
Lecture 12 – Loops, while
loops

COMPSCI 1 1
Principles of Programming

At the end of this lecture, students should:
• understand the concept of a loop for defining repeated tasks
• understand the structure of a while loop, i.e.,

• the loop initialisation
• the body of the loop
• the loop condition
• the loop increment

• be able to design and write Python while loops

Learning outcomes
CompSci 101 - Principles of Programming 2

RecapFrom lecture 11
• the if block of an if…else statement is executed only if the boolean expression

evaluates to True, otherwise the else block is executed.
• if…elif statements are useful if there is a situation where at most one option is to be

selected from many options. The if…elif statement has an optional final else part.

def get_random_horoscope():
message = "Lucky lucky you"
number = random.randrange(10)
if number < 4:

message = "Amazing day ahead"
elif number < 7:

message = "Romance is very likely"
elif number < 8:

message = "Proceed with caution"
return message

def main():
print("Today's message:", get_random_horoscope())
print("Today's message:", get_random_horoscope())

main()

Today's message: Romance is very likely
Today's message: Amazing day ahead

CompSci 101 - Principles of Programming 3

Control structures
It is important to understand how the computer works its way through the
program statements, i.e., the order in which instructions are executed.

Control structures allow us to change the flow of statement execution in our
programs. So far we have looked at selection statements (if statements).
Selection or if statements are also called branch statements, as, when the
program arrives at an if statement, control will "branch" off into one of two
or more "directions".

Now we will look at another control structure, iteration. Iteration means
that the same code is executed repeatedly.

Some examples where iteration is required are:
• User login – asking for the password until the correct one is given
• Menu option control – menu options are repeatedly displayed and processed until the ‘exit’

option is selected

CompSci 101 - Principles of Programming 4

Iteration – while loops
We use loops to implement iteration.
How does the while loop execute?

CompSci 101 - Principles of Programming 5

while boolean_expression:
statement1
statement2
statement3
…

If the condition is
True

loop body

Condition

If the condition
is False

First, the condition is tested.

If the condition evaluates to True,
the loop statements (the loop
body) are executed.

After the loop statements have
been executed, control returns to
top of the loop, and the condition
is tested again.

As long as the condition evaluates
to True, the loop statements are
executed.

while loop - example
1
2
3
4
5
6

7
8

9

def print_lines():
count = 0
while count < 100:

print("Programming is fun!")
count = count + 1

print("Done!")

def main():
print_lines()

main()

Programming is fun!
Programming is fun!
Programming is fun!
…
Programming is fun!
Done!

When the condition
becomes False the

control moves on to the
code after the loop (line

6 in the code above).

CompSci 101 - Principles of Programming 6

If the condition
is True

If the
condition is

False

count = 0

count < 100

print("Programming is fun!")
count = count + 1

print("Done!")

while loop - terminology
CompSci 101 - Principles of Programming 7

1
2

3
4
5

6
7
8

9

def print_lines():
count = 0
while count < 100:

print("Programming is fun!")
count = count + 1

print("Done!")
def main():

print_lines()
main()

Programming is fun!
Programming is fun!
…
Done!

Initialisation: anything which needs to be done before the loop starts.

body: the statements which are to be executed over and over (or not at all).

condition: a boolean expression which is tested repeatedly to determine
whether the body of the loop should be executed or not.

increment: this changes the loop variable so that eventually the condition
becomes false. Remember that a loop will only stop when the condition is false.

initialisation
condition

increment

body

while loop – no overt increment
Sometimes we don't need an overt increment statement, e.g.,

1
2
3
4
5
6

7

8
9

10

def total_user_numbers():
total = 0
number = int(input("Enter a number (0 to end): "))
while number != 0:

total = total + number
number = int(input("Enter a number (0 to end): "))

print("Total: ", total)

def main():
total_user_numbers()

main()

Enter a number (0 to end): 5
Enter a number (0 to end): 6
Enter a number (0 to end): 2
Enter a number (0 to end): 4
Enter a number (0 to end): 0
Total: 17

CompSci 101 - Principles of Programming 8

Give the output
def display_output():

number = 1
count = 10
value = 4

while count > 4:
count = count - 2
print(str(number) + ":", count, value)
value = value + count
number = number + 1

print()
print(str(number) + ":", count, value)

def main():
display_output()

main()

CompSci 101 - Principles of Programming 9

Suppressing the new line after printing
The print() function has an optional argument, sep = "…" which can
be used to set the separator between the arguments of the print()
statement (the default is a blank space).
print(1, "Meravigioso", "Fabulous", sep = "*")
print('The final results are:', 56, "and", 44, sep = "")

The print() function has an optional argument, end = "…" which can
be used to set the character/s which is/are to be inserted after the arguments
have been printed (the default is a new line character).

print("The", end = " ")
print("cat", end = "*")
print("said", end = "")
print("nothing", end = "!")
print()
print("Enough said!")

CompSci 101 - Principles of Programming 10

The cat*saidnothing!
Enough said!

1*Meravigioso*Fabulous
The final results are:56and44

Complete the function
The get_dice_throws_result() function throws a number of
dice (given by num_throws) and counts how often the dice value,
(given by dice_to_check) occurs. Complete the function.
import random
def get_dice_throws_result(num_throws, dice_to_check):

def main():
print("30000 throws,", get_dice_throws_result(30000, 6),

"sixes")
print("6 throws,", get_dice_throws_result(6, 6), "sixes")
print("600000 throws,", get_dice_throws_result(600000, 5),

"fives")
main() 30000 throws, 4913 sixes

6 throws, 0 sixes
600000 throws, 99929 fives

CompSci 101 - Principles of Programming 11

Complete the function
For an integer, a divisor is a number which divides exactly into the
integer (a factor of the integer), e.g., the divisors of 6 are 1, 2, 3, 6.
Note that 1 and the number itself are divisors (they divide into the
number exactly). For this function we only want the sum of all the
divisors less than the number itself. Complete the function.
def get_sum_of_divisors(number):

def main():
print("get_sum_of_divisors(6)", get_sum_of_divisors(6))
print("get_sum_of_divisors(24)", get_sum_of_divisors(24))
print("get_sum_of_divisors(25)", get_sum_of_divisors(25))
print("get_sum_of_divisors(5628)", get_sum_of_divisors(5628))

main()

get_sum_of_divisors(6) 6
get_sum_of_divisors(24) 36
get_sum_of_divisors(25) 6
get_sum_of_divisors(5628) 9604

CompSci 101 - Principles of Programming 12

Complete the function
A perfect number is an integer that is equal to the sum of its divisors
(including 1, excluding the number itself), e.g., the sum of the divisors of
28 is 28 (1 + 2 + 4 + 7 + 14). Complete the check_perfection()
function which checks for perfection and prints either '#is a
perfect number' or '#is NOT a perfect number'.

def get_sum_of_divisors(number):
#See code from the previous Slide

def check_perfection(number):
message_is = "is a perfect number"
message_is_not = "is NOT a perfect number"

def main():
check_perfection(28)
check_perfection(54)
check_perfection(496)

main()

28 is a perfect number
54 is NOT a perfect number
496 is a perfect number

CompSci 101 - Principles of Programming 13

Complete the function
Complete the user_number_guess() function which keeps
prompting the user to guess a hidden number until the user correctly
guesses the number. At each guess the function lets the user know if
the guess is too high or too low. At the end, the function also prints the
number of guesses taken.

def user_number_guess(computer_num):
prompt = "Enter your guess (1 - 99): "
num_guesses = 0

print("Correct! Number of guesses:", num_guesses)
def main():

user_number_guess(random.randrange(1, 100))

main()

Enter your guess (1 - 99): 50
Too high
Enter your guess (1 - 99): 25
Too high
Enter your guess (1 - 99): 13
Too low
Enter your guess (1 - 99): 20
Too low
Enter your guess (1 - 99): 23
Correct! Number of guesses: 5

CompSci 101 - Principles of Programming 14

Summary
• In a Python program:
• a loop is used to implement repetition
• a loop has four parts

• the loop initialisation
• the body of the loop
• the loop condition
• the loop increment

• a while loop has the following syntax:
while boolean_expression:

statement1
statement2
…

CompSci 101 - Principles of Programming 15

Examples of Python features used in this lecture
def get_sum_of_divisors(number):

divisor = 1
div_sum = 0

while divisor <= number // 2:
if number % divisor == 0:

div_sum = div_sum + divisor
divisor = divisor + 1

return div_sum

def fun_stuff():
count = 0
while count < 4:

print("Programming is fun!")
count = count + 1

CompSci 101 - Principles of Programming 16

