ML ﬂ-ﬂ- —

d

.if.i-

=
i

=

=

i
-
Lt
#
1

[T

g ::I'

Abstract

VR is a emerging technology which has great potential, Opus wants to use utilize the VR
technology for their clients. Opus will host content which will enable their clients to view
3D architecture models on a cheap VR system such as Google Cardboard. The goal of this
project will be to help Opus implement such a solution in the form of WebVR.

The following report is based on a project which i1 am undertaking with Opus Interna-
tional Consultants. The project is part of my full year BTech451 degree in the University
of Auckland. The project was initialized in March 2016 and is currently on going with
the final report due late 2016. This is a year long project with the initial part (this report)
focused primarily on the research of Virtual Reality (VR) - this includes: VR systems, VR
applications, VR use cases and WebVR. In addition to the research, the secondary goal will
be to prototype a WebVR solution for Opus.

I will expand upon the prototype to produce a WebVR solution which will allow the
Opus VR team to convert 3D model(s) to a WebVR compatible form which they can host
onto the Web. The solution can be in the form of a utilization of established software or
a script/program (coded from scratch by me). Development of the WebVR solution will
require research on VR itself, thus it is vital to research general VR before diving into
implementation; this is why the first semester will be focused primarily on research.

There is no exact research question for the project, however the end-of-year goal is
to develop an online WebVR solution which will Opus’s clients to view content hosted
by Opus on their in website in VR via a smartphone. The solution implemented must be
user-friendly, meaning that the Opus VR team must be able to utilize the program/script by
applying it on their templates and produce a file which they can host on the web with any
difficulty and pre-requisite knowledge.

BTECH 451, UNIVERSITY OF AUCKLAND

This project was undertaken under the supervision of Dr Aniket Mahanti from the University
of Auckland and Sam White from Opus International Consultants betwen March and
November of 2016 . First release, June 2016

Contents

1.1 The Company 5
T.LT The VR Team o e e e 6
1.1.2 Opus'sinterestsiNn VR 6
2.1 Brief History of Virtual Reality 8
2.2 How Does Virtual Reality work 10
2.3 VR devices 11
24 Opus VR device(s) 14
2.5 VR Applications 15
3.1 WebVR 17
3.2 Opus Objectives 17
3.2.1 The CurrentProcedure i e 18
3.22 The Desired Procedure e 19
3.3 My Objectives 19

3.3. T MOTIVATION .. 19

4.1
4.1.1
4.1.2
4.1.3
4.2
4.2.1

4.3
4.3.1
4.3.2
4.4

4.5
4.5.1
4.5.2

Methodology

Web Technologies

HIML ..o
CanNvas
CSS ...

javascript

WebGL

Prototyping

Workflow

3D graphics - basics
Google SketchUp
Unity

ThreedS
Other frameworks . .

Conclusion

Future Work

3D virtual reality walkthroughs allow designers and technicians the ability to gain valuable
new perspectives of their design that may not be otherwise apparent. Via the use of VR,
company staff and clients can explore and experience their design in full scale by being
fully immersed in the virtual 3D environment.
This offers a number of opportunities including:
e Ability to visualize the completed construction of infrastructure including complex
details which are much more difficult to visualize on a 2D screen
e Better understanding of the design by users, this will allow them to improve their
current design by making much more informed decisions due to being able to visualize
the final product (in 3D) before construction
The aim of this project is to develop a solution that can assist Opus in hosting 3D models on
the Web in VR format which can be viewed using a VR headset such as Google Cardboard.
This will allow staff and clients to be able to view the VR content from anywhere in the
world (assuming they have a VR headset — Google cardboard, Samsung VR, Oculus rift)
and/or a compatible smartphone.

The Company

Opus International Consultants is a leading multi-disciplinary infrastructure with local reach
and global connections. Opus operates in 5 major markets - Australia, Canada, New Zealand,
the United Kingdom and the United States of America.!! Opus has over 3,000 engineers,
designers, planners, researchers, advisers and work with more than 12,000 clients. !

Opus offer fully integrated asset development and management services at all phases
of the lifecycle including concept development, planning, detailed design, procurement,
construction, commissioning, operation, maintenance, rehabilitation and upgrading. In New
Zealand, Opus operates from a network of 40 offices and employs over 1,700 staff which

6 Chapter 1. Introduction

provide services on leading infrastructure projects for both the public and private sectors.!]

The VR Team

Opus is a very large company so it assigns teams/groups that perform niche roles to cater for
clients. A specific VR team was assigned the task to produce VR solution(s) to for clients
interested in modeling 3D architecture and design. I was very privileged to work with the
Opus VR team since VR is an emerging technology which has great potential. The VR team
consists of Sam, Andrew, James, Kodie and me (Zeeshan). Kodie has no direct involvement
in VR but is rather leading the website development team that will be working alongside
the VR team to host the VR solutions for their clients.

Opus’s interests in VR

Opus International consultants are interested in VR because they believe it is important to
utilise and leverage new technologies to gain and maintain competitive advantages in the
industries in which the company operates. In addition to that , Opus-VR is a low cost, low
risk project to explore the use of virtual reality technologies throughout all departments.
The Opus VR team aims to achieve:

e Improved design quality and efficiency

e Better client experience and reputation

e Promotion of Opus
To understand Opus’s interest in VR technologies we must first understand what is Virtual
Reality.

The first part of this project (this report) will have general information on Virtual
Reality, this is because Opus instructed me to conduct research on VR before delving into
producing code/solution. Opus wants me to identify the best possible VR solution to cater
for clients. To find such a ’perfect’ solution it is essential that i perform research on VR (as
a general topic) because it is possible that the solution may not lie in WebVR at all (due to
technological limitations) and we may have to resort to some other form of VR solution
(Android/IOS app) . My research and findings on VR will be presented in the following
report; in addition to that i will also prototype a WebVR solution on which i can build upon
in the next semester

As part of my research, it is my duty to to first introduce what Virtual Reality is before
getting into the details of Opus and VR.

Virtual reality is the term used to describe three-dimensional, computer generated environ-
ment which can be explored and interacted by a user (person). It is a form of immersive
multimedia in which physical presence is simulated in virtual environments. This is gener-
ally achieved through the use of a head mounted display on which a stereoscopic image is
presented, giving the illusion of depth. Motion tracking enhances the simulation, allowing
the user to look or move around the virtual environment by turning their head or moving
their body.

Virtual reality is generally associated with video gaming, but is currently being used for a
wide range of applications including engineering and architecture. Significant developments
have taken place over the past few years into virtual reality technologies; developments
in a number of fields including display technology, computing power and motion tracking
have significantly enhanced user experience. The technological improvements in VR
has significantly reduced the price of virtual reality devices while also increasing their
performance.

When using a VR headset, a user becomes part of this virtual world or is immersed
within this environment and whilst there, they are able to manipulate objects or perform
a series of actions. Actions such as head movements trigger a response in the headset
which causes the scene to move relative to your head - using gyroscopes. Virtual Reality is
primarily experienced through two of the five senses - sight and sound.

8 Chapter 2. Virtual Reality
2.1 Brief History of Virtual Reality

e 1938 - Stereoscopic photos and viewers: Initially VR originated from stereoscopic
images. A pair of stereoscopic images are images which are angled in such a way to

provide an illusion of depth - more on this later.

e 1920: - Flight simulator: The first flight simulator produced by Edwin Link was
designed to train novice pilots.

Left: Edward Link, Right: The Link Trainer

e 1957 - Sensorama: The Sensorama produced by Morton Heilig was the first interactive
theater experience with stereoscopic images, oscillating fans, audio output (speakers)

and also devices which emitted smell.
sensoralia

1968 - Head Mounted Displays: In 1968 Ivan Sutherland introduced one of the first
head mounted displays which attached to a computer. They enabled the user to see
virtual world - in wireframe format. However had many problems such as being too

heavy thus required suspension.

2.1 Brief History of Virtual Reality %

e 1970 - Interactice Map: The first interactive map was created by researchers at MIT.
This enabled people to virtualy walk through the town of Aspen.

e 1990’s - Introduction of VR gear: This is when the term Virtual Reality was adopted
and picked up by the media. VR was overhyped by Jaron Lanier and Tim Zimmerman
to market the devices; however VR did not live up to expectations and people started
losing interest. This is mainly because the technology was not ready yet - unable to
provide full immersion.?

e 2012 to Present - A Kickstarter project introduced the Oculus Rift headset to the
masses in 2012; this headset offered to fulfill previous promises which the previous
headsets could not; and thus virtual reality was resurrected.l3] The term Virtual
Reality is often repackaged as ’Virtual Environments’ since VR was associated with
dissatisfaction. Due to substantial improvements in hardware and computational
power Virtual Reality has gained consumer confidence and seems like the next
frontier.

2.2

10 Chapter 2. Virtual Reality

How Does Virtual Reality work

From the list above, we have seen how VR has changed over the years, with each iteration
generally providing more immersion than the previous. But how does Virtual Reality
actually work?
e A Split screen video feed is sent from the computer via HDMI into the headset. The
video feed can also be sent through mobile display - for Google Cardboard and/or
Gear VR. An example of the video feed is shown in the image below.

e The two slightly different views of the video feed are independently rendered . In a
video feed, each frame acts as a stereoscopic image delivered to each eye.

e The lens in the headset enlarges each of the video feeds sent to each eye

e The two video feds reshape the overall frame delivered to each eye - by angling the
two images. The stereo image pairs (frame-by-frame) are different to ordinary images
since a stereo image (rectified) contains an element of depth. This effect mimics how
we view the world which causes the immersion. An example of this is shown in the
diagram below:

A Real world b 3d display
A
g g
g g §
R B &
Y =
C D
-F_'*_ih-q.___q.__‘___‘__..-—-'—"_-“_ .—'_'-""-—-__,,______‘,__.-—-4—"‘"'—-_-
bt T T T T I o o I B e o S

2.3 VR devices 11

As shown above, in ideal conditions Box-C should appear as Box-D; the eyes should
not be able to distinguish between a virtual image and the world.

e The headset/phone renders the environment based on the desired field of view. It must
be noted that a greater field of view requires more computational performance since a
greater number of pixels being rendered; 180 degree FOV is recommended

e Movement of the head sends signals to the gyroscopes of the headet/phone which
causes the scene to rotate in the opposite direction (of the user head rotation) - this
mimics how we see the world

e To note - For the virtual environment to be convincing, a minimum of 60 fps is
required to avoid stuttering, otherwise users may start to feel sick

Now we know how VR actually works, so what devices offer the best VR experience?
The amount of immersion in VR is dependent on the VR device one uses. Generally the
more expensive options offer better immersion with rich and detailed virtual environments
while the other cheaper ones are usually used to introduce communities to VR (such as
Google cardboard).

VR devices

There are many Virtual Reality devices in the market. Each VR device may offer a unique
VR immersion experience, some more than others. There are four major players in the
market: Google Cardboard, Samsung Gear VR, Oculus Rift and the HTC Vive.

Google Cardboard

Cardboard offers a beginners virtual reality experience. It has it’s own pros and cons; with
the main pro being that its cheap, probably the cheapest VR option there can be. At a price
tag of $5, It’s basically a cardboard dock with two lenses that holds a smartphone (for the
display).m The docked smartphone must possess a gyroscope to function (synchronize with
head movements). This makes the Cardboard extremely simple to use - since Cardboard is
just a phone holder, thus potentially every modern cellphone is compatible with it. For VR
content, the user requires access to the Google Playstore (or Appstore). But now there are
websites which are developed specifically for VR; thus a user can test out VR regardless of
the phone they possess - via a WebVR website. This is also what Opus wishes to utilize;
developing a web solution to showcase models in VR to their clients regardless of what
smartphone they possess.

12 Chapter 2. Virtual Reality

8]

However Cardboard does come with its fairshare of problems. Since each pixel is enlarged
by the lenses of Cardboard, the experience is highly dependent on the smartphone display.
The higher the smartphone resolution, the better the VR experience with cardboard. Also
since Cardboard is just a dock, it is not specialized for any smartphone, but rather tries
to cater to all smartphones. Due to this factor, there is no optimal positioning for any
smartphone in the dock. You also have to hold the cardboard to your head with your hands
throughout viewing VR content; regardless of this factor, cardboard dock also lets in small
amounts of light which reduce VR immersion. There is only one button for controls, this
severely limits interactivity. 5] The phone must be removed from the cardboard each time
you wish to launch a new VR application.[s] Due to all these factors Cardboard fails to
provide the full fledged feeling of VR immersion but rather only acts as a product which
introduces VR to the masses.

Samsung Gear VR

The Gear VR on the other hand is Samsung’s version of the Google Cardboard; it is
specifically designed for Samsung’s galaxy smartphones. At a price tag of $150, it is a it
is much more expensive than the Google Cardboard; it is for those who have invested in
Samsung’s ecosystem (devices).]’l The VR content is supplied primarily from Oculus store
(which is now owned by Facebook), it combines software from Facebook’s Oculus and
downloaded apps created by a range of developers.m The screen resolution is the resolution
of the inserted high end Galaxy smartphone - which is typically 1440x2560 pixels.

]

2.3 VR devices 13

It has adjustable straps (unlike Google Cardbooard) so the user does not have to hold the
device while also having a scrolling wheel which allows a user to manually adjust the
distance between the phone display and the lens. This allows users to view VR content for
longer periods of time (compared to Google Cardboard). In addition to that, Gear VR also
provides basic input such as directional pad, volume control and a dedicated back button.
Users can also attach compatible game-pads (via Bluetooth) to further enhance their VR
experience. This not only allows one to just view VR content, but also interact with the
Virtual environment. The user does not need to take off the headset since the navigation
such as switching between apps is done in VR mode. According to the VR team, they will
be experimenting with this very soon and most possibly use it for prototyping on Samsung
galaxy devices.

Oculus Rift

The Oculus Rift is the leading example of mainstream virtual reality technology. It features
a low latency display and head tracking with support for a very wide range of applications
which are run through a desktop or laptop computer. The Oculus rift is the original product
which resurrected, re-introduced and to some extent re-hyped Virtual Reality. The Rift is
a dedicated head mounted display (HMM) which connects to a PC via HDMI cable(s). It
offers a high-end VR experience, though at a hefty price tag of $600.9 The headset itself
contains a gyroscope, accelerometer and magnetonometer. It also offers head-tracking via
an external sensor; this allows a user to lean in and out of virtual in the virtual environment -
thus offering a greater field of depth than the Gear VR (and Cardboard). However due to
the fact that it connects to a PC, the performance is directly proportional to the PC specs
(mainly GPU); a reasonably high-end PC is required to for a good VR experience.®! This
means that user has to also pay for extra to up their PC specs. Also it is not as easy to setup
as Gear VR and Cardboard since the user is required to download software and connect
many cables.

[10]

This product is quite pricey for most users and this doesn’t even account for the PC
requirements. The Oculus is for those who will pay for no compromise on the VR experience.
This is the primary VR headset used by the VR team to prototype client models on the unity
and RevIt Software.

2.4

14 Chapter 2. Virtual Reality

HTC Vive

The final high end VR display on this list is the HTC Vive. This is a relatively new high-end
HMD which comes at a price tag of $800.% This product is manufactured by HTC and
Valve.”) It has the most VR content then the other displays since VR content is supplied by
Valve (Steam) themselves. It offers mostly everything what the Oculus offers plus more
- such as two external proprietary controllers and Laser-powered Light House Tracking
technology.”! Multiple camera’s are setup in a defined perimeter, this allows the user to
interact with virtual objects within the perimeter and thus provides maximum immersion
compared to the other products. An example of this is shown in the image below:

It must be noted that to use this device, the product requires a specific perimeter for the
setup (atleast 2mx2m); users may not have this much space.m

The Oculus rift and HTC Vive are very similar in terms of hardware, there is however a
subtle price difference and that is most likely due to the extra feature (Light house tacking)
offered by the Vive.

Opus VR device(s)

The primary focus of Opus is distribution of VR content in the form of architectural
modeling for clients. This means that the cheaper the device, the more likely their client
will get/use it. Distribution of 3D models/content is the main focus of Opus, this is why they
plan to use Google Cardboard as the primary platform for content distribution for clients.
Google Cardboard is the cheapest VR device (not exactly a device but a dock) which is easy
to buy in mass quantities and distribute to clients. If clients want a better quality of VR
immersion then they are free to buy their own VR device which may offer a more realistic
(e.g. higher resolution) view of their model.

When 1 went to Opus, they initially introduced me to VR through the Google cardboard.
As stated before it is the cheapest way to get a client invested into their VR. After the

2.5 VR Applications 15

introduction phase, Opus then revealed the real VR product - the Oculus Rift. Opus
primarily uses Oculus rift for development of VR content (3D VR models); to present and
distribute the 3D models (in VR), they use Google Cardboard. In addition to that, Opus also
plans to use Samsung Gear VR for testing on Samsung Galaxy devices; this will be a new
addition to their arsenal of VR headsets which i can use for testing.

VR Applications

Virtual Reality is a rapidly emerging field which holds many applications in any field. Some
examples of the industries where Virtual Reality can be used extensively in are:
e Military: can be used and used to some extent in flight simulation, medic training
and vehicle simulation.

e Healthcare: Virtual Reality surgery - reduces invasive procedures from doctors,

allows doctors to practice surgical procedures before practically applying them on
patients

e Entertainment: Main hype around VR is its uses in entertainment; this opens up a
new world to gaming and movies (netflix)

E - | [11]

The above image is an example of full VR immersion via the use of a multi-directional
treadmill and a proprietary controller (gun). The same concept can be used for military
training.

e Fashion: In the Fashion industry VR can be used for 3D Modeling of wearable
clothing

e Engineering: 3D modeling of general infrastructure and machinery such as bridges
and vehicles etc.

e Sport: Can be used to provide a first person view into sports (via use of 360 cameras).
This can be used extensively for analysis and identification of good technique. In
addition to that, can be used as a vector for coaching new sportsman

16 Chapter 2. Virtual Reality

e Scientific Visualization: A means of visually conveying complex 3D information.
For example in biology it can be used to map the internals of the human body. In
astrology can be used to produce a 3D map of space and the position of earth relative
to other objects

e Search & Rescue - Virtual reality devices paired with remote controlled drones could
be used to provide accessibility to hazardous environments while also improving
safety by reducing exposure.

e Construction - Architecture modeling and visualization; this is the main use case
for Opus

VR technology holds potential in every industry, these are just some of the industries where
VR technology can be utilized. This is also the main reason why major companies are
investing into VR technology (Google is one example).

3.1

3.2

We have briefly defined what is VR and also seen some of the applications which VR holds
for different industries. Opus on the other hand wants to go one step further and that is
utilizing WebVR.

WebVR

WebVR is an experimental javascript API which can be used to produce content for Virtual
reality devices such as the Oculus Rift and Google Cardboard. WebVR makes heavy use of
WebGL library which is also a recent web technology that is used to display graphically
intensive content without the use of plugins. In simpler terms, WebVR is: making use of
a stereoscopic camera in a scene rendered by WebGL. So basically we are working with
WebGL but using a stereoscopic (split view) camera rather than the default camera; this
would allow a user to view the content (WebGL rendered scene) in first person through a
VR headset. One could deduce an even more simpler definition of WebVR; it is VR on top
of the WebGL framework in a web page.

Opus Objectives

Virtual Reality, as previously stated, has potential in any field. For Opus, they would like to
utilize VR to provide clients with 3D virtual walkthroughs of virtual environment(s). By
"Virtual Environments’, we mean an architectural model proposed by the client themselves.
A 3D virtual walkthrough would provide clients with an insight on how their design would
look like (from first person perspective) before construction. The clients will then be
better informed and thus could make improvements of their current model to obtain the
perfect solution before proceeding to implementing it (construction). Opus commonly uses
*Computer Aided Design’ (CAD) software applications such as Revit, Sketchup, and 3DS

18 Chapter 3. Opus and WebVR

Max to rapidly convert the CAD files to a format which are viewable in 3D through the
Oculus Rift. CAD files are the format of models provided by their clients.

There are many benefits to using VR as a primary means of sharing 3D content. Two
major factors are:

Client experience and communication of ideas

VR allows for clear and effective communication of ideas to clients. This is especially
useful for less technical clients where conventional methods of presentation may not be as
effective. A virtual walkthrough of a new road alignment (for example) could showcase the
roading design, bridge structures and landscape design, while giving clients a perspective
of how the road will be experienced by its customers. The ability to deliver such a VR
walkthroughs will also enhance the ‘wow factor’ of Opus’s work and has the potential to
boost their reputation for delivering innovative and high-tech solutions.

Promotion
VR technology can also be used to promote Opus at schools, trade shows, conferences
and other public events. Attendees could be given a tour of current projects that Opus is
working on or perhaps experience a virtual earthquake which demonstrates innovative new
structure designs. The VR team is working on such a project (in previous statement) and
has managed to ’surprise’ attendees via presenting such a demonstration.

The VR team utilizes many resources for production of VR content to cater for their
clients. These resources can be broken down to hardware and software requirements:

Hardware
e Oculus Rift and Google Cardboard
e CAD-spec computer - for building models and presenting media
e Game controller to navigate virtual environments

Software
¢ 3D modeling software - Revit, SketchUp, Unity and 3DSMax
e Model conversion software - primarily IrisVR

The Current Procedure

At the moment, clients must physically go to the Opus headquarters to test their architecture
models. They give the model to the VR team which uses software to convert it to a format
that is compatible with the Oculus rift (and/or Google Cardboard). Once the conversion
process is complete, the client is able to view the 3D content through the VR headset.

This procedure requires the client to be physically present at Opus headquarters, thus
the client is completely reliant on Opus to be able to view their own models (in VR). This
is a time consuming procedure for both the client and Opus. What Opus wants to do is
produce a WebVR solution; this means converting the model (provided by the client) into
WebVR format and pushing it onto the web for the client to view through a VR headset
(Google Cardboard). This will allows the client(s) to perform virtual walkthrough’s of their
models from home (rather than having to visit Opus).

3.3 My Objectives 19

The Desired Procedure

What Opus wishes to achieve is to allow clients to view VR content from the freedom of
their homes. The procedure which they wish to implement for clients is as follows:
e A client sends their 3D model(s) to the Opus VR team
e The VR team converts their file(probably CAD) into VR format. This format can
be an APK (for Android), IOS (for Apple) or WebVR (WebGL with stereoscopic
camera)
e Once the model is converted, Opus will post the new content onto the server into the
client(s) account - cannot be public for privacy reasons
e The client will login to the Opus VR website, they will be able to view the VR content
under their respective account provided they have a VR headset and/or smartphone
e Note: Opus will provide Google Cardboard headset for free to their clients
Ideally Opus wishes to post WebVR content (compared to I0S/Android app) as it is
compatible with potentially any smartphone. This is because for APK/IOS VR app, the user
would have to download and install the program; WebVR would allow the user to visit the
URL and view the content instantly upon entering the web page. Opus hasnt implemented
any of these solutions yet; that is where i come in.

My Objectives

My role is essentially to convert a 3D model produced by the VR team to web-compatible
VR format which can be hosted on a webpage. I have to produce a script (or program)
which can convert these models to the desired VR format - which is javascript. The models
which i must convert can be of any form; 3D infrastructure, vehicles or even simple objects.
The script must be generic and form independent; i must be able to extract the main contents
from the model(s) and use the objects/data to create a javascript file which can utilized by
an html file to display VR content on a webpage.

In my research, if i come across any software/plugins that do this, i can use the estab-
lished software/plugins to my advantage for the conversion procedure. This means that
if an established software can convert models to WebVR (webgl) format, then my job is
essentially done. The VR team stated why reinvent the wheel; they would use the already
established software - if it reliable and doesn’t have any flaws/bugs. I have tried looking
for such software, but there is none available - yet; so i will most likely have to develop
the script/program from scratch. The difficulty of this development depends on what other
developers in this field have already tried; since WebVR is a very recent and emerging field,
there are not many resources available for me to utilize. The implementation of a conversion
script may be extremely difficult and the team would have to go with an easier solution such
as conversion to APK or IOS format - if i am unable to produce a viable WebVR solution.

Motivation

At the start of 2016 our course supervisor Dr. Manoharan Sathiamoorthy gave us a list
of options for the possible BTech projects we could do this year. The first option (out of

20 Chapter 3. Opus and WebVR

the 8 options) was the Virtual Reality showcase for Opus. I was interested in VR and VR
modeling (game/content production) before the project options were even shown to me
since VR appeared to be the next promising emerging technology. In my spare time, i would
watch videos on Youtube on how VR worked, the devices, the entertainment and also how to
produce basic scenes in VR (for game development). So naturally, i was inclined to choose
the VR option for my project. A major factor which helped me select VR as my project
option was the potential this technology had, it appeared to be the next big thing’.

The Next Big Thing

It is not only me who believes that VR (and WebVR) may be the, many big companies such
as Google, Facebook, HTC and even Sony believe that VR has tremendous potential. In
fact many companies have also heavily invested in VR; Mark Zuckerberg, the owner of
Facebook has bought Oculus for $2.2 billion in 2014.1'2) In addition to that, eight of the top
ten tech companies are invested in VR. These tech companies include:

e Apple: They do not reveal specific details on product developments, according to the
report by Tim Bradshaw at The Financial Times, Apple “has been building prototypes
of possible headset configurations for several months".[13)

e Samsung: Samsung struck a strategic partnership with Oculus, this gave Samsung
early access to Oculus software platform (Oculus store) for content. This partnership
was also helped Samsung co-develop the Gear VR. It is poised to become one of the
most owned headsets in the market due to its portability and quality of VR content
delivery.!!?!

e Microsoft: Microsoft has arguably the best research teams in Computer Vision, this
is what enabled Microsoft to be the first to develop an Augmented Reality headset -
the Microsoft Hololens. Augmented reality delivers VR-like content on top of reality
(somewhat analogous to Google Glass). Additionally the company offers XBox One
controller support for the Oculus rift.["?)

e Google: Google is one of the major players which has released the cheapest form of
VR - the Google Cardboard. VR involvement has transformed from a "20% project"
to a fill-on department in less than two years.m] It has shipped more than 5 million
headsets since inception; in addition to that the company is working on a VR version
of the OS - Daydream, which will be released later this year.[13]

e IBM: IBM’s cloud based Watson platform is one of the most technically advanced
Artificial Intelligence system in the world.['3] This system is also beginning to power
VR experience; this is important since this Al system could be used to bring unparal-
leled levels of depth and interaction of virtual characters (e.g. voice communication)
in a VR environment.

o Intel: Intel is looking to use RealSense technology for mobile VR (like Samsung).[13]
The company recently announced it will be releasing developer kit phones powered
by this technology.m]

e HP: This company has recently created as $999 "VR Ready PC " 3] This is a huge
step for PC HDM’s such as HTC Vive and the Oculus rift because they require high
end PCs with specific requirement; with a PC like this, one would not need to buy all

Millions

over 200M users with headsets by 2020

100

80

60

40

20

3.3 My Objectives 21

the required PC components since it would all come in 1 package.

e Foxconn: This company is the worlds largest electronics manufacturer; it has also
worked previously to help develop zSpace which is an educational "real world VR"
system.[13]

These 8 companies only represent a fraction of the whole VR ecosystem. Others such as
Sony, LG, HTC and Facebook (who are not be in the top 10) are also making huge impacts
on VR with their respective headset/VR-software launches.

VR Headset Sales
VR Software Revenues

more than $7.5B cumulative over 4 years

$3
$2
11BN
= B ' .
2016E 2017E 2018E 2019E 2020E G $0 . L ! _ i

Bconsole /PC ®mmobile 2015E 2016E 2017E 2018E

Billions

Analysing the stats above, we can clearly see the that there is alot of potential for VR
for the future. According to the estimations, VR is a big industry; by the end of this year,
there will be atleast 10 million VR users around the world. We can also see that overtime,
the mobile market will be dominant. Mobile VR is powered by smartphone, these offer
portability which is always better than using VR in a static location. In addition to that
smartphones get more technologically advanced (updated) in terms of specs every year;
thus they will be able to support the demanding requirements of VR. An example of this
is the new upcoming Android N, which is an android OS specifically built with a focus
on VR.[4 Technological advances such as these really support mobile VR emerge as a
successful technology which will make it more dominant than console/PC VR.

From these statistics and actions made by companies, we can clearly see the potential
VR holds for the future. VR is proving to be a promising emerging technology which will
have many use cases in the future; this is a major factor which highly motivates me in
working with VR and WebVR technology (BTech project). My development practices can
be useful in content production for the VR industry.

[15]

4.1

4.1.1

4.1.2

The main focus of the first semester was to research on Virtual Reality and WebVR with
minimal prototyping. Major prototyping of a proposed solution will occur in the second
semester. The main research on VR and WebVR has already been covered in this report; now
we will move onto prototyping. By prototyping i imply, the approach taken to implement a
possible solution which could convert models to WebVR format. The model(s) provided by
the VR team can be processed in two common applications, Unity and Google Sketchup.
Both these softwares enable me to display and modify the 3D models retrieved from the
model file.

Web Technologies

Firstly to implement a WebVR solution for Opus, i have to become with familiar with
certain web technologies such as basic HTML, javascript and CSS (in some cases - for
code readability). These technologies are the basic building blocks required to make a basic
WebVR scene which can be hosted on the web.

HTML

Hyper Text Markup Language (HTML) is the primary language used to display webpages.
A set of markup tags describe the layout of the web document. Each tag emphasizes specific
document content. With the introduction of HTMLS5, we are no longer limited to just
drawing 2D rectangles on the screen. This is because of HTML5’s Canvas API.

canvas

Initially developed by Apple, canvas is an HTML tag that can be used to draw complex
graphics using javascript. ' What canvas offers (that other tags don’t offer) is that it allows

4.1 Web Technologies 23

us to address each pixel individually. In addition to that canvas also enables us to edit
images and video.!'®) This significantly improves website performance since one does not
need to download images from the network and can implement one within the document
using canvas. However not all browsers (and versions) support the canvas tag, this is an
important factor because we (Opus) want to cater for a maximum number of clients an thus
browser compatibility is vital.

The supported browsers (and versions) are:

Safari 2.0+

Chrome 3.0+

Firefox 3.0+

Internet Explorer 9.0+
Opera 10.0+

I10S (Mobile safari) 1.0+
Android 1.0+

Since the WebVR solution will primarily be run on a smartphone, compatibility with
IOS and Android browsers is essential.

[16]

Canvas - technical details

What happens when using canvas (for drawing) is that javascript is executed on the CPU,
which interacts with the GPU to display the pixel on the screen. For a simple scene (2D),
this is fast procedure; but for a complex scene it is not fast enough, this is due to JS being
single threaded, which means you only access one pixel at a time. Major smartphone screen
sizes in most cases have atleast 1280 x 720 pixels = 921,600 pixels; sequential pixel access
is a major problem for such a large number of pixels. We can optimize this however through
the use of WebGL - more on this later.

Implementation of the HTML itself is of least importance (to me) because Kodie (and
his IT team) will be producing the frontend and backend of the website. To render graphics
on a specific webpage i have to be able to append the canvas tag into the html file. Javascript
will be used for appending the canvas tag and rendering the WebGL (WebVR) scene on the
webpage.

CSS

Cascading Style Sheets (CSS) on the other hand is a language/script which is used for
describing the presentation of a document written in HTML. It can be said that CSS is
an extension to HTML since its primary purpose is to define the visual presentation of
the HTML document. CSS implies a concept analogous to "Seperation of concerns"; we
seperate the visualization/presentation of data (using CSS) from the raw data (in HTML).
For WebVR implementation, the least used technology/language will be CSS; we are not
concerned on the layout/presentation of the webpage, we are rather only interested in the
content within the canvastag of the webpage.

4.2

4.2.1

24 Chapter 4. Methodology

javascript

Javascript (js) is a high-level interpreted programming language. It’s a fairly easy language
to learn (compared to others such as C/C++) due to its dynamic and untyped nature. In
addition to that it is also a very powerful multi-paradigm programming language which
has support for object-oriented, imperative and functional programming styles. JS is also
supported by all major browsers without the use of any plugins. HTML, CSS and javascript
are the core programming languages of the web; since i will be implementing a web based
solution, it is essential to know how to code in javascript. If we wish to use javascript for
our webpages (which we surely will), then it must be referenced by the HTML webpage -
usually done in the *head’ tag of the html document.

To implement a WebVR solution we have to be able to display graphics onto the screen.
A javascript API, WebGL allows us to do exactly this.

WebGL

Web Graphics Library (WebGL) is a javascript API which is used for rendering 2D and/or
3D computer graphics. WebGL is derived from OpenGL ES 2.0, it utilizes the HTML
canvas tag for displaying graphics.[”] The most prominent feature of WebGL is that it
can render graphics without the use of any plugins - on compatible browsers.!'”) Since
the implementation of a WebVR solution requires WebGL, it is important that the Opus’s
clients have a compatible browser that can display the WebGL rendered content. These
browsers (and their respective versions) are shown n the diagram below:

* - P - S - -* Android *
Edge Firefox Chrome Safari Opera 05 5atari Opera Mini ErsmEer

Chrome for
Android

29

e Red: Not supported

e Light Green: Partial support

e Solid Green: Fully supported
The browsers of most interest are iOS Safari, Android browser and Chrome for Android.
This is because these are the mobile browsers (used in smartphones) which clients will
use to view the WebVR solution (3D model in VR). IOS is fully supported so thats not a
problem, but however there is only partial support for android (chrome and stock browser).

4.2 javascript 25

9.2 Safari & Chrome for i0s 9.3 | Chrome 50 for Android
Supported Partial support

Browser usage Browser usage

Global: 5.21% Global: 177%

When hovering over Safari/Chrome for IOS and Chrome for android, we see that these
browsers have a reasonably high amount of WebGL global usage. Android has a whooping
17% WebGL browser usage, thus meaning that a significant number of clients will be most
likely be using the Android browser for viewing WebGL content (and later our proposed
WebVR solution). The partial support of WebGL for android could become a constraint on
how we implement the WebVR solution since the android platform has a significantly large
user base.

Technical details

When using simple javascript for rendering graphics in the canvas tag, the JS only has
sequential pixel access (as stated previously). This is a major problem but, the canvas tag
can be optimized using WebGL. This is because WebGL uses the GPU in parallel, it doesn’t
go through the CPU sequentially like normal JS would. This allows WebGL to access
billions of pixels in parallel for rendering graphics in the canvas tag and thus significantly
increases graphical performance of the rendered scene.

WebGL Pipeline:

Array of Vertices
—{ Vertex Shaders Rasterized
* Fragments
AN
N\
\,
Ay

Shader Code

GL Buffers

Fragment
Shaders

Array of Faces

The above diagram illustrates the a basic pipeline of how WebGL efficiently utilizes the
GPU. Initially two arrays (Array of Vertices and Array of Faces) are uploaded from WebGL
to GL Buffers. A GL Buffer is a section of memory on the GPU (embedded in the GPU)
which stores the vertices and faces. By uploading these arrays directly into the GL buffers is
an example of how WebGL gets direct access to the GPU. The buffers then pass on data to
the vertex shaders which return rasterized fragments. These fragments are filled with colour
via Fragment shaders and output as a pixel on the screen. The Vertex Shaders and Fragment
Shaders are coded in GL shader language (shader code) which is run on the GPU. We can
also write in GLSL in WebGL, this is another way we can use to get WebGL direct access
to the GPU. This whole process runs in parallel on the GPU for all pixels which results in
optimal performance, this allows users to render reasonably complex scenes at high frame

4.3

26 Chapter 4. Methodology

rates - 60 fps+.

Why WebGL

WebGL enhances user experience and in some cases allows viewers to get a better under-
standing of the concept (illustrated by the graphics). Before implementing a WebGL/WebVR
solution we should analyze how prominent WebGL is as a web technology.

Visitors who have WebhGL

100%

| B Stable

0% B Experimental

Percent

25%

0%
’ 2013 2014 2015 2016

Highcharts.com |[19]

The following graph illustrates the percentage of users which have WebGL browser
compatibility to view WebGL web pages in the time period of 2012-2016 (present). This
site was last updated in February 4th 2016 (recent statistics), and shows us that a large
majority of users (90%) have a WebGL compatible browser. These stats reinforce the fact
that we should use WebGL to produce a WebVR solution as it is highly likely that clients
will have a compatible WebVR browser which they can use to view their 3D VR model
(WebVR solution).

Prototyping

To implement a viable solution i have to test out or in other words prototype code via
making use of the web technologies. The development phase consists of having a simple
idea, applying coding knowledge to implement the idea. This can be for example as basic
as rendering a cube in WebGL on the screen. Once you have basic understanding of how
the code works, you can build upon it to produce complex objects/structures . The initial
prototyping consists of thinking, testing, and thinking again; creating your own hypothesis
and conclusions on how the code works, in the process learning what works and what
doesn’t. This is exactly how i prototyped, testing my hypothesis and seeing what works and
what doesnt. Once 1 have a solid understanding of the web technologies, 1 can then use my
code to implement a solution (by the end of the year) for Opus.

4.3 Prototyping 27

Workflow

Before actually getting into prototyping i have to plan out a path to follow; without any
direction it would be very difficult to produce a solution. The steps for producing a WebVR
solution are:

e Retrieve a 3D model from Opus which 1 can use to convert into a WebVR format

e Export the model to a json object which can be read by javascript for displaying

e Render the imported model in javascript using WebGL (within the Canvas tag of a
webpage)

e Once we have a successful model which we can render, then we need to convert the
camera into a stereoscopic camera which will split up the perspective view into two
views (one for each eye)

e Test out the solution using VR headset on a mobile device (Google Cardboard); the
viewer should be able to view the scene in VR

e Once we can view the scene in VR, we need a way to interact with the environment,
a way to move within the model. Initially for prototyping we will use button/keys.
Remember buttons/keys are only functional if we view the scene on a PC browser,
we will not have any buttons/keys when the scene is viewed on a mobile browser

e Once we have an established solution for movement via keys, then we can expand
on this movement system via using just our headset. For example since we are only
interested in moving forward within a model, 1 can implement a script which moves
the camera forward when the user looks down. This will provide with the viewer with
a method to traverse the scene without using any keys

e Note: Once we can move within the scene, we have officially converted the model to
WebVR format; however we have only done so manually meaning that the conversion
procedure may be specific to this model. I have to be able to convert any 3D model
to WebVR automatically (without any user input - code).

e The final ideal solution should essentially allow the VR team to parse a 3D model
into a script/program which will convert the script/program into WebVR format and
output a single JS file which they can place in the directory of an html file.

From the workflow above, this means that throughout my prototyping procedure it is very
important that i keep my code compatible to any input model, meaning that the javascript
cannot be specifically designed for one 3D input model.

We can breakdown the workflow to 6 simple steps as a reference point to see my progress

in implementing the VR solution.

Prototyping procedure

1. Setup a basic scene to render in Javascript and be able to render a simple object

2. Convert 3D model provided by Opus into json format, then load the model into
javascript for rendering

3. Change the camera parameters so that i can walk through the model (rather than just
view from afar)

4. Replace the normal camera with a stereo camera to make it VR compatible (Google
Cardboard)

4.3.2

28 Chapter 4. Methodology

5. Allow camera movement in the scene without the use of keys

6. Generalize javascript so it is compatible with any/all 3D models provided by Opus
We must remember that these steps can only be followed in ideal conditions, by this we
mean that the procedure can only be followed is each step is possible; e.g. we cannot
render a scene if we cannot export the scene to json object. As long as there are no
technical constraints/problems, i should be able to implement a successful VR solution by
the deadline.

3D graphics - basics

To perform any type of rendering of 3D content, we have to first understand how 3D
graphics work. To display 3D graphics on a webpage (or any platform) we require 3
essential ingredients; a camera a scene and a mesh. The setup of such a model in a basic
scene is shown below:

(22]

In a scene we have a mesh; a mesh consists of a bunch of triangles. Shaders are used
(remember GLSL shaders) which fill in the triangles with a material to give us a colourful
complex objects. However we cannot see this object without a camera.

Don't Draw

A scene can only be viewed through a camera; the camera casts our rays into the scene
as frustum. A frustum is basically the camera view, everything in this frustum is exactly

4.4 Google SketchUp 29

what the camera can see. Both the camera and the mesh have a position and a rotation in
the scene. Static models have no rotation, but they do have a position. To be able to view
the model, the mesh must be within the parameters of the frustum (camera view), this can
be done by translating the 3D coordinates of the mesh to be within the frustum, or, a better
approach would be to change the view (rotate the camera) so that the frustum contains the
mesh. Once the frustum contains the mesh we need to render the scene; the renderer is used
which projects all the 3D stuff within the scene onto the 2D webpage. Complex objects
have alot of meshes, and thus have alot of triangles which need to be shaded with a material
(via GLSL) before rendering; this is the reason why highly complex objects/models can be
graphically intensive to render - this can affect the performance of the scene.
An example of such a simple 3D rendered object in a scene is shown below:

[23]

Now that we have an understanding of how 3D graphics work in general (and specifically
WebGL) and also have a path to follow, we can begin prototyping. Remember that the initial
step is to be able to convert a 3D model provided by Opus to a json format.

Since Opus uses two technologies for 3D modeling, Google Sketchup and Unity, it
would be logical if we start experimenting with these technologies to see if we can export
the model to json format from within these applications.

Google SketchUp

Google SketchUp is a free 3D modeling computer software. It is used for a wide range of
applications such as modeling architecture, interior design, engineering, film and also video
game design. The application allows a user to load up and view CAD (Computer Aided
Design) files, these are models of structures/architecture. Initially i experimented on Google
SketchUp because the first model which Opus supplied to me was in CAD format which
could be viewed in SketchUp. The VR team told me to experiment with Google SketchUp
because that is one of the software’s they use to produce/modify models for their clients.
This software offers many tools to build 3D models; for a base to build on, users can
download basic models from the SketchUp website and modify those to produce more
complex models - such as the one provided to me by Opus. Model design is not my job
however, my role is to convert the 3D model supplied by Opus to a WebVR format.

30 Chapter 4. Methodology

After tinkering around with the model, i started looking for online solutions to export
the model to a json format. Exporting the model to a json format (webgl) is essential in the
implementation of a WebVR solution because it would be infeasable to manually convert
the models to json - takes too much time. After some searching i came across a plugin
produced by TAK2HATA (online name).29) This plugin allowed me to export the model
as a scene to a WebGL; essentiall allowing me to skip the json conversion. The plugin
converted the model to json and produced the javascript and html files which could load
the model and display it on a webpage. In addition to that the exported WebGL webpage
offered extensive control on how the model was viewed.

I have uploaded this model to: http://zsar419.github.io/webgl_1/

Usage:

e Use the arrow keys to move the camera in the scene (translation)

e The mouse changes the view of the camera (rotation)

This is a scene in WebGL, but not in a WebVR format; meaning that it is not a stereoscopic
scene which allows a user to walk in the model. This export only allows a camera to view
the model, it doesnt deliver immersion. For immersion we require a stereoscopic camera
which can walk within the model.

Such an example of a scene in which the camera (person) can walk within the complex
3D model is shown below:

[24]

This is what we wish to achieve with the input model provided by Opus; immersion
within the infrastructure. Since the exported code is very difficult to analyze (not produced
by me), thus i moved onto the other application which Opus uses.

Unity

Unity is a cross-platform game engine which is primarily used to develop video games for
PC, consoles, mobile devices and websites. A major upside of using unity compared to
any other engine is that it follows the "Build Once Deploy Anywhere" model; this allows a
developer to produce content only once and effectively distribute it to all platforms with a
click of a button. The supported platforms are shown in the diagram below:

4.5 Unity 31

©00000060O

000000000

From the image above we can see that unty provides support for a vast majority of the
platforms thus Opus can cater to potentially all clients using Unity - provided that the client
downloads the 3D model. The platforms of interest are IOS, Android and WebGL. The
benefit of WebGL is that it can be run on the browser without any other software, thus is the
preferred solution. In the worst case scenario however, the VR team can accept an iOS/APK
app (of the model) if a WebVR solution is unfeasible.

To work with unity i exported the model from Google Sketchup as .dae (digital asset
exchange) format. The exporting process output two files, sketchup-demo.dae and a textures
file which contained all the textures which the sketchup-demo implemented. Then 1 imported

the sketchup-demo DAE with the textures (material) file, this gave me the following result.
Y

i

/ it

Now that the model has been succesfully imported in unity, 1 have to be able to walk
through it in first person (like how a real person would). To be able to do walk in a scene
we need to have a plane which accounts for collision - prevents camera from falling through
the floor. To add a plane in unity we go to:

GameObject -> 3D object -> plane

Once the plane is added to the scene we have to scale the plane so that it represents the
size of the model, we can do this by selecting the plane and looking at the "Inspector tab,

Chapter 4. Methodology

32
then scale the X and Z axis; we dont scale Y because that will change the height of the

plane (we want height to be at 0).

The images above shows the the 3D model without the plane on the left and the model
with the plane on the right; as you can see now we have a floor which we can use to walk
around in the scene.

Now that we have a plane (scaled to model size) we can add a camera - which will act
as a person walking in the scene. Now that we have a camera, we can traverse through the
model. The image below illustrates the first person view of the camera within the model.

I
p
[
I
i
-
f
“
-
[
r
L
7
fr
[
-
e

Exporting scene
Now that we have a functional scene in unity, we need to be able to test it. You can manually

test the scene within the unity engine by pressing the play button, however this is only a
testing method within unity. Clients will most likely not have the unity application and
thus we need to export to a platform which the Opus clients can have ready access to.
Such platforms include Android, IOS and WebGL. WebGL is the most preferred platform
since potentially anyone can access the webpage provided that they have a browser (which

everyone has).

4.5 Unity 33

Android and 10S

Since Unity is a multi-platform 3d development engine, we can also export to IOS/Android.
Since exporting a project as an app is supposed to be a simple straightforward procedure,
i thought 1’11 just export the model as an the app to my Android smartphone and see if it
works. If i am able to do this, then we have a way of exporting models as apps for clients.
To export the model to app you have to go to:

File -> Build Settings -> Android

Then choose the texture compression (ETC by default) and build the model as an .apk.
After producing the apk file i transferred it to my android smartphone and tried to run the
app; it failed to run. This is because for producing an app, it must be signed.

After some searching, to sign the app (for testing) you must register with oculus and
sign it at https://developer.oculus.com/osig/. To get your device ID you can download an
app from the playstore, i installed SideLoad VR, an app which displays your device id
which you can input into the oculus website to retrieve a .0sig key file. You must copy this
file into the applications Assets/Plugins/Android/assets folder and then build the app. After
performing this procedure 1 was successfully able to install the app, to run the app however
you need to insert your phone into GearVR. This is a problem since clients will most
likely not have a GearVR display, Opus is providing clients only with Google Cardboard.
Nevertheless i still tested the app to see if i can view the model in VR mode. When i ran the
app, to my surprise the view was automatically converted to stereoscopic, thus without even
implementing a split view stereoscopic camera i was able to view the scene successfully in
VR. This was a major advantage since there is no need to manually implement a stereoscopic
camera as my phone detected the GearVR display and automatically changed the view to
split-screen VR format.

I tested this procedure on an android smartphone, an IOS app development procedure in
unity would be very similar to this. Going through this procedure i realized it is not a user
friendly procedure, for example if Opus do plan to convert their models to apps through
Unity, they require the clients device ID for for the app, in addition to that the clients will
have to download SideloadVR (or similar) just to get their device ID. Even if the client does
cooperate to give their device ID, they will need to have a GearVR headset - thus this is not
a viable VR solution for clients.

Using an app to display the the model in VR is possible but we have seen that it is an
undesirable solution (using the approach above) since it is too much work on the clients part
and they also require GearVR device (for a samsung smartphone). We must look at the other
desired approach, which is WebGL. Since we do get a working VR solution (although not
using the Web), we can use this partial solution as a last resort if we are unable to implement
a WebVR solution by the end of the year.

WebGL
Unity can also export to WebGL. To do this we must first download the WebGL unity
package - which can be done using the unity installer. Now that we have installed the
webGL package, to export the scene we go to:

File -> Build Settings -> WebGL

34 Chapter 4. Methodology

Since this is a development build and we are just testing, optimization (build option)
is not of great concern and thus we will just select the option which builds the scene as
WebGL the fastest (unoptimized).

Unity conversion - technical details: The way that unity 3D works is that it converts
the model/scene into C# code (changes are reflected in C#), it does so by compiling the
code into IL code (intermediate language).[zs] Then it uses the IL2CPP converter to create a
C++ version of the code which is translated to javascript/WebGL.[ZS] This procedure also
optimizes the output javascript/WebGL code and thus is an extremely convenient way to
develop graphic heavy content for the Web.

But with these pros, there are also some significant cons which must be taken into
account. Some of these are:

e Extremely difficult to debug, you can only debug through the console (very inefficient)

e Highly limited code accessibility and readibility, it is very hard to understand the

code produced by the conversion

e In addition to that even if one tries to understand the code, the output file size is huge

- in most cases 300MB+ because 300MB is just the size of the unity library

e Due to its humongous file size, difficult readability and hard to understand, the

developer is very limited in code modification and in most cases cannot perform

his/their own modifications
25] The ease of development still (in most cases) outweigh the downsides of Unity. In
addition to that it is an emerging technology which most people are working hard on; there
is alot of investment on the Unity3D platform and thus this technology will continue to
improve.

After exporting the project to WebGL file(s) we click the index.html to open and view
the scene. Due to the fact that the project is produced in unity, we are met with a unity
loading screen. We can enlarge the scene to fullscreen to get a better full-screen view.

I have uploaded the WebGL model at:

http://zsar419.github.io/webgl_model/

Since we have been able to successfully implement the scene in WebGL, the next logical
step is to convert the camera to WebVR. By this we mean convert the camera into a stereo
camera so that the user can use google Cardboard to look around in the scene. But first i
must check if the hosted website works on a smartphone.

Unity WebGL compatibility problem

When i tried to access the hosted WebGL webpage from my android smartphone, this is
when i1 encountered my first major problem. The unity based WebGL webpage failed to load
on my smartphone, when searching for a remedy, i found out that unity exported WebGL
webpages are not compatible with smartphones. There are major compatibility issues
with smartphones, you can see this if you try to access the model from your smartphone
(you may be lucky to even load the screen). This was a major problem and thus 1 realized
that implementation of a WebVR solution is not as straightforward, currently unity does not
support mobile WebGL and thus i cannot use unity to implement a WebVR solution.

4.5.1

4.5 Unity 35

After using both these technologies (SketchUp and Unity) and failing to retrieve a
viable WebVR solution, i realized i had to implement a solution from scratch - i could not
use the applications to export directly to WebVR solution. Since WebVR is an emerging
technology (very recent), there aren’t a many resources available, thus implementation
from scratch is a difficult task; nonetheless i must try. To produce a WebVR solution, this
requires understanding of what is required, then planning towards it; testing out and getting
results. Since there is no major support other than some examples, 1 realized this would be
an incremental procedure in which i would have to read documentation (API’s), acquire
knowledge, then test out the knowledge in small incremental steps.

ThreelS

Three.js (3JS) is a cross-browser open source and lightweight javascript library/API which
is used to create and display computer graphics on a web browser. Its an API on top of
WebGL which simplifies much of the WebGL code so the developer could focus more on
the implementation rather than the repeated ’dirty work’. For example shaders in WebGL
are expressed via complex GLSL code, in Threejs to represent a shading, a mesh is only 1-2
line(s) of code which runs the same underlying GLSL code. This effectively means that
we can render a scene with WebGL performance but using much simpler code. The source
code for this graphics library/API is hosted on:

https://github.com/mrdoob/three.js/ and threejs.org

After some basic researching on implementations i was able to come up with a way
to use threejs for possibly implementing a WebVR solution. This is due to examples on
stereoscopic threejs site which are similar to what i want. The picture below shows a
WebVR scene implemented in threelJs:

The picture above shows a split screenWebVR scene of bubbles; using Google Card-
board a user can turn their head to view moving bubbles. You can view this scene at:
http://threejs.org/examples/#webgl_effects_stereo

ThreeJS will remove some of the complex WebGL code for 3D graphics and allow
for a much simpler way to render the same scene. To start off with 3JS i have to be able
to manually render a scene. The process is the same for all 3D graphics, thus we will be
following the 6 step prototyping procedure (described before) so we can start producing our
own WebVR solution.

36 Chapter 4. Methodology

1 - Setting up the a basic WebGL scene
The first step is to setup the required variables in javascript to render a basic scene. To do
this lets first make an html file which will be used to host the webpage. This can be a basic
webpage with no content, but it must have the canvas tag.

To setup a basic webpage on which we can render 3D graphical content we will make a
basic html file:

<html>
<head>
<script src="http:// threejs.org/build/three.min.js"></script>
<style>canvas { width: 100%; height: 100% }</style>

</head>
<body>
<script>
/1l Javascript will go here.
</script>
</body>
</html>

For prototyping a solution, we do not need to make our webpage visually appealing and
thus we wont be using CSS. Now we have the webpage and the canvas setup we can use
the canvas tag to run WebGL content. To run WebGL content we need to use javascript;
in addition to that we will be using the Threel]S graphics API instead of coding in WebGL
(which will run underlying webGL). The script tag will contain all the javascript code
(ThreelS) - although this can be put in a seperate JS file (will do later).

To setup a basic 3D graphics scene we need to first create a scene, we do so by:

var scene = new THREE. Scene ();
After we have setup a scene, we need to create a camera.

var camera = new THREE. PerspectiveCamera (75 ,window.innerWidth/window. inne
rHeight, 1,10000);

Creating a camera is not as simple, this is because ThreelJS has more than 1 camera, in here
be are using a basic perspective camera. The camera requires four parameters; the vertical
field of view (degrees), the aspect ratio, the clipping plane and the far clipping plane. The
close and far clipping plane define the length of the camera view frustum, anything outside
this range will not be rendered. After we have setup the camera we need to setup up the
WebGL Renderer.

var renderer = new THREE.WebGLRenderer ();
renderer.setSize (window.innerWidth , window.innerHeight);
document.body.appendChild(renderer.domElement);

The code above creates an instance of a renderer with a set size to render on (inner param-
eters of the window); then we add this renderer to the canvas tag in which rendering can
successfully occur.

4.5 Unity 37

Now that we have a scene, camera and renderer setup we need to create an object/mesh
to render, in this case we will be rendering a basic cube.

var geometry = new THREE.BoxGeometry (500, 500, 500, 0, 0, 0);

This creates a cube with height width and depth of 500. The box geometry defines the
vertices of the cube - in this case a box structure. We need to colour the geometric faces
with a material:

var material = new THREE. MeshBasicMaterial ({ color: Oxfffff , wireframe: t
rue });

var cube = new THREE.Mesh(geometry , material);

scene .add (cube);

We colour the cube with a blue coloured material (defined by Oxfffff), in addition to that we
make it a wireframe model which will help us view the animations. To actually create the
cube we need to use the geometry and its mesh, the next statement combines the geometry
and the mesh to produce the cube. The last statement adds the cube to the scene at world
coordinates 0,0,0 (by default).

Now that we have a scene setup, we must rememebr that the position of the camera is
at the origin (0,0,0) while the position of the cube is also at the origin, meaning that our
camera is probably within the cube, we must move it back to be able to see the cube. We do
so by:

camera. position.z = 1000;

Now the camera is at a reasonable distance from the cube, this will allow the cube to be
within the camera’s frustum (view).
We cannot see the cube yet, this is ebcause we havent rendered the scene.

function render () {
requestAnimationFrame (render);
renderer.render (scene, camera);

}

render ();

This is an automatic render loop since the script continuously calls the render method by
default (doesnt end) after reaching end of file. The requestAnimationFrame allows the user
to pause the WebGL when it is not in the foreground - for example when the user switches
to another tab the WebGL scene pauses automatically.

To animate the cube we need to rotate/translate it:

cube.rotation.x += 0.01;
cube.rotation.y += 0.01;

In this case we add the above code to the render function so that with each frame the cube
rotates along the X and Y axis.

Now we also have an animation in our scene; the basic setup of a WebGL scene is
complete. You can view this basic scene at:

38 Chapter 4. Methodology

http://zsar419.github.io/webgl_cube/

It is very important that we understand what is going on in the scene (hence my
explanation) because we will be working on this to produce the complex models.

Now that we are able to render a basic scene we can move onto step two, which is
converting the 3D model (provided by Opus) into json format so that our javascript can load
the model into the scene and render it.

2 - Converting 3D model to json and loading into javascript
The second step is to convert the 3D model provided by Opus (seen in SketchUp, Unity and
hosted on github) into json format so that we can render it in our scene. The model provided
by Opus was in .dae format, the first logical step is to look for a .dae to json converter.
After failing to find such a converter which can convert the model, i had an idea; why
not just directly read in the .dae file into our javascript. After some searching, to my surprise,
the ThreeJS library had such a dae loader. Instead of converting to json, this loader could
directly load up the dae file into the JS scene. This is a very convenient solution since i
would not have to manualy convert scenes to json, i can essentualy use the JS code with
potentially any 3D .dae model provided by Opus.
To my excitement i tried out the loader, first i added the ThreeJS loader script into the
head of the html file:

<script src="http://threejs.org/examples/js/loaders/ColladaLoader.js">

</script>

The script above (online) would allow me to use the dae loader code which would allow me
to load up the sketchup-demo model (exported from SketchUp) into my javascript file. After
adding the loader source, i added the following code in the script to load the .dae model:

loader.options .convertUpAxis = true;
loader.load (’sketchup—demo.dae’, function (collada) {
var dae = collada.scene;

setMaterial (dae, new THREE. MeshBasicMaterial ({ color: 0xff0000 }));

dae.position.x = —500;
dae.scale.set(0.5,0.5,0.5);
dae.updateMatrix ();

scene .add (dae);

b

/!l Function called when download progresses

function (xhr) {console.log((xhr.loaded / xhr.total x 100) + % loaded’

)

Now this code looks abit complcated, so lets break it down. Sicne the loader loads the file
in the incorrect orientation ,we must fix this, the first line would correct the orientation of a
model which is to be loaded in. The next line loads up the sketchup-demo.dae model as an
anonymous function. We assign the model with a name, assign it with a mesh (red colour),
give it a position in the scene, then we scale up the model so we can view it (because it
is too small). To reflect the chanegs we have to update the matrix of the loaded model,

):}

4.5 Unity 39

then add it to the scene so it can rendered and viewed by the camera/user.The last line is
just an indicator which tells us (in the console) the the model has been loaded. Now i am
finally able to render the 3D model in WebGL; but without the original materials of the
model. I assigned it the colour red, but however we want realistic models, not red models.
This is a major problem on which i am currently working on, currently im not able to load
the original textures of the 3D model. I hope to come up with a solution soon and be able
to fully render the original model in the scene. I am currently only upto this stage for
prototyping, the progression on this prototype will be detailed in the end of year report.

Other frameworks

There are other high-level API’s such as ThreeJS which also allow us to render 3D complex
graphics on a web browser. These also simplify much of the underlying WebGL code and
make it easier for us to code and render 3D graphics. These API’s can potentially make it
easier for me to produce a WebVR solution compared to using the Three]JS API and thus it
is essential that i also look into the following libraries/APT’s.

NOTE: The following two graphics API’s will be covered and compared to ThreeJS
in the final report.

Babylon.js
Aframe

5. Conclusion

This report covers a small set of potential benefits presented by virtual reality technologies.
Many other opportunities exist, but these will only become apparent through experimentation
and familiarization with the technology. Opus-VR allows this experimentation to occur with
very little cost or risk and has the potential to significantly change Opus for the better. From
the research provided, technological advances in VR has made it a promising technology
which can be used for a vast majority of applications. In our case - for 3D scene modeling
on a website for Opus’s clients. For general purpose VR research, have covered the history,
the current devices and applications of VR. I have clearly explained how the technology
works and now currently working on implementing a WebVR solution for Opus. Out of the
6 stages on the implementation of a prototype (which will become my VR solution), i am
currently on stage 2. Since the first semester of my project is complete, now the focus shift
towards on prototyping of the WebVR solution for Opus. Which will be provided in the
final report.

6. Future Work

Recently Google has also developed their own VR platform which they will be releas-
ing in November 2016.27 Officially announced at Google I/0 2016, they call it Google
Daydream.?’! The platform will includes both software and hardware specifications, this
means that with this API, they are planning to release their own VR headset.?” For the
software, they will be adding Android VR mode in the latest upcoming version of android
- Android N.[28) What this mode does is that it gives VR apps exclusive access to proces-
sor cores while they are running in the foreground thus reducing latency and delivering
significant performance. Sadly, due to its late rumored release date, 1 may not be able to
experiment with any of its API since my project period with Opus will be complete by then.
But this is something which Opus can look into as a platform to develop VR solutions for
clients.

=
—
F-
-4
i o
- ey 1 =t
- —
r b |
- 1 1
.
L
E
i
-
i et o
- r-
- -= = =
e
—1 -

Bibliography

[1] Home » Opus NZ. (n.d.). Retrieved June 01, 2016, from http://www.opus.co.nz/

[2] History Of Virtual Reality - Virtual Reality. (2015, December 25). Retrieved June 01, 2016,
from http://www.vrs.org.uk/virtual-reality/history.html

[3] Thank you from Oculus - Oculus Rift: Step Into the Game. (n.d.). Retrieved June
01, 2016, from https://www.kickstarter.com/projects/1523379957/oculus-rift-step-into-the-
game/posts/1458224

[4] Retrieved June 01, 2016, from http://vrfocus.com/wp-content/uploads/2014/10/VRKarts_1.png

[5] Mobile VR pros and cons - UploadVR. (2015, November 09). Retrieved June 01, 2016, from
http://uploadvr.com/pros-cons-mobile-vr

[6] Spec Comparison: The Rift is less expensive than the Vive, but is it a better value? (2016, April
05). Retrieved June 01, 2016, from http://www.digitaltrends.com/virtual-reality/oculus-rift-vs-
htc-vive/#:w8h_c272yfthtma

[7]1 HTC Vive Review: A Mesmerising VR Experience, if You Have the Space - Road to VR. (2016,
April 05). Retrieved June 01, 2016, from http://www.roadtovr.com/htc-vive-review-room-scale-
vr-mesmerising-vr-especially-if-you-have-the-space-steamvr/

[8] Retrieved June 01, 2016, from http://blogs-images.forbes.com/erikkain/files/2014/06/Cardboard-
2.jpg

[9] Retrieved June Ol, 2016, from http://www.samsung.com/us/explore/gear-
vr/assets/images/desktop/GearVR_Hero_Gold.png

[10] Retrieved June 01, 2016, from https://cdn2.vox-cdn.com/thumbor/elQgeQJ0845uTw0cSiN-

Hf0qV5s=/0x0:1920x1080/1280x720/cdn0.vox-cdn.com/uploads/chorus_image/image/48508449/oculus-

rift-image_1920.0.0.jpg

BIBLIOGRAPHY 43

[11] 5 Virtual Reality Accessories That Could Change Gaming Forever -
Games Under Pressure. (2014, January 13). Retrieved June 01, 2016, from
http://gamesunderpressure.com/features201417best-vr-accessories/

[12] Will Virtual Reality Be Next Big Thing Across Technology? (n.d.). Retrieved June 01, 2016,
from http://finance.yahoo.com/news/virtual-reality-next-big-thing-224200034.html

[13] 8 of the Top 10 Tech Companies are Invested in VR and AR. (2016, March 08). Retrieved June
01, 2016, from http://uploadvr.com/8-of-the-top-10-tech-companies-invested-in-vr-ar/

[14] Daydream is Google’s Android-powered VR platform. (2016, May 18). Retrieved June 01, 2016,
from http://www.theverge.com/2016/5/18/11683536/google-daydream-virtual-reality-announced-
android-n-io-2016

[15] The Emerging Virtual Reality Landscape: A Primer. (n.d.). Retrieved June Ol,
2016, from http://www.slideshare.net/BDMIFund/the-emerging-virtual-reality-landscape-a-
primer?next_slideshow=1

[16] Roberts, A. (2014, February 20). Introduction to the HTMLS Canvas Element. Retrieved June
01, 2016, from https://www.sitepoint.com/web-foundations/introduction-html5-canvas-element/

[17] WebGL Specification. (n.d.). Retrieved June 01, 2016, from
https://www.khronos.org/registry/webgl/specs/1.0/#1

[18] Can I use... Support tables for HTMLS5, CSS3, etc. (n.d.). Retrieved June 01, 2016, from
http://caniuse.com/#feat=webgl

[19] WebGL Stats. (n.d.). Retrieved June 01, 2016, from http://webglstats.com/

[20] T2H EXPORT WEBGL | SketchUp Extension Warehouse. (n.d.). Retrieved June 01, 2016,
from https://extensions.sketchup.com/en/content/t2h-export-webgl

[21] Build once deploy anywhere. (n.d.). Retrieved June 01, 2016, from
http://unity3d.com/unity/multiplatform/

[22] HOWTO: Setup a basic scene. (n.d.). Retrieved June 01, 2016, from
http://doc.xenko.com/1.6/manual/getting-started/howto-setup-a-basic-scene.html

[23] Three.js / examples. (n.d.). Retrieved June 01, 2016, from
http://threejs.org/examples/#webgl_geometry_cube

[24] ArchiVision Architecture (DK?2) - NEW Kitchen demo - SDKO0.4.0. (n.d.). Retrieved June 01,
2016, from https://forums.oculus.com/vip/discussion/11272/archivision-architecture-dk2-new-
kitchen-demo-sdk0-4-0

[25] Unity3d is not ready to build WebGL/HTMLS web games with. (n.d.). Retrieved June 01, 2016,
from http://blog.doublecoconut.com/unity3d-webgl-is-it-viable/

[26] Three.js / examples. (n.d.). Retrieved June 01, 2016, from
http://threejs.org/examples/#webgl_effects_stereo

44 BIBLIOGRAPHY

[27] Google Daydream Launch Date Confirmed | VRFocus. (n.d.). Retrieved June 01, 2016, from
https://www.vrfocus.com/2016/05/google-daydream-launch-date-confirmed/

[28] Amadeo, R. (2016, May 18). Gear VRs for everyone! Google turns Android into a VR-ready
OS: Daydream. Retrieved June 01, 2016, from http://arstechnica.com/gadgets/2016/05/android-
vr-os-gets-a-virtual-reality-mode-and-vr-ready-smartphones/

To be continued..., Zeeshan Sarwar

	Introduction
	The Company
	The VR Team
	Opus's interests in VR

	Virtual Reality
	Brief History of Virtual Reality
	How Does Virtual Reality work
	VR devices
	Opus VR device(s)
	VR Applications

	Opus and WebVR
	WebVR
	Opus Objectives
	The Current Procedure
	The Desired Procedure

	My Objectives
	Motivation

	Methodology
	Web Technologies
	HTML
	canvas
	CSS

	javascript
	WebGL

	Prototyping
	Workflow
	3D graphics - basics

	Google SketchUp
	Unity
	ThreeJS
	Other frameworks

	Conclusion
	Future Work

