
Lecture 9 – Divide a problem
into different tasks and define
functions which perform each
task, trace the execution of a
small program which contains

simple functions

COMPSCI 1 1
Principles of Programming

At the end of this lecture, students should be able to:
• break a program into small tasks which can be implemented using functions
• know how to trace code which involves functions

Learning outcomes
CompSci 101 - Principles of Programming 2

RecapFrom lecture 8
• write functions which perform a well defined task
• understand that a function can call other functions
• understand the scope of variable
• always use descriptive function names (and variable names) to ensure that the purpose

of the function is clear
def get_discount(amount, rate):

#Code not shown here

def get_discount_message(discount, rate):
#Code not shown here

def print_docket(price, discount_rate):
discount_amt = get_discount(price, discount_rate)
discount_message = get_discount_message(discount_amt,

discount_rate)
print("Original price $" + str(price))
print(discount_message)
final_price = cost - discount_amt
print("Price $" + str(final_price))

print_docket(234, 5)
print()
print_docket(657, 15)

Original price $234
5% Discount: $11.7
Price $222.3

Original price $657
15% Discount: $98.55
Price $558.45

CompSci 101 - Principles of Programming 3

Madlibs
A madlib is the name for a simple game. The idea is to take a sentence
and remove some words. You then ask someone to enter some words
which fit the same general category as the removed words and see the
new sentence which is created:

Think about the functions needed to write this program (2 functions)
and write the carry_out_madlib() function code for this program.

[Mary] had a little [lamb], its fleece was [white] as [snow].
Everywhere that [Mary] went, the [lamb] was sure to [go].

[NAME] had a little [ANIMAL], its fleece was [COLOUR] as
[PLURAL_NOUN]
Everywhere that [NAME] went, the [ANIMAL] was sure to [ACTION]

CompSci 101 - Principles of Programming 4

Madlibs
def get_word(prompt):

word = input("Enter " + prompt + ": ")
return word

def display_madlib(name, animal, colour, compare_thing, go_word):
stars = "*" * 35
print(stars)
print(name + " had a little " + animal + ",")
print("its fleece was " + colour + " as " + compare_thing + ".")
print("Everywhere that " + name + " went,")
print("the " + animal + " was sure to " + go_word + ".")
print(stars)

def carry_out_madlib():
prompt_name = "a name"
prompt_animal = "an animal"
prompt_colour = "a colour"
prompt_thing = "a plural noun (thing)"
prompt_action = "an action"

#Complete the code in this function
carry_out_madlib()

CompSci 101 - Principles of Programming 5

Complete the
carry_out_madlib()

function.

Format of CompSci 101 programs from here on
1
2
3

4
5
6

7

8
9
10
11

12

def function1(…):
print("Executing function1()")
….

def function2(…):
print("Executing function2()")
….

…

def main():
print("Executing main()")
… = function1(…)
… = function2(…)

main()

CompSci 101 - Principles of Programming 6

Code trace – the program stack
1
2
3

4
5
6

7
8
9
10
11
12

13

def fun_2(age):
years = age + 10
print("3.", years)

def fun_1(years):
print("4.", years)
years = 20

def main():
years = 5
fun_1(years)
print("1.", years)
fun_2(years)
print("2.", years)

main()

This program starts executing on
the first unindented line of code
(line 13).

When the function finishes
executing, the space set aside for
the function is freed (released).

CompSci 101 - Principles of Programming 7

Every time a function is called
(lines 13, 9 and 11), a section of
space in the program memory is
set aside for the parameters and
the local variables of the called
function.

Code trace – the program stack
1
2
3

4
5
6

7
8
9
10
11
12

13

def fun_2(age):
years = age + 10
print("3.", years)

def fun_1(years):
print("4.", years)
years = 20

def main():
years = 5
fun_1(years)
print("1.", years)
fun_2(years)
print("2.", years)

main()

CompSci 101 - Principles of Programming 8This code tracing technique will be shown in lectures.

years 5
main() function

years 5 20

fun_1() function

age 5
years 15

fun_2() function

4. 5
1. 5
3. 15
2. 5

Excercise 1
2
3
4

5
6
7
8

9
10

11
12
13

14
15
16
17

def function1():
print("A")
function2(3)
print("B")

def function2(num):
print("C")
function4(num - 1, num - 2)
print("D")

def function3(number):
print("E", number)

def function4(num1, num2):
print("F")
function3(num1 + num2)

def main():
print("G")
function1()

main()

CompSci 101 - Principles of Programming 9

Do a code trace on the program
and show the output.

#the output

main() function

Exercise
Code trace example

CompSci 101 - Principles of Programming 10

1
2
3

4
5
6
7
8

9
10

11
12
13
14

15

def get_part(digits, start, end):
num = int(digits[start: end])
return num

def num_fiddle(digit_str, length):
part_way = length // 2
part1 = get_part(digit_str, 0, part_way)
part2 = get_part(digit_str, part_way, length)
return part1 + part2

def display_results(num1, num2):
print(num1, ", ", num2, sep = "")

def main():
num = 3271
fiddled = num_fiddle(str(num), len(str(num)))
display_results(num - 5, fiddled)

main()

Part of the code trace for this
program is shown on the next

slide. The rest of the code trace
will be shown in lectures.

Code Trace of the program
on Slide 10

This code trace example will be
finished in lectures.

CompSci 101 - Principles of Programming 11

Exercise
Complete the code trace of the
program and show the output.

CompSci 101 - Principles of Programming 12

first()

a 5
main()

()

()1
2
3
4

5
6
7

8
9
10
11
12
13

14

def first(a):
b = 3
print("1.", a)
return second(a * b) + b

def second(a):
print("2.", a)
return a % 4

def main():
a = 5
b = first(a)
print("3.", b)
b = second(b)
print("4.", b)

main()

Summary
Problems can be broken down into small tasks and each small tasks
can be implemented using a function

A code tracing technique is used to work through the execution of a
program, instruction by instruction.

CompSci 101 - Principles of Programming 13

