COMPSCI 101

Principles of Programming

Lecture 3: Expressions, Documentation and Modules

S

¥ . Learning Outcomes

THE UNIVERS!

At the end of this lecture, students should be able to:

<
<
<

import modules and use the functions defined in the module
use integer division and modulus operators

include a docstring at the top of a program and use
comments

use self-documenting code to make the program easy to read
and understand

understand that an expression evaluates to one value

understand the order of operations when an algebraic
expression is evaluated

understand how to develop a program in steps

COMPSCI 101, S1 2020

S

Z_Recap

S1 NZ = 5$0.95 AUS. Write a program which converts $500 NZ to Australian
dollars and converts S500 AUS to New Zealand dollars using the above
exchange rate. The output of the program should be:

amount_to_convert = 500
nz_to aus rate = 0.95
nz_dollars = amount_to_convert

NZ $500 = AUS $475.0
AUS $500 = NZ $526.3157894736842

3 COMPSCI 101 - S1, 2020

S

¥ Literals, Variables and Expressions

Literals are the actual values which can be stored in the program memory, e.g.,
34
-67.5
"a particular string"
Variables can be assigned any literal value (or an expression). Variables are used to refer to
(point to) a single piece of information, e.g.,
result = 567
final_result = result + 45
phrase = "a particular string"
phrase = "Please tell me more"
first_name = "lzzy"
Expressions are made up of literal values and variables. Expressions always evaluate to a
single value. The right hand side of the assignment operator is an expression, e.g.,
number =3
final_result = 567 + 16 ** number

final_result = final_result + number *5 / 7

4 COMPSCI 101, S1 2020

S

¥ _Docstrings

A docstring is a special kind of string (text) used to provide
documentation. A docstring:

appears at the top of every COMPSCI 101 program,

three double-quotes are used to surround the docstring,

all programs should include a docstring at the top of the program,

the docstring contains the author and a description of what the program does.

Program which calculates the area of a circle.
Author: Damir Azhar

radius = 10
area = 3.14159265359 * radius ** 2
print("*‘Area of circle', area)

5 COMPSCI 101, S1 2020

S

& Comments

As well as the docstring describing the purpose of the program at the
top of ALL our programs, comments can be added to the program
code. A programming comment is a note to other programmers who
need to understand the code.

Anything between a # (hash) and the end of the line is a comment and is ignored by
the interpreter

Converts a length in inches to a length 1n centimetres.
Author: Damir Azhar

length_in_inches = 100 #Change the value of length_iIn_inches here
length_in_cm = length_in_inches * 2.54

print(*'Length™, length _in_cm)

Length 254.0

6 COMPSCI 101, S1 2020

S

¥ Use Self Documenting Code

Add comments sparingly to explain code that is difficult, or to tell other programmers
something they need to know about the code.

It is always important to use good descriptive variable names.

The program below does the same job as the program on the previous slide but it uses very
poor variable names which makes the program difficult to read and difficult to understand.

Converts a length
Author: Damir Azhar

a = 100
b=a*2.54
print("'Length", b) Length 254.0

7 COMPSCI 101, S1 2020

S

¥ Skeleton of a Python Program

In general the format of a Python program is:

docstring —— | calculates the area of a rectangle.
Author: Damir Azhar

width = 3.56

height = 8.4

initialisation ——>

calculation —— | area = width * height

output — | print('Area of rectangle™, area)

Area of rectangle 29.904

Every Python program is stored in a file which has .py at the end of the file
name (the file extension), e.g., CalculateArea.py, CompoundInterest.py

8 COMPSCI 101, S1 2020

S

@ Python libraries

Python has libraries of code which contain definitions and functions which perform useful
tasks and calculations. The files in these libraries are called modules. The name of a
module is the name of the file without the .py extension.

The math module contains many useful math functions and constants, e.g., math.sin(),
math.cos(), math.pow(), math.sqrt(), math.floor(), ...

In order to be able to use the functions of a module, we need to import the module.
Importing a module means that we can then use all the functions defined inside that

module, e.g., _ _ .
8 """Calculates the radius of a circle, given the area.

Author: Damir Azhar

import math
area = 221.67
radius = math.sgrt(area / math.pi)

print(""Radius of circle", radius)

Radius of circle 8.399985266079987

9 COMPSCI 101, S1 2020

S

= www.python.org

The following website contains documentation about all the Python

modules.

e —

[Python Module Index — X IR — —

— — —
-

Bemin [@él

&« C | @ Python Software Foundation [US]

https://docs.python.org -modindex.htm

@ Python » |[English ¥ |(36.4 ¥ | Documentation » |math

Python Module Index

—lalblcld|e|flg|h|iljlk|I[m[n|o|p]

Future statement definitions
The environment where the top
Drop-in replacement for the _th

_ future__
_ main__

_dummy_thread

_thread Low-level threading APL

a

abc Abstract base classes accordin,
aifc Read and write audio files in Al
argparse Command-line option and argu,
array Space efficient arrays of unifori

10

—

@, 92 math — Mathematic X

&« C | @& Python Software Foundation [US]

@, Python » |English v

Numeric and Mathematical Modules » {Oui

Table Of Contents

9.2, math — Mathematical
functions

= 9.2.1. Number-theoretic
and representation
functions

9.2.2. Power and
logarithmic functions

9.2.3. Trigonometric
functions

9.2.4. Angular conversion

9.2.5. Hyperbolic
functions

9.2.6. Special functions
9.2.7. Constants

Previous topic

9.1. numbers — Numeric
abstract base classes

Next topic

9.3. cmath — Mathematical
functions for complex numbers

This Page

364

Damig|E=NE=N X

e a—— -

- e a— -

https://docs.python.org/3/library/math.htm(Zhighlight=mat... ¥

(5]

¥ | Documentation » The Python Standard Library » 9 previous | next | modules | index

ch |[Ga]|

9.2. math — Mathematical functions

This module is always available. It provides access to the mathematical functions
defined by the C standard

These functions cannot be used with complex numbers, use the functions of the
same name from the cmath module if you require support for complex numbers
The distinction between functions which support complex numbers and those
which don't is made since most users do not want to learn quite as much
mathematics as required to understand complex numbers. Receiving an exception
instead of a complex result allows earlier detection of the unexpected complex
number used as a parameter, so that the programmer can determine how and why
it was generated in the first place.

The following functions are provided by this module. Except when explicitly noted

otherwise, all return values are floats.

9.2.1. Number-theoretic and representation
functions

math. ceil(x)
Return the ceiling of x, the smallest integer greater than or equal to x. If x is +

https://docs.python.org/3/py-modindex.html

COMPSCI 101, S1 2020

- Expressions — order of operations

Expressions containing numbers are evaluated in the same way as in mathematical
expressions, i.e., BEDMAS applies:

Brackets

Exponents

Division, Multiplication
Addition, Subtraction

Note that the / operator always results in a float, e.g., 8 / 4 is 2.0.

» Give the output:

11

resultl = (25 - 7) * 3 + 12 / 3

result2 = 17 - 3 * 2 - 12 / 4 + 15

result3 =32/ 4* (3+2*3-7)/5

print(resultl, result2, result3)

Remember to work from left to right when evaluating operators with the same priority.

COMPSCI 101, S1 2020

S

¥ More Arithmetic Operators

So far, we have seen these mathematical operators: +, -, *, /, *k

Two more mathematical operators:

Floor division (integer division) //

Modulus (remainder) %

Floor division (integer division) performs the division and ignores the part after the decimal point, e.g.,
16 // 5 gives 3
17 // 5 gives 3
34 // 5 gives 6

Modulus performs the division and gives the remainder, e.g.,
16 % 5 gives 1
17 % 5 gives 2
34 %5 gives 4
16 % 30 gives 16

12 COMPSCI 101, S1 2020

e Arithmetic Operators with Different
2 _Numeric Types

These are the mathematical operators we will be using:

+r W, *) /l **I //l%

When an arithmetic operator has operands of different numeric types, the
operand with the "narrower" type is widened to that of the other operand
(integer is narrower than floating point), e.g.,

3 % 5.0 evaluates to 3.0
16.0 / 8 evaluates to 2.0
17 // 5.0 evaluates to 3.0
34.0 // 5 evaluates to 6.0
16.0 % 5 evaluates to 1.0
17 % 5.0 evaluates to 2.0

13 COMPSCI 101, S1 2020

i
1
%
M
g
5
]

14

Exercise

resultl = 25 % 3

result2 = 20 % 34

result3 = 20 // 3.0
result4d =5 // 7

resulth = (26.7 /7/ 1) % 3

print(resultl, result2, result3, result4, result5)

COMPSCI 101, S1 2020

' Exercise

Order of operations:

Brackets

Exponents (**)

Multiplication, Division, Modulus, Floor division
Addition, Subtraction

Give the output:

resultl =25/74// 3+ 4 * 10 % 3

result2 10 - 7 // 3 *3 +13 % 5/ 5 * 2
result3 =17 % 3 *2 - 3 ** 2 *3 + 19 // 2
print(resultl, result2, result3)

15 COMPSCI 101, S1 2020

2522

Heron’s Formula

Heron's formula states that the area of a triangle whose sides
have lengths a, b, and c is:

16 COMPSCI 101, S1 2020

S

THE UNIVERSITY OF AUCKLAND

Write a program which uses Heron's formula to calculate
and print the area of a triangle given the length of the

three sides.

17

A= A@F +a*F +1PSP) — (a2 + 8 +)

import math

sidel = 4
side2 = 7
side3 = 9

#Complete the code

print(*'Length of sides: ",sidel,", ",side2," and ",side3,sep = "")
print(*‘Area:', area)

Length of sides: 4, 7 and 9
Area: 13.416407864998739

COMPSCI 101, S1 2020

S

In a

19

@ Summary

Python program we can:

import modules and use the functions defined in the imported
module

use integer division and modulus operators

use comments. Every program contains a docstring at the top of
the program

use self-documenting code to make the program easy to
understand

understand that an expression evaluates to one value

understand the order of operations when an expression is
evaluated

understand how to develop a program in steps

COMPSCI 101, S1 2020

S

@ Examples of Python features
—. used in this lecture

» import modules and use the functions defined in the module

import math
result = math.sqrt(345)

» use integer division and modulus operators

whole number = 456 // 3
left overs = 456 % 12

» understand the order of operations when an expression is
evaluated

result =32 /4 * (1 +2*3—-7%4)/5

20 COMPSCI 101, S1 2020

	COMPSCI 101�Principles of Programming
	Learning Outcomes
	Recap
	Literals, Variables and Expressions
	Docstrings
	Comments
	Use Self Documenting Code
	Skeleton of a Python Program
	Python libraries
	www.python.org
	Expressions – order of operations
	More Arithmetic Operators
	Arithmetic Operators with Different Numeric Types
	Exercise
	Exercise
	Heron’s Formula
	Slide Number 17
	Summary
	Examples of Python features used in this lecture

