 
Python.

 WIKIPEDIA states "IDLE is intended to be a simple IDE and suitable 
for beginners, especially in an educational environment. To that end, it is 
cross-platform, and avoids feature clutter."

12
IDLE window on a MAC

IDLE provides an 
interactive 

environment for 
checking Python 

code and for 
running Python 

programs.

IDLE window on a PC



The Python interactive interpreter 
(Python shell)

 The interactive Python interpreter
 The Python interactive interpreter makes it easy to check Python 

commands. 
 Open the interactive interpreter

 We will use IDLE which opens a window with the interpreter prompt:   
>>>

 Once the Python interpreter has started any Python command can be 
executed (at the prompt >>>)

13

>>> word = "amazing"
>>> len(word)
7
>>> word = word * 3
>>> word
'amazingamazingamazing'
>>> another_word = word[2::3]
>>> another_word
'anmiazg'
>>> word[:0:-4]
'ganmi'

Notice that the interpreter displays 
the result of each statement even 
though there is no print() in the 

statement.  



The Python interactive interpreter cont.
 The interactive Python interpreter can also be used to test 

functions
 The Python interactive interpreter makes it easy to check Python 

code. 

14

>>> def get_result(command, what_to_do, where):

return command + " " + what_to_do + " in the " + where

>>> get_result("a", "b", "c")

'a b in the c'

>>> get_result("come", "sing", "hall")

'come sing in the hall'

>>> get_result("go", "jump", "pond")

'go jump in the pond

Notice that it is necessary to 
insert a blank line to end the 

function definition.

See the results of calling 
the function three times 
with different arguments.



The Python interactive interpreter help
 The interactive Python interpreter can also be used to get 

help:

15

>>> help(str.rfind)
rfind(...)

S.rfind(sub[, start[, end]]) -> int
Return the highest index in S where substring sub is found,
such that sub is contained within S[start:end].  Optional
arguments start and end are interpreted as in slice 
notation.
Return -1 on failure.

>>> help(sum)
sum(...)

sum(iterable[, start]) -> value

Return the sum of an iterable of numbers (NOT strings) plus  
the value of parameter 'start' (which defaults to 0).  When
the iterable is empty, return start.



None
 print statements (in the interpreter window) just print to the 

interpreter window.
 A function which does not explicitly return a value, always 

returns None.

16

>>> def do_little(n1, n2):
print("Sum:", n1 + n2)

>>> do_little(3, 5)
Sum: 8
>>> print(do_little(3, 5))
Sum: 8
None

Notice that it is necessary to 
insert a blank line to end the 

function definition.

The result of calling the function is printed.

The code in the function executes.



Summary
 strings, lists and tuples are sequences
 The operators: +, * and in can be used with sequences
 We use a for … in … to iterate through each element of a sequence
 len(), min(), max() can be used with sequences 
 sum() can be used with tuples and lists
 Each element of a sequence can be accessed using the index operator.  

The index can be negative (starting from the end of the sequence)
 Sequences can be sliced using [slice_start:  slice_end:  step]

 The Python interactive interpreter (IDLE)
 use the interactive Python interpreter to check python statements and 

functions
 use the interactive Python interpreter to look up Python help

17


