
Lecture 16 - Slicing lists, some
list methods, is operator vs.

"=="

COMPSCI 1 1
Principles of Programming

At the end of this lecture, students should be able to use:
• lists and the + and * operators
• list slices
• list methods
and,
• understand the difference between '==' and 'is'

Learning outcomes
CompSci 101 - Principles of Programming 2

Recap
Slide 14 from Lecture 16.
Do the following two sections of code give the same output?
If not, what is the difference in output?

3CompSci 101 - Principles of Programming

Output Code A
1. [2, 4, 6]
2. [2, 4, 6]

list1 = [1, 2, 3]
list2 = list1

for index in range(len(list1)):
list2[index] = list1[index] * 2

print("1.", list1)
print("2.", list2)

list1 = [1, 2, 3]
list2 = [1, 2, 3]

for index in range(len(list1)):
list2[index] = list1[index] * 2

print("1.", list1)
print("2.", list2)

Code A Code B

Output Code B
1. [1, 2, 3]
2. [2, 4, 6]

Lists and the + Operator (concatenation)
Applying the + operator to two lists produces a new list containing all
the elements of the first list followed by all the elements of the
second list. list1 = [10, 20, 30, 40, 50]

list2 = [100, 200]
list3 = list1 + list2

print("1.", list3)
print("2.", 100 in list1)
print("3.", 40 not in list2)

list3 = list3 + [-4]
print("4.", list3)

1. [10, 20, 30, 40, 50, 100, 200]
2. False
3. True
4. [10, 20, 30, 40, 50, 100, 200, -4]

You can only
concatenate two list

objects (not a list object
and a string object, not a
list object and an integer

object, …).

CompSci 101 - Principles of Programming 4

Lists and the * Operator (repeat)
The * operator produces a new list which "repeats" the original list's
contents.

list1 = [10, 20]
list2 = list1 * 2
list3 = list2 * 3

print("1.", list1)
print("2.", list2)
print("3.", list3)

1. [10, 20]
2. [10, 20, 10, 20]
3. [10, 20, 10, 20, 10, 20, 10, 20, 10, 20, 10, 20]

You can only repeat a list
in combination with an
integer, i.e.,
the_list * an_integer.

CompSci 101 - Principles of Programming 5

Getting slices of lists
The slice operation behaves the same way as it does with the elements
of a string. Within square brackets, you may have one or two colons
(:). The number before the first colon is the start index, the number
after the first colon is the end index (one greater than the last index in
the slice), and the number after the second colon is the step.
The step indicates the gap between elements in the slice taken. The
default step is 1.
Slicing returns a new list object.

list1 = [10, 20, 30, 40, 50]
list2 = list1[0:3:1]
print("1.", list2)

list3 = list1[3:5:1]
print("2.", list3)

list1 = [10, 20, 30, 40, 50]
list2 = list1[0:3]
print("1.", list2)

list3 = list1[3:5]
print("2.", list3)

Does
the
sam
e job
as:

1. [10, 20, 30]
2. [40, 50]

CompSci 101 - Principles of Programming 6

Getting slices of lists
The number before the first colon is the start index, the number after
the first colon is the end index (one greater than the last index), and
the number after the second colon is the step.

list1 = [10, 20, 30, 40, 50, 60]
list2 = list1[0:5:3]
print("1.", list2)

list3 = list1[2:5:2]
print("2.", list3)

1. [10, 40]
2. [30, 50]

CompSci 101 - Principles of Programming 7

Getting slices of lists
The number after the second colon is the step. The step can be a
negative number. (The default step is 1 - see previous slide.)

1. []
2. [55, 40]
3. [55, 40, 20]

list1 = [10, 20, 30, 40, 50, 55]
list2 = list1[1:6:-3]
print("1.", list2)

list3 = list1[-1:-4:-2]
print("2.", list3)

list4 = list1[-1:-6:-2]
print("3.", list4)

list1

-5

-4

-3

-2

-1

-60

1

2

3

4

5

CompSci 101 - Principles of Programming 8

Getting slices of lists
Three numbers in square brackets separated by colons define the
start, end and step of the slice, e.g., list1[1:6:3] .
The default for the first number is the beginning of the list, e.g.,

The default for the second number is the end of the list, e.g.,

list1 = [10, 20, 30, 40, 50, 55]
list2 = list1[:4:1] #same as list2 = list1[0:4:1]
print(list2)

[10, 20, 30, 40]

list1 = [10, 20, 30, 40, 50, 55]
list2 = list1[2::2] #same as list2 = list1[2:len(list1):2]
print(list2)

[30, 50]

CompSci 101 - Principles of Programming 9

The default for the step value is 1.

Some inbuilt functions which work with lists
Below are four in-built functions which can be used with lists:
• len(a_list) returns the number of elements.
• min(a_list) returns the minimum element in the list.
• max(a_list) returns the maximum element in the list.
• sum(a_list) returns the sum of the elements in the list (only for

numbers).

list1 = [10, 20, 30, 40, 50, 55]
minimum = min(list1)
total = sum(list1)
print("length: ", len(list1), ", min:", minimum, ", max:",

max(list1), ", sum:", total, sep="")

length: 6, min: 10, max: 55, sum: 205

CompSci 101 - Principles of Programming 10

Dot notation
We use dot notation to call a method on a specific object. In dot
notation, a dot is placed between the object and the method which is
to be applied to the object.
Each type of object has many methods which can be called with that
type of object. For example a string object has the methods
find(), upper(), lower(), strip(), isdigit(),
isalpha(), split() and many more:

words = "Over the rainbow"
position = words.find("r")
words = words.lower()
result = words.isalpha()

print("position:", position,"words:", words, "result:", result)

position: 3 words: over the rainbow result: False

CompSci 101 - Principles of Programming 11

Some list methods
There are many methods which can be used with list objects. Below
and on the next slides are five methods which we will use:

index(x) returns the index of the first element from the left in the
list with a value equal to x. Python throws an error if there is no
such value in the list. Because of this, index(x) is usually
preceded by a check for that element using the in operator.

list1 = [10, 20, 30, 40, 50, 55]
if 40 in list1: #check first

position = list1.index(40)
print("40 is in position", position, "in the list")

else:
print("40 is not in the list")

40 is in position 3 in the list

CompSci 101 - Principles of Programming 12

A list method
pop(index) removes and returns the item at the position given by the
index number. The 'popped' element is returned by the method. An
error results if there is no such index in the list.

pop() with no index removes and returns the last item.

list1 = [10, 20, 30, 40, 50, 55]
if len(list1) > 2:

popped = list1.pop(2)

print("Popped", popped, "from the list", list1)
print(list1.pop())
print(list1)

Popped 30 from the list [10, 20, 40, 50, 55]
55
[10, 20, 40, 50]

CompSci 101 - Principles of Programming 13

Another list method
insert(i, x) inserts an element at a given index. The first argument is
the index at which to insert the element, e.g.,
my_list.insert(1, 62) inserts 62 into position 1 of the list,
moving the rest of the elements along one (the element at index 1
moves to index 2, the element at index 2 moves to index 3, and so on).

list1 = [10, 20, 30, 40, 50, 55]
list1.insert(3, 77)
print(list1)

list1.insert(6, 99)
print(list1)

list1.insert(0, 44)
print(list1)

[10, 20, 30, 77, 40, 50, 55]
[10, 20, 30, 77, 40, 50, 99, 55]
[44, 10, 20, 30, 77, 40, 50, 99, 55]

CompSci 101 - Principles of Programming 14

Another list method
append(x) adds the element to the end of the list.

list1 = [10, 20, 30, 40, 50, 55]
list1.append(77)
print("1.", list1)

list1.append(99)
print("2.", list1)

list1.append(44)
print("3.", list1)

1. [10, 20, 30, 40, 50, 55, 77]
2. [10, 20, 30, 40, 50, 55, 77, 99]
3. [10, 20, 30, 40, 50, 55, 77, 99, 44]

CompSci 101 - Principles of Programming 15

More list methods
sort() sorts the elements of the list, in place. Only the order of the list
elements is modified (unless already sorted).

reverse() reverses the elements of the list, in place. Only the order of
the list elements is modified.

list1 = [10, 20, 70, 80, 50, 55]
print(list1)
list1.reverse()
print(list1) [10, 20, 70, 80, 50, 55]

[55, 50, 80, 70, 20, 10]

list1 = [60, 20, 80, 10, 30, 55]
print(list1)
list1.sort()
print(list1) [60, 20, 80, 10, 30, 55]

[10, 20, 30, 55, 60, 80]

CompSci 101 - Principles of Programming 16

Exercise
Complete the get_selected_numbers() function which returns
a sorted list of all the numbers from the numbers list which are at the
indices given in the indices_to_include list. Note: the
function should only use valid non-negative indices from the list.
def get_selected_numbers(numbers, indices_to_include):

def main():
numbers = [5, 12, 4, 11, 9, 8]
indices_to_include = [3, 0, 1, 16, 23, -2]
numbers_found = get_selected_numbers(numbers,

indices_to_include)
print("Numbers from list:", numbers_found)

main()
Numbers from list: [5, 11, 12]

CompSci 101 - Principles of Programming 17

Exercise
Complete the remove_multiples() function which removes all
the elements in the parameter list, number_list, which are
multiples of the parameter, multiples_of.

def remove_multiples(number_list, multiples_of):

def main():
numbers = [25, 5, 9, 10, 15, 8]
print(numbers)
remove_multiples(numbers, 5) #remove multiples of 5
print("Numbers left", numbers)

main()
[25, 5, 9, 10, 15, 8]
Numbers left [9, 8]

CompSci 101 - Principles of Programming 18

The is operator
The == operator is used to test if two objects contain the same
information.

The is operator is used to test if two variables reference (point to) the
same object.

word1 = "sweet"
word2 = word1
print("1.", word1 == word2)
print("2.", word1 is word2)

word2 = word2.upper()
word2 = word2.lower()

print("3.", word1 == word2)
print("4.", word1 is word2)

CompSci 101 - Principles of Programming 19

word1 11011001
"sweet"

word2

11011001

11011001

word1 11011001

"sweet"
word2 1001011110010111

"sweet"
11011001

1. True
2. True
3. True
4. False

Strings are Immutable
Strings are "immutable", i.e., the characters in a string object cannot
be changed. Whenever a string is changed in some way, a new string
object (with a new memory address) is created.

word1 = "sweet"
word2 = word1
print("1.", word1, word2)
print("2.", word1 is word2)

word2 = word2 + " dumpling"
print("3.", word1, word2)
print("4.", word1 is word2)

1. sweet sweet
2. True
3. sweet sweet dumpling
4. False

CompSci 101 - Principles of Programming 20

word1 11011001
"sweet"

word2

11011001

11011001

word1 11011001

"sweet dumpling"
word2 1001011110010111

"sweet"
11011001

Lists are Mutable
Lists are "mutable", i.e., the elements in
a list object can be updated and adjusted.

list1 = [10, 20, 30, 40, 50]
list2 = [1, 5] #A
print("1.", list1)
print("2.", list2)
print("3.", list1 is list2)

list2 = list1 #B
print("4.", list1 is list2)

list1[3] = 99
list2[1] = 3 #C

print("5.", list1)
print("6.", list2)
print("7.", list1 is list2)

1. [10, 20, 30, 40, 50]
2. [1, 5]
3. False
4. True
5. [10, 3, 30, 99, 50]
6. [10, 3, 30, 99, 50]
7. True

CompSci 101 - Principles of Programming 21

Summary
A list stores data as a sequence
• We use a for … in … to iterate through the elements of a list
• len() returns the number of elements in a list
• min() returns the minimum of the elements in a list
• max() returns the maximum of the elements in a list
• sum() returns the sum of the elements in a list
• Each element of the list can be accessed using the index operator. The index can be

negative (starting from the end of the list)
• Slices of lists can be obtained by using [slice_start: slice_end: step]
• index(element) returns the index of the element in a list
• insert(index, element) inserts an element into a list into the required index
• append(element) adds the element to the end of the list
• reverse() reverses the elements of a list in place
• sort() sorts the elements of a list in place
• Lists are mutable

CompSci 101 - Principles of Programming 22

Examples of Python features used in this lecture
list1 = [4, 6, 2, 5, 8]
result = 8 in list1
for element in list1:

…
min_value = len(list1)
min_value = min(list1)
max_value = max(list1) #if the list elements are numbers
total = sum(list1) #if the list elements are numbers
element_from_end = list1[-2]
list2 = list1[1:5:2]
position = list1.index(3)
element = list1.pop(1)
list1.insert(4, 66)
list1.append(54)
list1.reverse()
list1.sort()

CompSci 101 - Principles of Programming 23

