
Lecture 23 – More on
dictionaries, using dictionaries
to manage a small database of

information

COMPSCI 1 1
Principles of Programming

At the end of this lecture, students should be able to:
• Delete key:value pairs from a dictionary
• Create a list of keys, values, key:value tuples from a dictionary
• Use dictionary objects to manage a small file of information

Learning outcomes
CompSci 101 - Principles of Programming 2

Recap
Dictionaries - dictionaries are used to store key:value pairs (items)
• An empty dictionary object can be created in two ways
• items can be added to a dictionary
• Items can be retrieved from the dictionary
• the pairs in a dictionary can be traversed using for … in

def main():
english_italian = {"yes":"si", "bye":"ciao",

"no":"no", "maybe":"forse",
"thank you":"grazie"}

english_italian["never"] = "mai"
print(english_italian["bye"])
for word in english_italian:

print(english_italian[word])
print(len(english_italian))

main()

ciao
ciao
forse
mai
grazie
no
si
6

CompSci 101 - Principles of Programming 3

Deleting a key:value pair from the dict object
The del operator is used to delete a key:value pair from the dictionary.

def main():
my_dict = {"a": 4, "b": 6, "c": 5}
print("1.", my_dict)

del my_dict["b"]
print("2.", my_dict)

del my_dict["a"]
print("3.", my_dict)

main() 1. {'a': 4, 'b': 6, 'c': 5}
2. {'a': 4, 'c': 5}
3. {'c': 5}

CompSci 101 - Principles of Programming 4

Deleting a key:value pair from a dict object
The del operator gives an error if the key of the key:value pair being
deleted is not in the dictionary. Because of this, it is customary to
check before deleting a key:value pair.

def main():
my_dict = {"a": 4, "b": 6, "c": 5}
print("1.", my_dict)

if "b" in my_dict: #Check first
del my_dict["b"]

print("2.", my_dict)

del my_dict["z"]
print("3.", my_dict)

main()

1. {'a': 4, 'b': 6, 'c': 5}
2. {'a': 4, 'c': 5}
…. Other error information

KeyError: 'z'

CompSci 101 - Principles of Programming 5

Methods which can be used with a dict object
The keys, the values, the associations as tuples, can be obtained from a
dictionary object using the following three methods:

my_dict = {…}
my_dict.items() – to access all the key/value pairs as tuples
my_dict.keys() – to access all the keys
my_dict.values() – to access all the values

The elements
in these
collections
can be
accessed
using a
for … in
loop.

def main():
my_dict = {"a": 4, "b": 6, "c": 5}
for letter in my_dict.keys():

print(letter)
for number in my_dict.values():

print(number)
for item in my_dict.items():

print(item)
main()

b
c
a
6
5
4
('b', 6)
('c', 5)
('a', 4)

CompSci 101 - Principles of Programming 6

Methods which can be used with a dict object
When a for … in loop is used with a dictionary object, the loop
variable is assigned a reference to each key of the dictionary in turn:

def main():
my_dict = {"a": 4, "b": 6, "c": 5}

for letter in my_dict.keys():
print(letter)

print()

for key in my_dict:
print(key)

main()

b
c
a

b
c
a

Note that both
these loops do
exactly the same
job.

CompSci 101 - Principles of Programming 7

Methods which can be used with a dict object
Often it is useful to convert the collection of keys (or values, or item
tuples) of the dictionary into lists by enclosing the collection of keys
(or values, or item tuples) in list(…):

def main():
my_dict = {"a": 4, "b": 6, "c": 5}
items_list = list(my_dict.items())
keys_list = list(my_dict.keys())
values_list = list(my_dict.values())

print("items list", items_list)
print("keys list", keys_list)
print("values list", values_list)

main()
items list [('a', 4), ('c', 5), ('b', 6)]
keys list ['a', 'c', 'b']
values list [4, 5, 6]

CompSci 101 - Principles of Programming 8

Note on deleting dict objects
You should never remove elements from the underlying data
structure, such as a dict object, when using a for … in loop to
iterate through the data structure itself. Instead, create a separate
list of the dictionary keys (or items), iterate through the list, and
delete any unwanted items from the dict object, e.g.,
def main():
my_dict = {"and": 4, "many": 2, "for": 5, "very": 1}

items_list = list(my_dict.items())
for key, value in items_list:

if value < 3:
del my_dict[key]

print("Dictionary:", my_dict)

main()
Dictionary: {'and': 4, 'for': 5}

CompSci 101 - Principles of Programming 9

Using dictionaries - Our file information
We wish to manage a small file of ratings for four films.
The film list is:

The text file, "Ratings.txt", stores the ratings made by seven people of
the four films (0 means the person didn't rate the film, 1 means the
person hated the film, 9 means they loved it):

film_list = ["Lolita", "The Piano", "Aliens", "Shrek"]

CompSci 101 - Principles of Programming 10

Loading the information
Firstly all the lines of text are read from the file
into a list (without any newline characters - "\n").

def get_lines_from_file(filename):

def main():
film_list = ["Lolita", "The Piano", "Aliens", "Shrek"]

number_of_films = len(film_list)
filename = "Ratings.txt"

lines_of_text = get_lines_from_file(filename)

main()
["Mary 2 0 6 2", "Joy 2 8 3 9", …]

CompSci 101 - Principles of Programming 11

Loading the file information into dictionaries
From the 'lines of text' list: ,
create a dictionary: person_name : list of ratings
def get_people_ratings_dict(lines_of_text):

people_ratings = {}

return people_ratings

def main():
film_list = ["Lolita", "The Piano", "Aliens", "Shrek"]
number_of_films = len(film_list)
filename = "Ratings.txt"
lines_of_text = get_lines_from_file(filename)
people_ratings_dict = get_people_ratings_dict(lines_of_text)

main()

["Mary 2 0 6 2", "Joy 2 8 3 9", …]

CompSci 101 - Principles of Programming 12

{'Mary': [2, 0, 6, 2],
'Joy': [2, 8, 3, 9], … }

Loading the file information into dictionaries
The dictionary has key, value pairs:

person_name : list of ratings
i.e., the person_name is the key and the list of four ratings is the
corresponding value.

{
"Mary": [2, 0, 6, 2],
"Joy": [2, 8, 3, 9],
…

}

["Mary 2 0 6 2", "Joy 2 8 3 9", …]

CompSci 101 - Principles of Programming 13 Loading the information
into dictionaries

From the people dictionary: , create another
dictionary: film_title : list of ratings

def get_film_ratings_dict(film_list, people_ratings_dict):
#Lolita – get the first rating from every person
#The Piano – get the second rating from every person, etc.
film_index = 0
film_ratings_dict = {}

return film_ratings_dict
def main():

film_list = ["Lolita", "The Piano", "Aliens", "Shrek"]
number_of_films = len(film_list)
filename = "Ratings.txt"
lines_of_text = get_lines_from_file(filename)
people_ratings_dict = get_people_ratings_dict(lines_of_text)
film_ratings_dict = get_film_ratings_dict(film_list,

people_ratings_dict)
main()

CompSci 101 - Principles of Programming 14

{"Mary": [2, 0, 6, 2],
"Joy": [2, 8, 3, 9], … }

{'Lolita': [7, 3, 9, 2, 0, 0, 2],
'The Piano': [2, 2, 2, 0, 9, 2, 8],
'Aliens': [0, … }

Loading the file information into dictionaries

person_name : list of ratings dictionary (see slides 11 and 12)
film_title : list of ratings dictionary, i.e., the film_title is the key and the
list of seven ratings (one from each person) is the corresponding value.

film_list = ["Lolita", "The Piano", "Aliens", "Shrek"]

["Mary 2 0 6 2", "Joy 2 8 3 9", …]

{ 'Lolita': [7, 3, 9, 2, 0, 0, 2],
'The Piano': [2, 2, 2, 0, 9, 2, 8],
'Aliens': [0 …],

…
}

{ "Mary": [2, 0, 6, 2],
"Joy": [2, 8, 3, 9],
…

}

CompSci 101 - Principles of Programming 15

The two dictionaries
So far, from the film list:

and the ratings file information:

we have created the following two dictionaries:

film_list = ["Lolita", "The Piano", "Aliens", "Shrek"]

{
'Mary': [2, 0, 6, 2],
'John': [0, 9, 4, 8],
'Adam': [7, 2, 0, 7],
'Sam': [9, 2, 3, 8],
'Joy': [2, 8, 3, 9],
'Jo': [3, 2, 0, 8],
'Li': [0, 2, 3, 8]
}

people_ratings_dict {
'Lolita': [7, 3, 9, 2, 0, 0, 2],
'Aliens': [0, 0, 3, 6, 4, 3, 3],
'Shrek': [7, 8, 8, 2, 8, 8, 9],
'The Piano': [2, 2, 2, 0, 9, 2, 8]
}

film_ratings_dict

CompSci 101 - Principles of Programming 16

Using the dictionaries
The application allows the user to select a person's name from the list of
dictionary keys, see the person's ratings as well as the average of all the
non-zero ratings.

def process_person_ratings_request(people_ratings_dict):

def main():
…
process_person_ratings_request(people_ratings_dict)

main()

{
'Mary': [2, 0, 6, 2],
'John': [0, 9, 4, 8],
'Adam': [7, 2, 0, 7],
'Sam': [9, 2, 3, 8],
'Joy': [2, 8, 3, 9],
'Jo': [3, 2, 0, 8],
'Li': [0, 2, 3, 8]
}

people_ratings_dict John
Mary
Adam
Jo
Joy
Li
Sam
Enter name: Sam
[9, 2, 3, 8] Sam - average rating: 5.5

Example execution of the
completed application.

CompSci 101 - Principles of Programming 17

Using the dictionaries
The application allows the user to select a person from the list of
dictionary keys and see the person's ratings as well as the average
of all their non-zero ratings.

def process_person_ratings_request(people_ratings_dict):
#See the code on the next slide

def display_keys(dictionary):

def get_average_rating(list_of_numbers):

def main():
film_list = ["Lolita", "The Piano", "Aliens", "Shrek"]
number_of_films = len(film_list)
filename = "Ratings.txt"
lines_of_text = get_lines_from_file(filename)
people_ratings_dict = get_people_ratings_dict(lines_of_text)
film_ratings_dict = get_film_ratings_dict(film_list, people_ratings_dict)
print("Process People-Rating Request")
process_person_ratings_request(people_ratings_dict)

{"Mary": [2, 0, 6, 2],
"Joy": [2, 8, 3, 9], … }

CompSci 101 - Principles of Programming 18

Using the dictionaries
def main():

#...
process_person_ratings_request(people_ratings_dict)

def process_person_ratings_request(people_ratings_dict):
display_keys(people_ratings_dict)
name = input("Enter name: ")
ratings_list = people_ratings_dict[name]
average = get_average_rating(ratings_list)
print(people_ratings_dict[name], name,

"- average rating:", average)

def display_keys(dictionary):

def get_average_rating(list_of_numbers):

{"Mary": [2, 0, 6, 2],
"Joy": [2, 8, 3, 9], … }

CompSci 101 - Principles of Programming 19

John
Mary
Adam
Jo
Joy
Li
Sam
Enter name: Sam
[9, 2, 3, 8] Sam –

average rating: 5.5

Example execution of the
completed application.

Using the dictionaries
The application allows the user to select a film from the list of film
titles, see the film's ratings as well as the average of all the non-zero
ratings for the film.

def process_film_ratings_request(film_list, film_ratings_dict):

def main():
…
process_film_ratings_request(film_list, film_ratings_dict)

main()

{
'Lolita': [7, 3, 9, 2, 0, 0, 2],
'Aliens': [0, 0, 3, 6, 4, 3, 3],
'Shrek': [7, 8, 8, 2, 8, 8, 9],
'The Piano': [2, 2, 2, 0, 9, 2, 8]
}

film_ratings_dict

1 Lolita
2 The Piano
3 Aliens
4 Shrek
Enter selection: 2
[9, 0, 2, 2, 8, 2, 2] The Piano - average rating: 4.2

Example execution of the
completed application.

CompSci 101 - Principles of Programming 20

Using the dictionaries
The application allows the user to select a film from the list of film titles,
see the film's ratings as well as the average of all the non-zero ratings for
the film.

def process_film_ratings_request(film_list, film_ratings_dict):
#See the code on the next slide

def display_numbered_list(list_of_items):

def get_average_rating(list_of_numbers):
#see previous code

def main():
film_list = ["Lolita", "The Piano", "Aliens", "Shrek"]
number_of_films = len(film_list)
filename = "Ratings.txt"
lines_of_text = get_lines_from_file(filename)
people_ratings_dict = get_people_ratings_dict(lines_of_text)
film_ratings_dict = get_film_ratings_dict(film_list, people_ratings_dict)
print("Process Movie-Rating Request")
process_film_ratings_request(film_list, film_ratings_dict)

{'Lolita':[7, 3, 9, 2, 0, 0, 2],
'The Piano':[2, 2, 2, 0, 9, 2, 8], … }

CompSci 101 - Principles of Programming 21

Using the dictionaries
def main():
#...
process_film_ratings_request(film_list, film_ratings_dict)

def process_film_ratings_request(film_list, film_ratings_dict):
display_numbered_list(film_list)
number = int(input("Enter selection: "))
film_title = film_list[number - 1]
film_ratings = film_ratings_dict[film_title]
average = get_average_rating(film_ratings)
print(film_ratings_dict[film_title], film_title,

"- average rating:", average)

def display_numbered_list(list_of_items):

def get_average_rating(
list_of_numbers):

#see previous code

{'Lolita':[7, 3, 9, 2, 0, 0, 2],
'The Piano':[2, 2, 2, 0, 9, 2, 8], … }

CompSci 101 - Principles of Programming 22

1 Lolita
2 The Piano
3 Aliens
4 Shrek
Enter selection: 2
[9, 0, 2, 2, 8, 2, 2] The Piano –

average rating: 4.2

Example execution of the
completed application.

Summary
The del operator is used to delete an key:value pair from the
dictionary.
The keys, the values, the associations as tuples can be obtained from
a dictionary object using the methods:

my_dict.items() – to access all the key/value pairs as tuples
my_dict.keys() – to access all the keys
my_dict.values() – to access all the values

Often it is useful to convert the individual keys (or values, or item
tuples) of the dictionary into lists by enclosing the keys (or values,
or item tuples) inside list(…)

CompSci 101 - Principles of Programming 23

Python features used in this lecture
my_dict = {"a": 4, "b": 6, "c": 5}

for letter in my_dict.keys():
print(letter)

for number in my_dict.values():
print(number)

for item in my_dict.items():
print(item)

items_list = list(my_dict.items())
keys_list = list(my_dict.keys())
values_list = list(my_dict.values())

print("items list", items_list)
print("keys list", keys_list)
print("values list", values_list)

if "b" in my_dict: #Check first
del my_dict["b"]

CompSci 101 - Principles of Programming 24

