
The University of Auckland

BTECH 451 Project Report

Resonant Ultrasound
Spectroscopy

Author:
En Yung Hoang

Supervisors:
Dr. Kasper Van Wijk

Paul Freeman
Dr. Sathiamoorthy

Manoharan

June 2016

Abstract

This report contains and describes all the information related to
my project up to June 2016. My project is on Resonant Ultrasound
Spectroscopy (RUS), this is a physics procedure used to determine
the material properties of solid objects. The formulas and calcula-
tions used in RUS have been written as computer algorithms that was
originally written in C programming Language by Jerome H.L. Le
Rousseau. His code was later updated by Leighton Watson, a Physics
student here at the University of Auckland, as part of his honours
project. The original C code was later translated to Python by Paul
Freeman for ease of use.

After the translation into Python, the performance of the RUS al-
gorithm has reduced significantly and my project is to use Cython
to wrap C functions and/ or rewrite the Python implementation to
increase its performance to speeds that are fairly close to the C im-
plementation.

The first section of the report will briefly outline what RUS is and
how it works with illustrative diagrams for better understanding. The
latter sections will look at the RUS algorithm and its implementa-
tions. These include an explanation of why the C implementation
is slow, the tool that I will be using to increase the performance of
the Python implementation, alternatives to Cython and why I chose
Cython, some examples and common uses of Cython, an example of
how Cython works, Python profilers, a comparison between C, Python
and Cython, and finally, some reasons why Python is slower than C.

Towards the end of this report, I have included what I have done
so far for this project and some plans and goals for the latter half of
this year-long project.

1 Acknowledgments

I would like to thank my academic supervisors and course coordinator for
the continuous guidance, support and feedback throughout this project. I
really appreciate your time and hard work.

Dr. Kasper Van Wijk

Academic Supervisor
The University of Auckland

Physics Department

Paul Freeman

Academic Supervisor
The University of Auckland

Dr. Sathiamoorthy Manoharan

Information Technology Coordinator
The University of Auckland

i

Contents

1 Acknowledgments i

2 Introduction 1

3 Resonant Ultrasound Spectroscopy (RUS) 2
3.1 What is Resonant Ultrasound Spectroscopy? 2

4 Installation of the C Implementation 4

5 Cython 6
5.1 What is Cython? . 6

6 The limitations of Cython and how I will limit them 6
6.1 Why Cython? . 7
6.2 Alternatives to Cython . 9
6.3 Use cases for Cython and how they apply to RUS 12
6.4 Cython Example . 14

7 Profiler 17

8 Performance between C, Python and Cython 19

9 Why Python is slower than C 20
9.1 Python Programming Language 20

9.1.1 Global Interpreter Lock (GIL) 20
9.1.2 Interpreted at runtime 21
9.1.3 Dynamically typed . 21

9.2 C Programming Language . 22

10 What I have done so far 23

11 Plans for Semester 2 24

12 Conclusion 25

13 Bibliography 26

2 Introduction

Resonant Ultrasound Spectroscopy (RUS) consists of two problems; these
include the forward and inverse problems. For the remainder of this report, I
will refer to these problems as algorithms. The forward algorithm is the main
focus for this project, it is a technique that measures the elastic properties
of solid objects to estimate the corresponding resonant modes. With the use
of these resonant modes, it is possible to determine the material properties
of solid objects. Computer algorithms have been written to quickly convert
between the elastic properties and their corresponding resonant modes. This
algorithm was originally written in C programming language but was later
rewritten using Python programming language due to the original code re-
lying heavily on outdated versions of software libraries or libraries that were
difficult to obtain and install. The only known support for the C version
is on a Linux based operating system with the requirement of several other
libraries that has to be installed locally. Python helped extensively with this
because Python comes with a large collection of libraries which can be easily
installed locally and is highly portable. The only disadvantage with using
Python is its performance, it’s significant slower than the C implementation.

This report will document the improvements in speed of the Python imple-
mentation of the Forward-RUS algorithm by wrapping C and/ or rewriting
functions within Python. This will be achieved with the use of Cython. In
most cases, it will be necessary to rewrite sections of the code with a combi-
nation of both Python and C.

1

3 Resonant Ultrasound Spectroscopy (RUS)

3.1 What is Resonant Ultrasound Spectroscopy?

Resonant Ultrasound Spectroscopy (RUS) is a procedure used to determine
the material properties of solid objects. This procedure consists of the study
of mechanical resonances of solid objects. The output consists of a range of
resonant modes, which are dependent and determined by the size, shape, elas-
tic properties, crystallographic orientation and density of the solid object1.

The general setup of this experiment is shown in the figure below2:

Several equipments are required for this setup, these include2:

• Transducers - Two transducers are required, one for the source of vary-
ing frequencies and the other for measuring the response from the solid
object

• Function Generator - This is used to generate the varying frequencies
that are sent through the source transducer

• Amplifier - this is used for amplifying and filtering the response from
the solid object

The solid object, which is usually a parallelepiped or a spherical shape, is held
tightly between two piezoelectric transducers. The source transducer then

2

excites the object by producing and sending a wide range of elastic waves of
constant amplitude and varying frequencies through the solid object. The
receiver transducer then detects the wide range of resulting frequencies, but
what we are interested are the resonant peaks. The resonant peaks occur
due to the fact that solid objects vibrate at their natural frequencies, as soon
as the range of frequencies are sent through the object, the frequencies that
match the natural frequencies of the object will produce the resonant peaks.
A sample of a typical output showing the resulting frequencies are shown
below3:

A better illustration of what happens during this experiment and the equip-
ments used are represented below2:

3

The resulting resonant peaks are recorded and used by computer algorithms
that have been written and adapted/updated throughout the years. These
computer algorithms are used to quickly convert between their elastic proper-
ties and their corresponding resonant modes6. The original implementation
was written in C by Jerome H.L. Le Rousseau, it was later updated by
Leighton Watson in 2014 and was translated into Python by Paul Freeman
in 2015.

4 Installation of the C Implementation

The C implementation is difficult to install and can only be installed on
specific operating system, mainly on a distribution of Linux. The C imple-
mentation is dependent on outdated versions of software libraries or libraries
that are difficult to obtain and install. It involves a lot of compiling of various
tools and libraries on each local system before the RUS code can be installed
and executed6.

4

There are a lot of necessary files that need to be installed and steps to take
for the C implementation. The main files that need to be installed are:

• rusGuiScilab.tar.gz

• rusGuiMatlab.tar.gz

• forinv.tar.gz

These need to be moved to a specific directory and extracted. The installa-
tion of the above files require a lot of different steps and a lot of thorough
testing to ensure that everything is installed correctly and is functioning.
Along with installing those files, Scilab and PlotLib are also required and
will need to be installed as suggested by the installation methods.

The C code also has quite a few dependencies on outside libraries and pack-
ages, which will also need to be installed during the Seismic Unix installation
stage. Seismic Unix is required because it contains the following core libraries:

• libsu

• libpar

• libcwp

• Makefile.config

It is necessary for all these to be installed before the C implementation can
be executed.

There are many other steps and files that needs to be installed and con-
figured other than the ones mentioned above. This is all mentioned in a 32
paged installation, testing and examples guide that is uploaded onto PALab’s
RUS GitHub page.

As you can see in the very brief outline of the installation process of the C
implementation, the dependencies and the actual C code itself require many
steps to run on a local system. This was the main reason for the translation
to a Python implementation7.

5

5 Cython

5.1 What is Cython?

Cython is an optimization static compiler that is used for both Python and
C/C++ programming languages. It allows for the interchangeability of both
Python and C code within one file. This file is known as the Pyrex file, with
the extension .pyx. Cython can be considered a language on its own and
is a super-set of Python with additional support for calling C functions and
declaring C type variables and class attributes. The source code in the Pyrex
file gets translated into an optimized C code when compiled, this optimized
code will then be used as Python extension modules. This means that the
Cython compiled code will produce a very efficient program and provides a
close integration with external C libraries5.

6 The limitations of Cython and how I will

limit them

Cython has a few limitations, these include Cython’s separate build phase
and its compilation time. For my project, I am required to rewrite the Python
code using Cython, wrap the C code within Python or just call external C
codes directly. I decided to rewrite the code in a combination of C, Python
and Cython because this approach reduces the compilation time. This re-
duces the compilation time because in situations when no changes in the C
or Python code are made or when there is no new code added in, the com-
pilation time would be near instant. This is because only the Cython code
would need to be compiled which is very efficient because it’s native to the
Cython compiler. Also, code that was written in one language will not affect
the compilation time for the code written in the other language because the
compiler compiles the file based on the language that’s last modified. For
example, if I modify a code in cdef, the compiler will only compile the cdef
functions and not def and cpdef. Another way of limiting this limitation is
by using static type declarations, these are interpreted as valid Python and
C code and are ignored by the Cython compiler at run time.4

6

6.1 Why Cython?

I chose Cython for my project because Cython provides a close integration
with external C libraries, which is a very important part for my project be-
cause one of the main reasons that the original C code was translated into
Python was because Python reduces the dependencies on hard to install C
libraries. These libraries are usually hard to obtain, quite large and could
only be installed onto specific operating systems, mainly Linux in this case6.
Furthermore, Cython allows the combination of both C and Python source
code within one file, allowing more flexibility and better implementation for
the final product. Sometimes just calling the corresponding C functions are
not sufficient because there could be libraries or implementations that are
better in one language but worse in the other language. Cython also gen-
erates an executable, which I thought would be very useful for portability
and ease of use for the end users. With the use of the executable, I would
hopefully be able to allow the use of the Cython compiled program without
the end users having to install Cython on their local machine.

There are also other reasons why the C implementation was translated into
Python. A reason is that Python is a good platform for scientific compu-
tations. There are two main reasons behind this, firstly, Python tends to
be readable and very concise, making development of scientific computations
very rapid. Secondly, Python allows access to its internals from C through
the Python/C API. It has been found that Python is very inefficient when
there are a lot of loops in the code, the main reason behind this is because
of its dynamic nature. Cython solves this issue by compiling Python code
directly to C, which is then compiled and linked to Python4. Also, due to its
use of C static types, Cython is able to make numerous loops while running
at C speeds, directly in Python code5.

The wrapping process of Cython is all done manually via the Pyrex file.
This allows for many different ways of implementing the source code. The
Cython code can be done in a naive way by defining the static variable
types, by rewriting the code in an optimized way and by purely calling C
functions. Here is a graph that shows the performance of each of the different
approaches8:

7

Due to the translation to the Python implementation, some of the source
code have been implemented differently compared to the original C code.
These include changes in variable names, changes in the use of arrays, the
splitting of the different functions and many others. This means that sim-
ply calling the C functions is not always the best option. Thus, having the
option of calling and manually implementing the code would give me a huge
advantage in terms of implementing the most optimized code.

Another reason why I chose Cython is because of its performance. After
wrapping the code using Cython, the performance of the final code would
be very close to the performance of the original C implementation. Here is a
diagram that shows Cython’s performance compared to pure Python code:

8

6.2 Alternatives to Cython

I looked at several tools that would help achieve what I needed for this
project. I did not look at other techniques to increase the performance of
the Python code, other than wrappers, because my supervisor specifically
wanted wrapper functions to wrap the original C code into Python. The
tools that I looked at include:

SWIG

SWIG stands for Simplified Wrapper and Interface Generator, it performs
very similar tasks as Cython but it is built for a variety of different high-level
programming languages, which include both scripting and non-scripting lan-
guages. This means that it is not built purely for the use with C and Python.
It is an interface compiler that connects programs written in C/C++ with
other languages10. This gave me the idea of wrapping Python libraries into
the C code instead, but the problem was a lot of the implementations involve
writing scripts which can be used to either call the C or Python code. I chose

9

Cython over SWIG because I preferred to have a combination of both C and
Python code within the same file to gain the maximum performance. I also
considered the portability and ease of use for the end users, since SWIG only
involves running a lot of different scripts and files that calls the different
functions, I was worried that the end users would find it tedious to use.

Ctypes

This tool is very similar to SWIG, it provides foreign language (including
C) libraries for Python. It provides an interface with external C code, which
allows the user to load dynamic libraries and call the relevant C/C++ func-
tions from pure Python code11. Ctypes constantly calls code, this means that
it will be easy and efficient for simple tasks but as the project gets larger and
larger, there would be more calls and callbacks to and from the Python code,
making it a bottleneck, which could affect efficiency. RUS is quite large and
will only get larger and larger when the “inverse” algorithm is implemented
in the near future. Thus, Ctypes wouldn’t be the best option for this project.

Numba

Numba allows the use of high performance functions that are directly hard
coded into Python. It uses annotations and array orientated Python code
that is Just-In-Time (JIT) compiled to the underlying machine instruc-
tions with similar performance to that of C/C++, without having to switch
languages12.

It uses a JIT compiler which is a compiler that improves the performance of
a program during compilation. This is done by compiling the byte-codes into
its native machine code during run time. This allows the compiled code to be
called directly instead of interpreting it at run time, and thus, increases the
performance13. The JIT compiler can be automatically used for wrapping
functions using

a u t o j i t

this allows for speed improvements because it is converted to a highly effi-
cient compiled code in real-time13.

Although these features of Numba can get close to C/C++ performance,
it uses an automatic wrapping tool that is used to wrap the original Python
code to increase its performance14. The main reason why I chose Cython
over Numba is because for Cython, I can manually rewrite and/ or wrap the

10

code myself, this allows for more flexibility. I can change or modify the code
as much as I want to maximize the performance of each function.

Weave

Weave is part of the scipy package, it provides tools for including C/C++
code within pure Python code. When using weave, it has shown performance
increases of up to 30 times faster than pure Python code. There are several
ways of using weave, these include using:

weave . i n l i n e ()

within the Python source code to allow the use of C/C++ code within
Python.

weave . b l i t z ()

which allows the translation of Python Numpy expressions into C expressions
for faster execution, and

ext t o o l s

for building extension modules within Python 15.

I decided to use Cython over Weave because Cython allows the interchange-
ability of both C and Python code within the same file. Weave although
does something very similar, it cannot mix between the two types of pro-
gramming languages within each line. Also, Weave requires a C++ compiler
and Numpy15, which means that an additional compiler and package would
need to be installed on the users machine, which is not what I am after.
Weave is also not included in Python 3.x, which means that it wont be use-
ful for a project like RUS because RUS is a ever-growing project with different
features and implementations that are added to it each year.

SIP

SIP is a tool that is used to quickly write Python modules that interface
and interact with C/C++ libraries. These are used as Python extension
modules and are called ’bindings’. SIP uses a code generator and a Python
module. This generator is used to process a set of specification files and gen-
erates the corresponding C/C++ code which is then compiled to create the
bindings. The specification files are very similar to the C/C++ header files
and contain descriptions of the interface of the C/C++ classes, functions and
variables16.

11

The main reason why I chose Cython over SIP was because SIP generates
the bindings automatically, this means that I have no control over what is
automatically generated. Sometimes these generated bindings hinders the
performance rather than improving it, due to possible hidden background
processes. There are also no interchangeability between C and Python code,
which limits flexibility.

In summary, the different tools mentioned above have their own advantages
and disadvantages compared to each other and to Cython. I chose Cython
over the tools mentioned above because Cython allows the interchangeabil-
ity between C and Python code within one file. The wrapping of the code is
also done manually, which I find to be a huge advantage over the other tools
because I have more control over each function and can change each function
to make it as optimized as possible. Cython also generates an executable
when compiled, this makes it very portable and can be used without having
to install Cython on the local machine.

6.3 Use cases for Cython and how they apply to RUS

Developers over the years have successfully used Cython in many situations,
from being used in high development programming firms, to creating small
and personal projects. There are a variety of uses; the following shows some
of the significant uses of Cython:

Data Transformation and Reduction

Cython can be used for either very small of very large amounts of data.
For the use for small data sets that are repeatedly used numerous times (for
example loops), the overhead of Python will be largely significant. Wrapping
this function with C code or rewriting it in terms of Cython would remove
this overhead and thus would make it more efficient. For the use with large
amounts of data, Python has two problems:

• It requires large amounts of temporary data

• It constantly moves the results from the temporary data to the memory
bus

These mean that there would be a huge bottleneck due to the large demand.
For example, consider the following code

12

v = en . sqrt (x∗∗2 + y∗∗2 + z∗∗2)

The 3 variables x, y and z will be squared and stored into the temporary
buffers. There will be 3 temporary buffers because each squaring of the vari-
ables would need one each. Then another temporary buffer would be required
when the adding process occurs. This process would constantly be repeated
for all the different inputs that the program has to go through. Cython is
very efficient with this because it doesn’t use temporary buffers. Cython
allows the possibility of wrapping C code within the function and allows the
loop to run at their native speed.

This applies to RUS because the inverse code calls the forward algorithm
multiple times. By wrapping the original C code within the Python imple-
mentation or by rewriting the functions in terms of Cython would allow the
function to be running in the original native speed, which is the speed of C.

Optimization and Equation Solving

RUS deals with a lot of different formulas and equations; these equations
are placed in a lot of different functions that are called several times. These
functions rely on making new steps based on what was previously computed
in the other functions. By declaring the types for each of the variables and
functions, would decrease the call overhead that is made each time a function
is called.

Arrays and Data Repacking

RUS requires generating a lot of different arrays that are used as ‘matri-
ces’ when computing the elastic tensors. These can be seen in the functions
that are involved with creating matrices for the isotropic, cubic, hexagonal,
tetragonal and orthohombic shapes located in the rus tools class. These
again would require a lot of loops to store these generated data into an ar-
ray. Cython is very good at dealing with large arrays and data repacking,
using Cython would reduce the time it takes to loop through the arrays as
described above4.

13

6.4 Cython Example

The following shows and explains the basics of Cython and how it works. The
following code segments are from the original C implementation, Python im-
plementation and my implementation using Cython:

The original C code:

double v o l i n t e g r a l (double d1 , double d2 , double d3 , i n t l ,
i n t m, i n t n , i n t shape)

{
i f ((l%2==1) | | (m%2==1) | | (n%2==1)) return 0 . 0 ;
else

switch (shape) {

/∗ e l l . c y l i n d e r shape ∗/
case 1 : return 4 .0∗PI∗pow(d1 , l +1)∗pow(d2 , m+1)∗

pow(d3 , n+1)/ (double) (n+1)
∗doub l e f a c t (l −1)∗doub l e f a c t (m−1)/doub l e f a c t

(l+m+2);

/∗ sphero id shape ∗/
case 2 : return 4 .0∗PI∗pow(d1 , l +1)∗pow(d2 , m+1)∗

pow(d3 , n+1)
∗doub l e f a c t (l −1)∗doub l e f a c t (m−1)∗doub l e f a c t (n−1)/
doub l e f a c t (l+m+n+3);

/∗ rp shape ∗/
default : return 8 .0/ ((l +1)∗(m+1)∗(n+1))∗pow(d1 , l +1)∗

pow(d2 ,m+1)∗pow(d3 , n+1);
}

}

The Python Implementation:

de f v o l i n t e g r a l (dimensions , l ,m, n , shape) :
g l o b a l memo vo l max
g l o b a l memo v o l i n t e g r a l

h l = l //2
hm = m//2

14

hn = n//2
smal l = hl < memo vo l max and hm <
memo vo l max and hn < memo vo l max

i f smal l and memo v o l i n t e g r a l [h l] [hm] [hn] :
return memo v o l i n t e g r a l [h l] [hm] [hn]

e l l . c y l i n d e r shape
i f shape == 1 :

ds = dimensions [0] ∗∗(l +1) ∗ dimensions [1] ∗∗(m+1)
∗ dimensions [2] ∗∗(n+1)
df lm = doub l e f a c t (l −1) ∗ doub l e f a c t (m−1)
r e s u l t = 4 .0 ∗ s c ipy . p i ∗ ds / (n+1) ∗ df lm
/ doub l e f a c t (l+m+2)

sphero id shape
e l i f shape == 2 :

ds = dimensions [0] ∗∗(l +1) ∗ dimensions [1] ∗∗(m+1)
∗ dimensions [2] ∗∗(n+1)
df lm = doub l e f a c t (l −1) ∗ doub l e f a c t (m−1)
df a l l = doub l e f a c t (l+m+n+3)
r e s u l t = 4 .0 ∗ s c ipy . p i ∗ ds ∗ df lm
∗ doub l e f a c t (n−1) / df a l l

rp shape
else :

r e s u l t = 8 .0 / ((l +1) ∗ (m+1) ∗ (n+1)) ∗ ds

i f smal l :
memo v o l i n t e g r a l [h l] [hm] [hn] = r e s u l t

return r e s u l t

Cython Implementation:

cpdef v o l i n t e g r a l (dimensions , i n t l , i n t m,
i n t n , i n t shape) :

g l o b a l memo vo l max
g l o b a l memo v o l i n t e g r a l

15

hl = l //2
hm = m//2
hn = n//2
smal l = hl < memo vo l max and hm < memo vo l max
and hn < memo vo l max

i f smal l and memo v o l i n t e g r a l [h l] [hm] [hn] :
return memo v o l i n t e g r a l [h l] [hm] [hn]

/∗ e l l . c y l i n d e r shape ∗/
i f shape == 1 :
r e s u l t = 4 .0∗ s c ipy . p i∗pow(dimensions [0] , l +1)∗
pow(dimensions [1] , m+1)∗pow(dimensions [2] , n+1)/
<double>(n+1)∗doub l e f a c t (l −1)∗doub l e f a c t (m−1)/
doub l e f a c t (l+m+2);

/∗ sphero id shape ∗/
e l i f shape == 2 :

r e s u l t = 4 .0∗ s c ipy . p i∗pow(dimensions [0] , l +1)∗
pow(dimensions [1] , m+1)∗pow(dimensions [2] , n+1)∗
doub l e f a c t (l −1)∗doub l e f a c t (m−1)∗doub l e f a c t (n−1)/
doub l e f a c t (l+m+n+3);

rp shape
else :

r e s u l t = 8 .0/ ((l +1)∗(m+1)∗(n+1))∗pow(dimensions [0] , l +1)∗
pow(dimensions [1] ,m+1)∗pow(dimensions [2] , n+1);

i f smal l :
memo v o l i n t e g r a l [h l] [hm] [hn] = r e s u l t

return r e s u l t

As you can see in the Cython example above, it is not purely either C or
Python. It is a combination of both, with a mixture of Cython code that
links the two programming languages together. It is also possible to wrap
pure C code into the Python code by using the different Cython function
declarations. These include:

def

16

def is the way functions are defined in pure Python. When a function is
defined as def in Cython, the code that is in that specific function can only
be written in pure Python code and return pure Python objects. The code
will be treated as pure Python code only and will incur Python’s overhead18.

cdef

cdef is the way functions are defined for pure C code. All of the code inside
this function must be written in pure C code and all variables must be stat-
ically declared18.

cpdef

cpdef in Cython is used to tell the compiler that it is a combination of
both C and Python code18.

I decided to use cpdef for volintegral because this function is constantly
being called. Since some of the functions in the rest of the Python source
code may not need to be wrapped/ rewritten, declaring this function as cdef
and wrapping pure C code would not be ideal because the implementation of
the dimensions and how it is parsed into the function are different between
C and Python.

7 Profiler

I used Profilers, most specifically, the built-in Python profilers to test the
performance of the original Python implementation and my Cython Imple-
mentation. I used profilers rather than print statements because profilers
list the performance of each functions, along with other details such as how
many calls are made to that specific function. Profilers have helped me with
my project because it allowed me to identify the most commonly called and
used functions in the RUS code. Knowing the most commonly used functions
allowed me to focus on specific parts of the code that, when wrapped, would
provide the most increase in performance.

The output of the profilers consists of the following headings17:

• Number of calls (‘ncalls’)

– This shows the number of calls made by each function

17

• Total time (tottime)

– This is the total time a compiler spends within a specific function.
This excludes the time from the function calling other functions

• Percentage of call (percall)

– There are two type of percalls, the first one is

∗ The result of dividing tottime with ncalls, and

∗ The result of dividing cumtime with primitive calls

• Cumulative Time (cumtime)

– This is very similar to tottime but it also includes the time that
the function spends in the other functions that it calls

• Filename, line number and function name (filename:lineno(function))

– This provides details on the filename the profiler is working on, line
numbers of the functions examined and the name of the function.

Under each of the above headings are the results for each function. Here is
an example of the output you get after profiling:

Ordered by : i n t e r n a l time

n c a l l s tot t ime p e r c a l l cumtime p e r c a l l f i l ename : l i n e n o (function)
1043250 8 .571 0 .000 8 .805 0 .000 rus t o o l s . py : 241 (gamma h

4 0 .544 0 .136 8 .603 2 .151 rus t o o l s . py : 230 (dgamma . . .
214350 0 .263 0 .000 0 .263 0 .000 rus t o o l s . py : 807 (v o l i n t e . . .

2 0 .248 0 .124 0 .277 0 .138 rus t o o l s . py : 866 (e f i l l)
2 0 .115 0 .058 9 .868 4 .934 rus t o o l s . py : 443 (formod)
3 0 .108 0 .036 0 .261 0 .087 i n i t . py:1(<module>)
2 0 .039 0 .019 0 .792 0 .396 rus t o o l s . py : 944 (gamma f . . .

This is a small section of the output file. There are many more lines of output
that show both the internal (anonymous) functions and the functions shown
in the source code.

To use and run the built-in Python profiler, we can use a simple command
in a terminal (for Unix based operating systems). This command is:

python −m c P r o f i l e rus . py inverse

18

Sorting the results of the result is also possible by adding

−s tot t ime

into the command above. The final terminal command should look like this:

python −m c P r o f i l e −s tot t ime rus . py inverse

There are three types of Python Profilers; these are ‘profile’, ‘cProfile’ and
‘hotshot’. I chose to profile with cProfile for this project because cProfile
produces less overhead and works with both Python and C implementations.
Since it works for both pure Python and C codes, I was also able to use it
for Cython. Also, since I am using the same profiler, it will help me keep my
profiling results as consistent as possible.

After wrapping and rewriting the functions, Profilers are a good way to test
each function for its performance. Profilers provide a lot of details related to
each of the functions performance, but it is still required to run a wall clock
timer on the entire source code. This is because there could be background
processes related to Cython that we are not aware of, that could hinder that
performance of the overall code if we are not careful.

8 Performance between C, Python and Cython

During week 8 of semester 1, I was tasked to write a little demo showing how
Cython worked. I wrote a demo that wrapped one of the functions of the RUS
code. I decided to wrap the function ‘volintegral’, this was shown earlier. I
used profiling to test the performance of the code for the Python implemen-
tation of volintegral, it showed to be running at approximately 0.263 seconds:

n c a l l s tot t ime p e r c a l l cumtime p e r c a l l f i l ename : l i n e n o (function)
214350 0 .263 0 .000 0 .263 0 .000 rus t o o l s . py : 807 (v o l i n t e g r a l)

After wrapping the function, I ended up with the speed of 0.057 seconds:

n c a l l s tot t ime p e r c a l l cumtime p e r c a l l f i l ename : l i n e n o (function)
214350 0 .057 0 .000 0 .060 0 .000 rus t o o l s . pyx : 808 (v o l i n t e g r a l)

These times fluctuate and ranges from 76 to 80% faster than the pure Python
Code.

19

After my demo was demonstrated to my supervisors, my supervisor tested
the code’s performance against the C and pure Python code. The results are
as follows:

• Speed of C

– 29.545 seconds

• Speed of the Cython Implementation after wrapping the functions
volintegral and half of gamma helper

– 13 minutes and 55.518 seconds

• Speed of Python

– 19 minutes and 16.073 seconds

These all ran at 100 iterations each, ran simultaneously and on the same
machine.

As you can clearly see, the C implementation is much faster than the other
implementations. By just wrapping one of the main functions that are con-
stantly being called, it has shown a very large increase in performance com-
pared to the pure Python code. The goal is to get as close as possible to the
original C implementation’s performance.

9 Why Python is slower than C

As already mentioned earlier, the main motivation for wrapping C code into
and/or rewriting the original Python code was because Python is much slower
than C. There are several reasons why Python is slower, these are outlined
below:

9.1 Python Programming Language

9.1.1 Global Interpreter Lock (GIL)

A Global Interpreter Lock is a mechanism that is used by the Python inter-
preter. It limits multiprocessing by making sure that only one thread exe-
cutes a Python bytecode at a time. This is used to ensure that the Python
Object model is safe against concurrent access. This decreases Python’s per-
formance because the GIL makes system calls incur a large overhead, which
is much more significant on a multi-core processor19.

20

9.1.2 Interpreted at runtime

Python is interpreted at runtime rather than compiled. When compiled, a
compiler can optimize the code for repeated or unused operations, which can
increase the performance of the code16.

9.1.3 Dynamically typed

Python is a dynamically typed language rather than statically typed. This
means that during execution, the Python interpreter does not know the vari-
able types of each of the defined variables. This makes programming more
convenient for the programmer, but this hinders the performance.

For example, by looking at the following C code:

i n t a = 1 ;
i n t b = 2 ;
i n t c = a + b ;

The sequence o f events :
1 . Assign <int> 1 to variable ’ a ’
2 . Assign <int> 2 to variable ’ b ’
3 . Call binary add<int , int> (a , b)
4 . Assign the r e s u l t s to <int> variable c

During compilation, the compiler would know that the variables a, b and c
are integers. The compiler can then add the two integers and return another
integer which is a simple value located in memory.

The Python version is as follows:

a = 1
b = 2
c = a + b

The sequence of events:

1. Assign 1 to variable ’a’

(a) Set variable a’s PyObject HEAD’s ’typecode’ to an integer

(b) Set variable a’s ’val’ to 1

2. Assign 2 to b

21

(a) Set variable b’s PyObject HEAD’s ’typecode’ to an integer

(b) Set variable b‘s ’val’ to 2

3. Call binary add(a, b)

(a) Find the ’typecode’ of a from a’s PyObject HEAD

(b) When the variable type is found, retrieve a’s ’val’

(c) Find the ’typecode’ of b from b’s PyObject HEAD

(d) When the variable type if found, retrive b’s ’val’

(e) Call binary add< int, int > (a− > val, b− > val)

(f) After the addtion, store the results in ’result’

4. Create a Python Object ’c’

(a) Set c’s PyObject HEAD’s ’typecode’ to an integer

(b) Set c’s ’val’ to ’result’

The Python interpreter will not be aware that these are integers and will
treat these variables as Objects. During each execution of the Python code,
the Python interpreter has to inspect the ’PyObject HEAD’ to find the in-
formation on the type of the variable. When the type of the variable is
found, the appropriate addition routine is called. After computing the re-
sult, a new Python Object must be created to store and hold the return
value. By comparing the sequence of events that occur at the assembly level,
Python’s sequence of events involves much more steps compared to C. The
more events that are running in the background, the longer the program
takes to execute20.

9.2 C Programming Language

There are two main reason why C is faster than Python, these include the fact
that C is compiled rather than interpreted and C is statically typed. These
two reasons are somewhat related because the compiler checks the variable
types during the compiling stage. Compilers convert the source code into
machine code, code that is compiled tend to have better performance com-
pared to those that are interpreted because the overhead of the translation
process is much higher for interpreters21.

22

10 What I have done so far

I have been having weekly meetings with both of my supervisors, each week
I have been setting weekly goals that are to be accomplished by a date that
was mutually agreed on with my supervisors. Here is a brief outline of the
tasks that I have accomplished:

• Read the sources suggested by my supervisors for a better understand-
ing of Resonant Ultrasound Spectroscopy

• I did additional research to have a deeper understanding of the project

• I went to a live demo to understand the basics of what the experimental
setup looked like and how it works

• Decided and negotiated with my supervisors and the other Btech stu-
dent, Elvis Chuah, on what we wanted to contribute to the project

• Looked at and tried to understand the Python Implementation. I also
installed Python and Anaconda on my system to test and run the code

• Looked at and tried to understand the C code. As mentioned earlier
in this report, the C implementation is very difficult to install. This
means that I have not installed and tried the C implementation yet.

• Learned how to use GitHub

• Researched and looked at ways to accomplish the tasks

• Researched and learned Cython

• Research and used Python Profilers to get a better idea of which func-
tions in RUS is hindering its performance

• Wrapped a function of RUS as a demo for my supervisors to demon-
strate how Cython worked

• Used Python Profilers to test the performance of the Cython wrapped
function

• Uploaded my demo onto GitHub

• After demonstrating the demo, I have wrapped 5 other functions but 3
of which did not show a huge improvement in performance. I will have
to do additional research and find an alternative approach in wrapping
those functions

23

11 Plans for Semester 2

I have done the research and I am aware of what I have to do for this project.
For semester 2, I want to completely finish the wrapping/ rewriting of the
Python implementation and move onto the next phase of the project. When
the final wrapping/ rewriting is complete, I am planning on making the ex-
ecutable for Cython to work on both a Unix based operating system and a
Windows based operating system. My supervisor, Paul Freeman has tested
the executable that I generated on a Mac on a Linux operating system, but
it unfortunately did not work. This is something that I want to develop
further and make sure that the executable file generated by Cython would
work on Mac, Linux and Windows. Cython generates an executable with
extension .so and .pyd. The .so file for for Unix and .pyd is for windows. If I
am successful in creating the executable, it would make the user experience
much more convenient, the users won’t have to install Cython and can run
the executable directly from the terminal on a Unix machine or by command
prompt and/or double clicking on a Windows machine. If my conversion into
an executable is unsuccessful, then I will have to create a MakeFile to allow
the users to compile the program.

Currently, the version that I am currently working on and the version that
I uploaded on GitHub requires the user to compile pyrex (.pyx) files with
a Setup.py file that I wrote. Compiling the source file (pyrex file) requires
the user to install Cython and would take quite a bit of time when the RUS
project is further developed in the future.

When the wrapping and rewriting of the code is complete, I am required
to move onto the next phase of the project. This would involve more re-
search and looking at further developments of the RUS code. One of the
tasks that my supervisor Kasper has suggested is to look at mapping out the
misfit functions for the elastic case of the modes of an isotropic sphere.

I am also wanting to install and run the C implementation. I think that
this will be very beneficial for me as I will get a better understanding of the
C code and I will be able to profile it. Profiling the C implementation will be
very beneficial because it will give me a goal to reach in terms of pushing my
wrapped/ rewritten code to the limits. My wrapped/ rewritten code should
be as close as possible to the C implementation’s wall clock speed.

24

12 Conclusion

In conclusion, the RUS project deals with many different formulas and cal-
culations that involve a lot of repeating and calling of different and specific
functions within RUS. I’ve looked at several different implementations for
wrapping C code within Python and have decided to choose Cython to in-
crease the performance of the Python implementation because it allows the
interchangeability between C and Python within one file called a Pyrex file.
There is still a lot of work that needs to be done for this project, such as com-
pleting the warpping of the Python code, MakeFiles for GitHub and further
research and development of the RUS code.

25

13 Bibliography

1 Li, G., & Gladden, J. R. (2011). High temperature resonant ultrasound
spectroscopy: a review. International Journal of Spectroscopy, 2010.

2 Watson, L., & van Wijk, K. (2014, June). Resonant Ultrasound Spec-
troscopy of Anisotropic Shale Samples. In AGU Fall Meeting Abstracts (Vol.
1, p. 4289).

3 Schwarz, R. B., & Vuorinen, J. F. (2000). Resonant ultrasound spec-
troscopy: applications, current status and limitations. Journal of Alloys and
Compounds, 310(1), 243-250.

4 Behnel, S., Bradshaw, R., Citro, C., Dalcin, L., Seljebotn, D. S., & Smith,
K. (2011). Cython: The best of both worlds. Computing in Science & Engi-
neering, 13(2), 31-39.

5 Cython: C-Extensions for Python http://cython.org/

6 Freeman, P. (2015). A Python Implementation of the Forward RUS Eigen-
value Calculation Algorithm.

7 Zadler B. & Le Rousseau J H.L Installation and Help Guide to Fitspec-
tra and RUS-inverse. Resonance peak fitting, forward modeling and inversion

8 The Performance of Python, Cython and C on a Vector — Cython def, cdef
and cpdef functions 0.1.0 documentation. (n.d.). Retrieved from http://notes-
on-cython.readthedocs.io/en/latest/std dev.html

9 A Speed Comparison Of C, Julia, Python, Numba, and Cython on LU
Factorization (IT Best Kept Secret Is Optimization). (n.d.). Retrieved from
https://www.ibm.com/developerworks/community/blogs/jfp/entry/
A Comparison Of C Julia Python Numba Cython Scipy and BLAS
on LU Factorization?lang=en

10 Simplified Wrapper and Interface Generator. (n.d.). Retrieved from
http://www.swig.org/

11 15.17. ctypes — A foreign function library for Python — Python 2.7.11
documentation. (n.d.). Retrieved from https://docs.python.org/2/library/ctypes.html

26

12 Numba — Numba. (n.d.). Retrieved from http://numba.pydata.org/

13 IBM Knowledge Center. (n.d.). Retrieved from
https://www.ibm.com/support/knowledgecenter/SSYKE2 7.0.0/
com.ibm.java.zos.70.doc/diag/understanding/jit overview.html

14 Numba vs. Cython: Take 2. (n.d.). Retrieved from https://jakevdp.github.io/
blog/2013/06/15/numba-vs-cython-take-2/

15 Weave (scipy.weave) — SciPy v0.17.1 Reference Guide. (n.d.). Retrieved
from http://docs.scipy.org/doc/scipy/reference/tutorial/weave.html

16 SIP - Python Wiki. (n.d.). Retrieved from https://wiki.python.org/moin/SIP

17 26.4. The Python Profilers — Python 2.7.11 documentation. (n.d.).
Retrieved from https://docs.python.org/2/library/profile.html

18 Cython Function Declarations — Cython def, cdef and cpdef functions
0.1.0 documentation. (n.d.). Retrieved from
http://notes-on-cython.readthedocs.io/en/latest/function declarations.html

19 GlobalInterpreterLock - Python Wiki. (n.d.).
Retrieved from https://wiki.python.org/moin/GlobalInterpreterLock

20 Why Python is Slow: Looking Under the Hood. (n.d.). Retrieved from
https://jakevdp.github.io/blog/2014/05/09/why-python-is-slow/

21 — National Public Library - eBooks — Read eBooks online. (n.d.). Re-
trieved from http://nationalpubliclibrary.info/articles/Compiled language

27

