
COMPSCI 101
Principles of Programming

Lecture 3: Expressions, Documentation and Modules

Learning Outcomes
At the end of this lecture, students should be able to:
 import modules and use the functions defined in the module
 use integer division and modulus operators
 include a docstring at the top of a program and use

comments
 use self-documenting code to make the program easy to read

and understand
 understand that an expression evaluates to one value
 understand the order of operations when an algebraic

expression is evaluated
 understand how to develop a program in steps

COMPSCI 101, S1 20202

Recap
$1 NZ = $0.95 AUS. Write a program which converts $500 NZ to Australian
dollars and converts $500 AUS to New Zealand dollars using the above
exchange rate. The output of the program should be:

COMPSCI 101 – S1, 20203

amount_to_convert = 500
nz_to_aus_rate = 0.95
nz_dollars = amount_to_convert

NZ $500 = AUS $475.0
AUS $500 = NZ $526.3157894736842

Literals, Variables and Expressions
Literals are the actual values which can be stored in the program memory, e.g.,

 34
 -67.5
 "a particular string"

Variables can be assigned any literal value (or an expression). Variables are used to refer to
(point to) a single piece of information, e.g.,

 result = 567
 final_result = result + 45
 phrase = "a particular string"
 phrase = "Please tell me more"
 first_name = "Izzy"

Expressions are made up of literal values and variables. Expressions always evaluate to a
single value. The right hand side of the assignment operator is an expression, e.g.,

 number = 3
 final_result = 567 + 16 ** number
 final_result = final_result + number * 5 / 7

COMPSCI 101, S1 20204

Docstrings
A docstring is a special kind of string (text) used to provide
documentation. A docstring:

 appears at the top of every COMPSCI 101 program,
 three double-quotes are used to surround the docstring,
 all programs should include a docstring at the top of the program,
 the docstring contains the author and a description of what the program does.

COMPSCI 101, S1 20205

"""

Program which calculates the area of a circle.

Author: Damir Azhar

"""

radius = 10

area = 3.14159265359 * radius ** 2

print("Area of circle", area)

Comments
As well as the docstring describing the purpose of the program at the
top of ALL our programs, comments can be added to the program
code. A programming comment is a note to other programmers who
need to understand the code.

 Anything between a # (hash) and the end of the line is a comment and is ignored by
the interpreter

COMPSCI 101, S1 20206

"""

Converts a length in inches to a length in centimetres.

Author: Damir Azhar

"""

length_in_inches = 100 #Change the value of length_in_inches here

length_in_cm = length_in_inches * 2.54

print("Length", length_in_cm) Length 254.0

Use Self Documenting Code
Add comments sparingly to explain code that is difficult, or to tell other programmers
something they need to know about the code.

It is always important to use good descriptive variable names.

The program below does the same job as the program on the previous slide but it uses very
poor variable names which makes the program difficult to read and difficult to understand.

COMPSCI 101, S1 20207

"""

Converts a length

Author: Damir Azhar

"""

a = 100

b = a * 2.54

print("Length", b) Length 254.0

Skeleton of a Python Program
In general the format of a Python program is:

COMPSCI 101, S1 20208

"""

Calculates the area of a rectangle.

Author: Damir Azhar

"""

width = 3.56

height = 8.4

area = width * height

print("Area of rectangle", area)

docstring

initialisation

calculation

output

Area of rectangle 29.904

Every Python program is stored in a file which has .py at the end of the file
name (the file extension), e.g., CalculateArea.py, CompoundInterest.py

Python libraries
Python has libraries of code which contain definitions and functions which perform useful
tasks and calculations. The files in these libraries are called modules. The name of a
module is the name of the file without the .py extension.

The math module contains many useful math functions and constants, e.g., math.sin(),
math.cos(), math.pow(), math.sqrt(), math.floor(), …

In order to be able to use the functions of a module, we need to import the module.
Importing a module means that we can then use all the functions defined inside that
module, e.g.,

COMPSCI 101, S1 20209

"""Calculates the radius of a circle, given the area.
Author: Damir Azhar

"""
import math

area = 221.67

radius = math.sqrt(area / math.pi)

print("Radius of circle", radius)

Radius of circle 8.399985266079987

www.python.org
The following website contains documentation about all the Python
modules.

COMPSCI 101, S1 202010

https://docs.python.org/3/py-modindex.html

Expressions – order of operations
Expressions containing numbers are evaluated in the same way as in mathematical
expressions, i.e., BEDMAS applies:

Note that the / operator always results in a float, e.g., 8 / 4 is 2.0.
 Give the output:

COMPSCI 101, S1 202011

Brackets
Exponents
Division, Multiplication
Addition, Subtraction

Remember to work from left to right when evaluating operators with the same priority.

result1 = (25 - 7) * 3 + 12 / 3

result2 = 17 - 3 * 2 - 12 / 4 + 15

result3 = 32 / 4 ** (3 + 2 * 3 - 7) / 5

print(result1, result2, result3)

More Arithmetic Operators
So far, we have seen these mathematical operators: +, -, *, /, **

Two more mathematical operators:

 Floor division (integer division) //
 Modulus (remainder) %

Floor division (integer division) performs the division and ignores the part after the decimal point, e.g.,
 16 // 5 gives 3
 17 // 5 gives 3
 34 // 5 gives 6

Modulus performs the division and gives the remainder, e.g.,
 16 % 5 gives 1
 17 % 5 gives 2
 34 % 5 gives 4
 16 % 30 gives 16

COMPSCI 101, S1 202012

Arithmetic Operators with Different
Numeric Types

These are the mathematical operators we will be using:

+, -, *, /, **, //, %

When an arithmetic operator has operands of different numeric types, the
operand with the "narrower" type is widened to that of the other operand
(integer is narrower than floating point), e.g.,

 3 % 5.0 evaluates to 3.0
 16.0 / 8 evaluates to 2.0
 17 // 5.0 evaluates to 3.0
 34.0 // 5 evaluates to 6.0
 16.0 % 5 evaluates to 1.0
 17 % 5.0 evaluates to 2.0

COMPSCI 101, S1 202013

Exercise

COMPSCI 101, S1 202014

result1 = 25 % 3

result2 = 20 % 34

result3 = 20 // 3.0

result4 = 5 // 7

result5 = (26.7 // 1) % 3

print(result1, result2, result3, result4, result5)

Exercise
Order of operations:

Give the output:

COMPSCI 101, S1 202015

result1 = 25 / 4 // 3 + 4 * 10 % 3

result2 = 10 - 7 // 3 * 3 + 13 % 5 / 5 * 2

result3 = 17 % 3 * 2 - 3 ** 2 * 3 + 19 // 2

print(result1, result2, result3)

Brackets
Exponents (**)
Multiplication, Division, Modulus, Floor division
Addition, Subtraction

Heron’s Formula
Heron's formula states that the area of a triangle whose sides
have lengths a, b, and c is:

COMPSCI 101, S1 202016

a

a

a

b

b

b
c

c

c

Write a program which uses Heron's formula to calculate
and print the area of a triangle given the length of the
three sides.

COMPSCI 101, S1 202017

import math

side1 = 4
side2 = 7
side3 = 9

#Complete the code

print("Length of sides: ",side1,', ',side2,' and ',side3,sep = "")
print("Area:", area)

Length of sides: 4, 7 and 9
Area: 13.416407864998739

Summary
In a Python program we can:
 import modules and use the functions defined in the imported

module
 use integer division and modulus operators
 use comments. Every program contains a docstring at the top of

the program
 use self-documenting code to make the program easy to

understand
 understand that an expression evaluates to one value
 understand the order of operations when an expression is

evaluated
 understand how to develop a program in steps

COMPSCI 101, S1 202019

Examples of Python features
used in this lecture

 import modules and use the functions defined in the module

import math
result = math.sqrt(345)

 use integer division and modulus operators

whole_number = 456 // 3
left_overs = 456 % 12

 understand the order of operations when an expression is
evaluated

result = 32 / 4 ** (1 + 2 * 3 – 7 % 4) / 5

COMPSCI 101, S1 202020

	COMPSCI 101�Principles of Programming
	Learning Outcomes
	Recap
	Literals, Variables and Expressions
	Docstrings
	Comments
	Use Self Documenting Code
	Skeleton of a Python Program
	Python libraries
	www.python.org
	Expressions – order of operations
	More Arithmetic Operators
	Arithmetic Operators with Different Numeric Types
	Exercise
	Exercise
	Heron’s Formula
	Slide Number 17
	Summary
	Examples of Python features used in this lecture

