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Abstract
This report contains and describes everything that I’ve done this

year for my Bachelor of Technology (BTech) project. My project is on
Resonant Ultrasound Spectroscopy (RUS), this is a physics procedure
used to determine the material properties of solid objects. The for-
mulas and equations used in RUS were originally written in the form
of computer algorithms by Jerome H.L. Le Rousseau. His code was
originally written in C programming language but was later translated
into Python by Paul Freeman for ease of use, but this hindered the
performance. I was tasked to improve the performance of the Python
implementation using the tool Cython. My main focus was on the
forward code as the inverse code calls the forward code multiple times
to perform it’s calculations.
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1 Introduction

Resonant Ultrasound Spectroscopy (RUS) consists of two algorithms; these
are the forward and inverse algorithms. The forward algorithm is a tech-
nique that measures the elastic properties of solid objects to estimate the
corresponding resonant modes. With the use of these resonant modes, it is
possible to determine the material properties of solid objects. The inverse
algorithm is the reverse of the forward algorithm, it takes the resonant modes
from the solid objects and finds the corresponding elastic properties.

The main focus for my project is on the forward algorithm because the main
calculations/tasks are performed by the forward algorithm. The inverse al-
gorithm makes multiple calls to the forward algorithm and thus improving
the speed of the forward algorithm would result in an increase in the overall
performance of both the forward and inverse algorithms. Small increases in
the performance of the forward algorithm would result in a huge increase in
the performance of the inverse. Both the forward and inverse algorithms were
originally written in the programming language, C, but was later translated
into the programming language, Python, due to the original code relying
heavily on outdated versions of software libraries or libraries that were diffi-
cult to obtain and to install. Currently, the only support for the C version
is on a Linux based operating system with the requirement of several other
libraries that has to be installed locally. With the use of Python, it has made
the installation process much simpler and easier to use because Python comes
with a large collection of libraries which can be easily installed locally. The
only disadvantage with using Python is its performance, it’s significantly
slower than the C implementation.

Cython is the chosen tool for this project because it allows for the inter-
changeability of both C and Python code within one file. This provides more
flexibility in terms of writing the most efficient code. It also generates an
executable, which can be very useful when portability is desired.

This report will document the improvements in performance of the Python
implementation of the Forward-RUS algorithm by wrapping C and/ or rewrit-
ing functions within Python. This will be achieved with the use of Cython.
In most cases, it will be necessary to rewrite some sections of the code with
a combination of Python, C and Cython specific code.
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2 Resonant Ultrasound Spectroscopy (RUS)

2.1 What is Resonant Ultrasound Spectroscopy?

Going into the second week of this project, I was lucky enough to see first-
hand how this experimental procedure worked. Seeing it in person has given
me a better understanding of how RUS worked and how the resonance peaks
are related to the code. It is a procedure used to determine the material prop-
erties of solid objects, this is done by studying the mechanical resonances of
the solid objects. Something that I found really interesting with RUS is that
it can be used on objects such as fruit. It can be used to determine the ma-
terial properties of fruit to determine its ripeness level, knowing this makes
it possible to determine when it is going to rot and when the most optimal
time to consume is. The output consists of a wide range of varied resonant
modes, which are determined by the solid objects “shape, elastic constants,
crystallographic orientation, density, and dissipation” 1.

The general setup of this experiment is shown in Figure 1.

Figure 1: Experimental setup (Watson, L., & van Wijk, K. 2014, June)

Figure 1 is the closest photo that I could find that resembles what I saw. It
is from a photo used by an ex-student here at the University of Auckland
that actually worked on this project a couple of years ago. A diagram view
of what happens during this experiment and the equipment used are repre-
sented in Figure 2.
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Figure 2: Diagram view of experimental setup (Watson, L., & van Wijk, K.
2014, June)

There were quite a few different equipment that are required for this setup,
these include:

• Transducers - Two transducers are required, one for the source of vary-
ing frequencies and the other for measuring the response from the solid
object2. This can be clearly seen in Figure 1

• Function Generator - This is used to generate the varying frequencies
that are sent through the source transducer2

• Amplifier - this is used for amplifying and filtering the response from
the solid object2

Something else that cannot be seen in the photo is the gel or substance used
to hold in place the solid object in between transducers. Kasper used honey
during the demonstration but any sticky substance can be used.

The solid object, which is usually a parallelepiped or a spherical shape, is
held tightly between two piezoelectric transducers. The source transducer
then stimulates the objects by producing and sending a wide range of elas-
tic waves of constant amplitude and varying frequencies through the solid
object. The receiving transducer then detects the wide range of resulting
frequencies, but what we are interested in are the resonant peaks. The res-
onant peaks occur due to the fact that the elastic waves that are sent into
the solid objects correspond to the natural frequencies of the solid object
itself. As soon as the range of frequencies are sent through the object, the
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frequencies that match the natural frequencies of the object will produce the
resonant peaks3. These natural frequencies are dependent on the shape, size
and elastic parameters of the solid object. A sample of a typical output
showing the resulting frequencies are shown in Figure 3. The resonant peaks
are shown by the 3 vertical spikes in the graph.

Figure 3: Example of experiment output (Schwarz, R. B., & Vuorinen, J. F.
2000)

The resulting resonant peaks are recorded and used by computer algorithms
that have been written and adapted/updated throughout the years. These
computer algorithms are used to quickly convert between their elastic proper-
ties and their corresponding resonant modes4. The original implementation
was written in C by Jerome H.L. Le Rousseau, it was later updated by
Leighton Watson in 2014 and was translated into Python by Paul Freeman
in 2015.

3 Installation of the C Implementation

3.1 Older C Implementation

The C implementation is difficult to install and can only be installed on
specific operating system, mainly on a distribution of Linux. The C imple-
mentation is dependent on outdated versions of software libraries or libraries
that are difficult to obtain and install. It involves a lot of compiling of various
tools and libraries on each local system before the C implementation of the
RUS code can be installed and executed4.

4



The following is from the PDF file, “Zadler B. & Le Rousseau J H.L In-
stallation and Help Guide to Fitspectra and RUS-inverse. Resonance peak
fitting, forward modeling and inversion”, it is an official guide on how to
install the C implementation and is located on the RUS GitHub page. It is a
brief interpretation of what is required to get the C implementation installed.
There are a lot of necessary files that need to be installed and steps to take
for the C implementation. The main files that needs to be installed are:

• rusGuiScilab.tar.gz

• rusGuiMatlab.tar.gz

• forinv.tar.gz

These need to be moved to a specific directory and extracted. The installa-
tion of the above files require a lot of different steps and a lot of thorough
testing to ensure that everything is installed correctly and is functioning.
Along with installing those files, Scilab and PlotLib are also required and
will need to be installed as suggested by the installation methods.

The C code also has quite a few dependencies on outside libraries and pack-
ages, which will also need to be installed during the Seismic Unix installation
stage. Seismic Unix is required because it contains the following core libraries:

• libsu

• libpar

• libcwp

• Makefile.config

It is necessary for all these to be installed before the C implementation can
be executed. There are many other steps and files that needs to be installed
and configured other than the ones mentioned above. This is all mentioned
in a 32 paged installation, testing and examples guide that is uploaded onto
PALab’s RUS GitHub page.

As you can see in the very brief outline of the installation process of the C
implementation, the dependencies and the actual C code itself require many
steps to run on a local system. This was the main reason for the translation
to a Python implementation.
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3.2 Newer C Implementation

The previous subsection was written for my mid-year report before I had any
hands-on experience with installing and actually running the C implemen-
tation on my local machine. Since then my supervisor, Paul Freeman, has
created a newer version of the C implementation which was easier to install
and run. It requires less of the libraries mentioned above to be installed by
the user. Something that I want to put emphasis on is that the following is
not an official guide on how to install the newer C implementation, it is just
the steps that I personally went through to get it working.

Firstly, I started off by opening a terminal on a Linux based operating sys-
tem and then checked whether the preliminary C/C++ tools were installed
or not. I ran the following command to check this:
sudo apt-get install build-essential

This command checks whether it is installed or not and if it’s not, it will
install it onto my local machine. I found that this essential package is already
pre-installed on Linux but it’s good to make sure. When that was done, I
installed lapack, this is essential for computing the calculations used in the
RUS code,
sudo apt-get install liblapack-dev

The next step is to get the RUS C code from GitHub. I used the following
command to install all the tools necessary to checkout the code from GitHub:
sudo apt-get install git

After I installed git, I checked my directory and made sure that I was working
in the correct directory. I then cloned the RUS code from GitHub using the
following command:
git clone https://github.com/PALab/RUS.git

From here, I changed my current working directory to the “RUS” folder. I
used the command “cd RUS” to do this. I then checked out the “depen-
dency_cleanup” branch, I did this by using the following command:
git checkout dependency_cleanup

I was then able to run “make”. After running “make”, I was able to see two
executable files, these are “rus_forward” and “rus_inverse”. I then ran:
sudo make install

After the above command, I was then able to run either the forward or inverse
code using the following commands:
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sudo make forward_example
sudo make inverse_example

The steps I took above are the full set of instructions that I took to get the
newer C implementation working on my machine. It looks longer than the
old implementation because what I have written for the old implementation
was only a brief outline of what the required packages were during the in-
stallation process. The actual documentation for the old C implementation
is a 32 paged PDF document. The newer C implementation is much easier
to install and only requires 2 readily available packages, “build-essential” and
“liblapack-dev”.

4 Cython

4.1 What is Cython?

Cython is an optimization static compiler that is used for both Python and
C/C++ programming languages. It allows for the interchangeability of both
Python and C code within one file. This file is known as the Pyrex file, with
the extension .pyx. Cython can be considered a language on its own and
is a super-set of Python with additional support for calling C functions and
declaring C type variables and class attributes. The source code in the Pyrex
file gets translated into an optimized C code when compiled, this optimized
code will then be used as Python extension modules. This means that the
Cython compiled code will produce a very efficient program and provides a
close integration with external C libraries6.

4.2 The limitations of Cython

Cython has a few limitations, these include Cython’s separate build phase
and its compilation time. For my project, I am required to rewrite the Python
code using Cython, wrap the C code within Python or just call external C
codes directly. I decided to rewrite the code in a combination of C, Python
and Cython because this approach reduces the compilation time. This re-
duces the compilation time because in situations when no changes in the C
or Python code are made or when there is no new code added in, the com-
pilation time would be near instant. This is because only the Cython code
would need to be compiled which is very efficient because it’s native to the
Cython compiler. Also, code that was written in one language will not affect
the compilation time for the code written in the other language because the
compiler compiles the file based on the language that’s last modified. For
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example, if I modify a code in cdef, the compiler will only compile the cdef
functions and not def and cpdef. Another way of limiting this limitation is
by using static type declarations, these are interpreted as valid Python and
C code and are ignored by the Cython compiler at run time.5

4.3 Alternatives to Cython

I looked at several tools that would help achieve what I needed for this
project. The tools that I looked at include:

SWIG

SWIG stands for Simplified Wrapper and Interface Generator, it performs
very similar tasks as Cython but it is built for a variety of different high-level
programming languages, which include both scripting and non-scripting lan-
guages. This means that it is not built purely for the use with C and Python.
It is an interface compiler that connects programs written in C/C++ with
other languages7. This gave me the idea of wrapping Python libraries into
the C code instead, but the problem was a lot of the implementations involve
writing scripts which can be used to either call the C or Python code. I chose
Cython over SWIG because I preferred to have a combination of both C and
Python code within the same file to gain the maximum performance. I also
considered the portability and ease of use for the end users, since SWIG only
involves running a lot of different scripts and files that calls the different
functions, I was worried that the end users would find it tedious to use.

Ctypes

This tool is very similar to SWIG, it provides foreign language (including
C) libraries for Python. It provides an interface with external C code, which
allows the user to load dynamic libraries and call the relevant C/C++ func-
tions from pure Python code8. Ctypes constantly calls code, this means that
it will be easy and efficient for simple tasks but as the project gets larger and
larger, there would be more calls and callbacks to and from the Python code,
making it a bottleneck, which could affect efficiency. RUS is quite large and
will only get larger and larger when the “inverse” algorithm is implemented
in the near future. Thus, Ctypes wouldn’t be the best option for this project.

Numba
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Numba allows the use of high performance functions that are directly hard
coded into Python. It uses annotations and array orientated Python code
that is Just-In-Time (JIT) compiled to the underlying machine instruc-
tions with similar performance to that of C/C++, without having to switch
languages9.

It uses a JIT compiler which is a compiler that improves the performance of
a program during compilation. This is done by compiling the byte-codes into
its native machine code during run time. This allows the compiled code to be
called directly instead of interpreting it at run time, and thus, increases the
performance10. The JIT compiler can be automatically used for wrapping
functions using

autojit

this allows for speed improvements because it is converted to a highly effi-
cient compiled code in real-time10.

Although these features of Numba can get close to C/C++ performance,
it uses an automatic wrapping tool that is used to wrap the original Python
code to increase its performance11. The main reason why I chose Cython
over Numba is because for Cython, I can manually rewrite and/ or wrap the
code myself, this allows for more flexibility. I can change or modify the code
as much as I want to maximize the performance of each function.

Weave

Weave is part of the scipy package, it provides tools for including C/C++
code within pure Python code. When using weave, it has shown performance
increases of up to 30 times faster than pure Python code. There are several
ways of using weave, these include using:
weave.inline()

within the Python source code to allow the use of C/C++ code within
Python.
weave.blitz()

which allows the translation of Python Numpy expressions into C expressions
for faster execution, and
ext_tools

for building extension modules within Python 12.
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I decided to use Cython over Weave because Cython allows the interchange-
ability of both C and Python code within the same file. Weave although
does something very similar, it cannot mix between the two types of pro-
gramming languages within each line. Also, Weave requires a C++ compiler
and Numpy12, which means that an additional compiler and package would
need to be installed on the users machine, which is not what I am after.
Weave is also not included in Python 3.x, which means that it wont be use-
ful for a project like RUS because RUS is a ever-growing project with different
features and implementations that are added to it each year.

SIP

SIP is a tool that is used to quickly write Python modules that interface
and interact with C/C++ libraries. These are used as Python extension
modules and are called “bindings”. SIP uses a code generator and a Python
module. This generator is used to process a set of specification files and gen-
erates the corresponding C/C++ code which is then compiled to create the
bindings. The specification files are very similar to the C/C++ header files
and contain descriptions of the interface of the C/C++ classes, functions and
variables13.

The main reason why I chose Cython over SIP was because SIP generates
the bindings automatically, this means that I have no control over what is
automatically generated. Sometimes these generated bindings hinders the
performance rather than improving it, due to possible hidden background
processes. There are also no interchangeability between C and Python code,
which limits flexibility.

In summary, the different tools mentioned above have their own advantages
and disadvantages compared to each other and to Cython. I chose Cython
over the tools mentioned above because Cython allows the interchangeability
between C and Python code within one file. The wrapping of the code is also
done manually, which I found to be a huge advantage over the other tools
because I have more control over each function and can change each function
to make it as optimized as possible. Cython also generates an executable
when compiled, this makes it very portable and can be used without having
to install Cython on the local machine.

The above are some of the alternatives to Cython that I looked into before I
started the coding aspects of project. Now that I’m nearing the completion
of the project, I decided to look at some more alternatives to Cython for
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future work or extension purposes. I looked into a few of the other tools
available online and What I looked for was a tool with good online documen-
tations and forum help. As I was looking, I found the tool “Boost.Python”,
it is quite similar to Cython but is much more flexible, easier to use and to
implement. The more I looked into Boost.Python, the more that I found that
it’s simpler to use compared to Cython. It is very similar to Cython except
it can implement C or even C++ functions into Python without any special
tools that needs to be installed. You can just directly copy and paste the C
code within the Python code without any modifications and from what I’ve
read, it will work well with the different Python and C objects. There are
definitely some extra code that are required such as:
#include <boost/python.hpp>

BOOST_PYTHON_MODULE(hello_ext)
{

using namespace boost::python;
[FUNCTION STARTS HERE]

}

(Boost.Python - 1.62.0. (n.d.))

I haven’t personally tried it but from what I have been seeing and reading has
suggested it could be a good tool to use. There is also a Boost.Python gen-
erator called Py++ that can be used to help generate these functions. This
extra tool helps, checks and makes sure that the generated Boost.Python
functions run precisely and accurately during run-time.

Boost.Python can also be used to incorporate and use Python libraries within
C13. Since the main idea of the Python version is to reduce the dependencies
on hard to obtain and to install C libraries, implementing Python libraries
into C would help solve this problem and still run at C’s performance.

I cannot guarantee that this tools would work as I haven’t implemented and
experimented with it myself but from when what I have read, it looks like
quite a good tool to use. If I had another year to work on this project, I would
look into Boost.Python as it seems like there is more potential compared to
the others mentioned above. Instead of wrapping C functions within Python,
I would try working with the C code and try to implement the Python li-
braries within the C code instead. I initially thought Cython was a really
good tool to use but later found out that it was much more difficult than
expected, so from just me reading on Boost.Python, I cannot guarantee that
it will definitely work.
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4.4 Why Cython?

I chose Cython for my project because Cython provides a close integration
with external C libraries, which is a very important part for my project
because one of the main reasons that the original C code was translated
into Python was because Python reduces the dependencies on hard to in-
stall C libraries. These libraries are usually hard to obtain, quite large and
can only be installed onto specific operating systems, mainly Linux in this
case6. Also, Linux is the only operating system that has the necessary li-
braries built into it’s kernel. Furthermore, Cython allows the combination
of both C and Python source code within one file, allowing more flexibility
and better implementation for the final product. Sometimes just calling the
corresponding C functions are not sufficient because there could be libraries
or implementations that are better in one language but worse in the other
language. Cython also generates an executable, which I thought would be
very useful for portability and ease of use for the end users. With the use
of the executable, I would hopefully be able to allow the use of the Cython
compiled program without the end users having to install Cython on their
local machine.

There are also other reasons why the C implementation was translated into
Python. A reason is that Python is a good platform for scientific compu-
tations. There are two main reasons behind this, firstly, Python tends to
be readable and very concise, making development of scientific computations
easier. Secondly, Python allows access to its internals from C through the
Python/C API. It has been found that Python is very inefficient when there
are a lot of loops in the code, the main reason behind this is because of its
dynamic nature. Cython solves this issue by compiling the Python code di-
rectly to C, which is then compiled and linked to Python5. Also, due to its
use of C static types, Cython is able to make numerous loops while running
at C speeds, directly in Python code6.

The wrapping process of Cython is all done manually via the Pyrex file.
This allows for many different ways of implementing the source code. Due
to the translation to the Python implementation, some of the source code
have been implemented differently compared to the original C code. These
include changes in variable names, changes in the use of arrays, the splitting
of the different functions and many others. This means that simply calling
the C functions is not always the best option. Thus, having the option of
calling and manually implementing the code would give me a huge advantage
in terms of implementing the most optimized code.
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4.5 Cython Example

Here is a simple example of a Cython function on calculating prime numbers.
It takes the max number as a parameter and then returns the prime numbers
as a Python list.

1 cpdef primes(int kmax):
2 cdef int n, k, i
3 cdef int p[1000]
4 result = []
5 if kmax > 1000:
6 kmax = 1000
7 k = 0
8 n = 2
9 while k < kmax:

10 i = 0
11 while i < k and n % p[i] != 0:
12 i = i + 1
13 if i == k:
14 p[k] = n
15 k = k + 1
16 result.append(n)
17 n = n + 1
18 return result

(Basic Tutorial. Cython 0.25b0 documentation. (n.d.))

The main changes to the code above are from lines 1 to 3. On line 1, the
function is defined as cpdef so that functions that are defined as def or cdef
can call this function. “kmax” is defined as int, this is one of the reasons why
Cython is much faster than Python, any object that is now passed into this
function will be converted into a C integer. Lines 2 and 3 are actually added
in and are declaring the variables as C variables with the variable type “int”.
The while loop cannot be changed much as it is quite similar to a C while
loop but it uses variables n, k and i which are now actually C variables, so
it actually increases the performance of the while loop. The code on line
16 is actually a Python statement but since variable “n” is a C variable, the
performance of this Python statement is actually drastically improved on15.

5 Cython version of RUS

5.1 Cython RUS Example

Please refer to the code segment in Appendix A. The code shows and ex-
plains the basics of Cython and how it works with the RUS code. The code
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shows that each section of code does not necessarily have to be either C or
Python code, but rather a combination of the two with a mixture of Cython
code that links the two programming languages together. The programming
language of the code used within each function is dependent on how the func-
tions are declared. There are many different Cython function declarations.
These include:

def

def is the way functions are defined in pure Python. When a function is
defined as def in Cython, the code that is in that specific function can only
be written in pure Python code and return pure Python objects. The code
will be treated as pure Python code only and will incur Python’s overhead16.

cdef

cdef is the way functions are defined for pure C code. All of the code inside
this function must be written in pure C code and all variables must be stat-
ically declared16.

cpdef

cpdef in Cython is used to tell the compiler that it is a combination of both
C and Python code16.

Defining each function correctly is important. Something that I’ve noticed
when I was wrapping code is that if I don’t have to define a function as cpdef,
it’s best that to just leave it as def. Sometimes defining it as cpdef without
the need for it can actually hinder the performance slightly. It does take
less time to build during the build phase of Cython but the run-time could
be slower. This can especially be seen when you move from one machine
to another without rebuilding the files. When I was testing the compatibil-
ity between machines without rebuilding the pyrex files first, it was actually
slightly slower than the original Python implementation.

Sometimes defining functions as cpdef is the only option when the func-
tion is constantly being called by either def or cdef functions. Functions
that are not frequently called by other functions should be kept as either
def or cdef to help keep the code run efficiently. Examples of this could be
the functions that I didn’t wrap, mainly those that had the run-time of 0.00
seconds in the Python implementation. Keeping these functions as def in-
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stead of cpdef would actually keep the code efficient. Functions defined as
def or cdef cannot call each other so sometimes the only option is to use cpdef.

I decided to use cpdef for the function (volintegral) that I wrapped for my
demo because of the reasons mentioned above, this function is constantly be-
ing called by several other functions. Since some of the functions in the rest
of the Python source code may not need to be wrapped/ rewritten, declar-
ing volintegral as cdef and then wrapping pure C code would not be ideal
because the other functions wont be able to call it.

Looking at the code under “Cython Implementation” in Appendix A, line
1 shows that I changed the originally defined “def” function to a “cpdef”
function. As mentioned earlier, I did this because this function is constantly
being called by other functions. These calling functions may not necessarily
be called by a cpdef defined functions, they could be def or cdef so the only
choice would be to define it as cpdef. Also on line 1, I defined the types for
the variables l, m, n, and shape. By defining the types, Cython does not have
to perform any extra background tasks to work out the types of each of the
functions. In this case, the function will be compiled during the build phase
rather than interpreted during run-time like in Python. Since it wont be in-
terpreting the code at run-time like in Python, it increases the performance
of the function. Also, the objects are also now passed in as C objects rather
than Python objects, so it gains the speed of C. From lines 2 to 13, the code
was unchanged. From lines 14 to 24, the code was directly copied and pasted
from the C implementation, but Cython couldn’t use the constant “PI” so I
had to change it to what was used in the Python implementation. I chose to
use “scipy.pi” and at the same time was a little bit worried about the perfor-
mance from using scipy, but I checked the performance of this by comparing
scipy.pi with the hard coded values of PI, correct to 6 decimal places. They
both showed quite similar results so I just used scipy.pi. Something to note
is that I didn’t define the type for “dimensions” because it was something
difficult to implement in Cython. This is outlined in more detail in the next
sections.

5.2 My thoughts and experiences with Cython

One of the main reasons why I chose Cython was because it offered the possi-
bility of having both C and Python code within one file. My initial thoughts
were that I can limit the number of files that I had to distribute when the final
files were uploaded onto GitHub. Having both languages within one file also
allowed a lot of flexibility because I didn’t have to worry about separating
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the code and then making sure that each of the external functions were called
properly. Cython also generates an executable when it is built, although this
feature is also available in the other Cython alternatives, mentioned earlier,
an executable combined with the flexibility of having both languages within
one file made Cython my number one choice.

Combining the reasons mentioned above and after reading some of the ex-
amples of Cython online, it initially gave me the impression that it would
be an easy tool to implement into this project. I initially thought I would
be able to complete it within a semester and a half but it took longer than
expected as implementing this tool was not as easy as it suggested online. I
ran into quite a few problems, which are outlined here:

for loops

I had some trouble directly copying and pasting a simple for loop from C into
Cython’s pyrex file. Using C’s for loop was not possible, which forced me to
use either Python’s or Cython’s implementation of a for loop. Although us-
ing a Python for loop was possible, the performance could be improved upon
with the use of Cython’s own implementation of a for loop. For example,
copying and pasting the following code from the C implementation into the
pyrex file:
for (ik=0; ik<k; ++ik)

would give the error “Expected ’)’, found ’=’”. I couldn’t find an explanation
online, but I think the reason for this is because Cython needs to convert
the for loop code into C’s version of the for loop, which is then used by the
executable or pyrex files. Cython throws an error with C’s for loop code
because Cython does not know how to ignore C’s code for a for loop and
throws an error instead.

Dealing with objects

Dealing with the difference between C and Python objects, variables and
functions were extremely difficult. Despite having the capability of having
both C and Python within one file, calling or using an object that belongs
to the other language was a challenge. For example, when I try to store the
C object, int *, into a variable that is defined in Python, I will get the error,
“Cannot convert ’int *’ to a Python Object”. Initially, I thought Cython was
as very powerful tool that would deal with the different object types auto-
matically in the background, but this ended up not being the case. I was
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able to fix this by making the variables global, for example:
cdef int *itab;
global itab;
itab = alloc1int(r);

but this only works within that specific pyrex file. Since there are 4 other
pyrex files that call each other, it would still throw the error mentioned
above. Rewriting all these objects in terms of C objects only, would result
in a repeat of the original C code. Also, as mentioned above, I found that
some of the C code cannot easily be used in the pyrex files because Cython
performs at its best when it’s converting from Python or Cython code into
an optimized C code. I’ve also found that functions that are declared as
def are not exposed to functions that are declared as cdef, making function
calls difficult. This can be fixed by declaring the functions as cpdef, but this
would be at a risk of actually making the function slower than the Python
implementation. This is because cpdef uses dynamic binding when an object
is passed into the function. This performs extra tasks at run-time such as
looking up the different arguments, thus this could potentially hinder the
performance rather than improve it. This will depend on the object that it
passes in and the code within that particular function22.

Requires rebuilding

When I was testing the compatibility of the pyrex and executable files on
multiple operating systems (Windows, Linux, OS X), I found that running
the pyrex files alone without any rebuilding on that specific machine would
result in speed performances that are actually slower than the original Python
implementation. I think the cause of this could be because of some of the
functions being declared as cpdef. Rebuilding the files would increase the
performance to speeds that I would expect after wrapping. This does not
apply to the executable files but I have sometimes found that its performance
is slightly slower than the already rebuilt pyrex files by a few seconds.

Arrays in Cython

Creating a simple 1-dimensional or multidimensional array was the biggest
challenge for me in this project. There were quite a few problems that I en-
countered, please have a look at Appendix B for all the possible combinations
that I have tried. The example of the code in Appendix B is of the function
index_relationship, I tried creating the arrays in this function because this
function is in charge of creating “tabs”, which I needed to split into itab, ltab,
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mtab and ntab. I attempted to split tabs to try and improve the performance
further by statically typing these arrays individually. My thoughts were that
tabs could be hindering the performance of the function and essentially the
whole code. Splitting tabs up and defining the types for each individual tab
would reduce and type determination process that Python (the Python inter-
pretation step) does during run-time and thus increases performance. Trying
to solve this issue was extremely difficult as creating a dimensional arrays
in Cython was not easy. The main error that I got was the objects error
described earlier (“Cannot convert ’int *’ to a Python Object”), the other
frequent error was when I was trying to create a 2 dimensional array, it kept
giving me type errors. Here is a diagram which explains my understanding
of the problem:

From what I understand, since the box with the text “array” in the mid-
dle is of type array and it’s trying to store an array with an “int” (“[...]” is
an array of ints), it throws a typing error because they do not match. If it
was like this, where each “...” represents an “int”, it would work perfectly fine
because the types are all consistent:

This shows that for our case, any implementation would not work because
of how Cython deals with 2 dimensional arrays.
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I have had a look online and there are ways to work around this problem but
it would require an extensive understanding of how the underlying mecha-
nisms of Cython works. I don’t think I would have enough time to be able
to do this within 8 months, especially when I found out about this problem
during the second half of the project. It involves creating separate classes
that deals with these types of functions and then incorporating it into our
code.

As you have seen in Appendix B, I tried several different ways to imple-
ment an array in Cython. An explanation of what I tried are as follows:

Line 18 shows my first attempt at creating an array in Cython. I attempted
to create an array that represented the Python and C implementations as
closely as possible. They both created an array based on the variable “prob-
lem_size” for Python and “r” for C. Trying to create an array with these
variables were not possible and resulted in the error: “Not allowed in a con-
stant expression”. Creating arrays in this way could only be possible if I had
entered an integer into those brackets. Since there was no way I could work
around this problem, I looked into creating the arrays with memory views. I
decided to go with this approach after reading some of the recommendations
from forums and on the Cython website. My implementation can be seen
on line 20, but after working with this for a while, I was only able to create
a 1 dimensional array that somewhat worked. I could build the files but I
quickly saw some typing issues between Python and C during run-time, so I
had to try something else. Lines 30 to 39 shows an example of a working 2
dimensional array that I found in an online forum, all my attempts after this
is based on this example. I also attempted to use exactly what is shown here,
but it resulted in typing errors again. Lines 43 to 63 shows more attempts
that I’ve made after looking at forums, but after trying those I always end
up with the same error, this error is “Cannot convert ’int *’ to a Python
Object”. Lines 68 to 86 show the closest representation of an array to the C
implementation. This is also the closest attempt that I got to creating the
same arrays shown in the C implementation. The files are all able to build
but as soon try to run it, it runs for 2 to 3 seconds before it crashes and shows
a memory error. Since the code is used to create itab, ltab, mtab, and ntab,
I thought it would be a good idea to implement it in the inverse and forward
pyrex files instead and then from there, it can be used globally. Trying to
implement it there resulted in the same error that I’ve been getting (“Cannot
convert ’int *’ to a Python Object”). The main reason why I have “global
*” in front of the tab declarations is because it is supposed to fix the error
“Cannot convert ’int *’ to a Python Object”. But for some reason would only
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work in the rus_tools pyrex file and not in the inverse and forward files.

The executable file

When I was choosing the tool to implement wrapper functions, one of the
things that stood out when I was researching online was that fact that Cython
generated “executable” files. This really intrigued me and I thought it would
be very useful, especially for portability reasons but I found that it was
quite deceiving. It is called an executable but it doesn’t act like a normal
executable that we use everyday, it still requires tying commands into a ter-
minal for Linux and Mac or a command prompt for Windows.

I’ve been talking about the negative sides of Cython but there are also posi-
tives. A clear positive is its portability. It generates a .so file for Linux and
Mac, and a .pyd for Windows, this generated file can run without Cython
and only requires Python with a package like Anaconda, which the end users
should already have installed if they are dealing with the RUS code. This
solve one of the main motivations for the translation to the Python implemen-
tation because with the use of Cython’s executable files, it has dramatically
improved the ease of use and the installation process.

There was also a lot of information online on Cython, especially on their
official website where there are a lot of information on the basics of Cython.
I found almost everything that I needed to know from just their homepage
alone. There were also some problems that I encountered but there is a large
community of Cython users that have also experienced similar problems that
really helped me solve some of the problems that I had.

Overall, Cython was a helpful tool that I got to experience this year for this
project. It got me some speed improvements, but they weren’t the speeds
that I was expecting or have hoped for. Cython was a much more difficult
tool to use than originally anticipated and if I knew of its difficulty level, I
would have originally chosen another tool to for this project. Now that I’m
nearing the end of the project, I found that there were much more disad-
vantages than there were advantages with Cython. A tool that I would have
originally chosen over Cython if I knew of its difficulty level is Numba. Dur-
ing my initial research of different tools that would improve the performance
of Python, Numba was a choice that I was considering. The only reason
why I neglected using this tool was because most of it was done automati-
cally. Since a lot of it was done automatically, I felt like it was not going to
be challenging enough for a year long project. Now that I have experienced
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Cython, I would have rather spent 3 to 4 weeks to implement Numba than to
spend several hours on something that was near impossible to do within this
time-frame. I spent most of semester 2 trying to find new ways to improve
the already wrapped code further and actually got nowhere. I could have
spent this time on further developments of the RUS project if I had chosen
Numba over Cython.

Numba would have been my alternative choice if I got another chance to
redo this project, but after nearing the completion of this project, I found
that Boost.Python could be a better choice. Something that I would do dif-
ferently with Boost.Python would be to wrap Python libraries into the C
implementation rather than wrapping C functions into Python. Since the
performance of C is what we desire, it would be best to stick with C and
work from there. I would be very interested in seeing the performance if we
wrap Python libraries within the C implementation.

5.3 Installation Process

The following installation processes are what I personally went through, they
are not an official guide on the actual installation process. Your experiences
may vary from what I’ve experienced and mentioned below.

5.3.1 Mac and Linux

Firstly, I checked whether the executable works on my machine. I checked
this by using the “cd” command to change my directory to the directory that
contains all the necessary Cython files that I had cloned earlier from the RUS
GitHub page. I used the “ls” command to confirm that I had all the files.
I then made sure that I had the correct executable for the python version
that I have installed on my machine. I typed the command “python” into a
terminal to check my python version. I then ran the following commands to
check whether the executable worked:
python -c "import rus" forward
python -c "import rus" inverse

Both commands worked for me so I didn’t have to install Cython. For docu-
mentation purposes, I assumed that it didn’t work for me, so I went through
the following:

I opened a terminal and made sure that I had Python and Anaconda (or
something equivalent) installed. I did this by typing “python” and “conda list”
into the terminal, if something appears after typing those commands, then I
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would know that I have them installed. I found that a Mac or Linux machine
would have Python pre-installed. Anaconda wouldn’t be pre-installed so I
had to install Anaconda:

Mac

On a mac, I went to https://www.continuum.io/downloads and downloaded
the Anaconda .pkg file. I then double clicked on the file and followed the
instructions on-screen.

Linux

For Linux, it was all command based. I opened a terminal and typed:
bash ~/Downloads/Anaconda3-4.0.0-Linux-x86_64.sh

I then followed the on-screen instructions. Once that had completed, it said
“Installation finished.” and “Thank you for installing Anaconda!”.

This next step is the same for both Mac and Linux:

Once Anaconda was installed, I installed Cython. I went to http://cython.org
and downloaded the latest release of Cython. I then unpacked this down-
loaded zip file, opened a terminal and changed my current working directory
to the unpacked Cython files. I then typed the following to install:
python setup.py install

I followed the instructions and when it completed, I checked whether Cython
was installed or not by typing the following into the terminal:
cython

Once this completed, I changed my directory (“cd”) to the Cython files that I
cloned from the RUS GitHub repository. I then built the Cython files using:
python setup.py build_ext --inplace

Once it was done building the files, I was able to see .so files. Since these
files were built on my system, I can guarantee that it work. I tested this by
executing the executable, I did this by typing the following:
python -c "import rus" forward
python -c "import rus" inverse

Since Cython is now installed, I could also run the pyrex files, I can do this
by typing the following commands:
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python rus.pyx forward
python rus.pyx inverse

I personally used python 3 but “Python” can be replaced with either “python2”
or “python3”. This is important because of compatibility reasons seen in the
“Program Compatibility” section of this report.

5.3.2 Windows

I found that Windows is the most difficult operating system to install Cython
on. Before I started installing, I made sure that I had either Python 2 or 3
installed with Anaconda. I also checked whether the .pyd file works or not
in command prompt or a developer prompt. Like for Mac and Linux, the
executable works for me so I’ll just assume that it didn’t for documentation
purposes. I also assumed that I didn’t have anything pre-installed. My per-
sonal installation process is as follows:

Firstly, I checked whether I had Python 2 or Python 3 installed for Win-
dows. I found that either versions are fine but the 32-bit version would be
the easiest and less prone to error option. Once Python is installed, Ana-
conda is required, again, the 32-bit version is the best option. After installing
Python and Anaconda, I attempted to build the Cython files and ran into
the following problem:

This is actually quite a common problem. After spending some time search-
ing for a solution online, I found that it is due to missing a C compiler that
is required to compile the Cython generated C files. There are 2 solutions
to this and these are specific to either Python 2 or Python 3. Both Python
2 and 3 require you to install “Microsoft Visual C++ Compiler for Python”,
this is essential as it contains the missing C compiler that threw the error
shown above. I found that if you have Visual Studio installed, it could be
pre-installed or can be easily installed by checking a box:
I accessed these options by going into the Control Panel, then clicked on
“Microsoft Visual Studio Community 2015”, then “Change”. A Visual Studio
window then pops up and I clicked on “Modify”.

I then modified the setup.py file. This involves replacing the following from
the Mac and Linux version:
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from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext

with this:
try:

from setuptools import setup
from setuptools import Extension

except ImportError:
from distutils.core import setup
from distutils.extension import Extension

From here the installation process will be different for the 2 Python versions.
For Python 2 and Python 3.2 or older, I needed to change some of the default
values for the C compiler so that I could use it in a developer’s prompt or
command prompt. Firstly, I opened either Anaconda Prompt or a Developer
Command Prompt for Visual Studio 20XX (XX to denote the version of
Visual Studio, e.g. if it is 2015 then the XX would be 15). I used both for
testing purposes. I then enter the following commands:
SET DISTUTILS_USE_SDK=1

SET MSSdk=1
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When that completed, I changed my directory to the Cython files. The
command that I used in Anaconda Prompt and command prompt is “cd”,
and in Developer Command Prompt for Visual Studio 20XX it’s “cd /d”. I
then built the Cython files using the command:
python.exe setup.py build_ext --inplace --compiler=msvc

At this statge, I can run either the pyrex files or pyd executable. Commands
that I used are below.

To run the Cython files using a Python version newer than 3.2, I down-
loaded and installed “Windows SDK (.NET 4)”. Once that was installed, I
opened a Developer Command Prompt for VS20XX or Anaconda Prompt
and entered the following commands:
set DISTUTILS_USE_SDK=1
setenv /x86 /release

Something to note about the commands above is that it cannot be used in
Windows Command Prompt and its very specific to the bit rating. The
above shows “x86”, which is for a 32-bit version, which I personal would rec-
ommend. The “x86” can be replaced with “x64” for 64-bit versions.

I then used the following commands to run the Pyrex files:
python.exe rus.pyx forward
python.exe rus.pyx inverse

To run the executable:
python.exe -c "import rus" forward
python.exe -c "import rus" inverse

Things to note for Anaconda Prompt:

Python 2 is the default Python version but it’s possible to download and
install Python 3 by using the command:
conda create -n python3 python=3.X anaconda

The ’X’ can be replaced with the desired version. This took a while to install
but when it completed, I was able to switch between Python 2 and 3. It uses
Python 2 by default but when I wanted Python 3, I used the command:
active python3

to activate it and work in python 3. To switch back to the default, I used
the command:
deactive python3
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I really like how the version number is indicated in brackets at all times.

I personally would recommend installing the Cython implementation on ei-
ther a Mac or a Linux machine. As you can see in the steps above, Windows
requires much more steps in order to get it working. You are also be more
prone to running into errors, especially during the building process of the
Cython files. It is also quite specific to the bit rating of the packages you
install, installing the wrong bit rating would result in a lot of unknown prob-
lems during the build phase. The setup.py file must also be changed so that
the Cython pyrex files can be built correctly on Windows. I personally en-
countered a lot of problems with Windows and I would not recommend it.
The errors are quite ambiguous and can cause unnecessary frustration. One
of the errors that I encountered was the following:
error: "SyntaxError: Non-UTF-8 code starting with ’\x90’
in the file rus.pyd on line 1, but no encoding declared"

This was an error that actually stunned me for a few days before I realized
that it wouldn’t work on the 64-bit version. I spent several hours trying
to implement the solutions mentioned online. On the online forums they
suggested that I had to declare the UTF coding at the top of the pyrex files.
I tried to implement this but ended up with more and more errors.
The general syntax to declaring UTF coding is:
# coding=<encoding name>

I tried the follow and none of them worked:
# -*- coding: utf-8 -*-
# -*- coding: latin-1 -*-
# -*- coding: iso-8859-15 -*-
# -*- coding: ascii -*-
# -*- coding: utf-42 -*-

(PEP 263. Defining Python Source Code Encodings. (n.d.))

The most ambiguous error that I got from trying to install Cython on Win-
dows is this one:
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I eventually found out that the error came from an incorrect Cython im-
plementation in the rus.pyx file. Cython does not know how to interpret the
following code:
if __name__ == "__main__":

It must be removed for everything to work. It is a normal Python code so
it does not throw any errors during the building phase of Cython. It does
not throw any errors during run-time either because it’s Python code. This
shouldn’t be a problem because the rus pyrex files on GitHub works for all 3
operating systems, I wanted to include this just to show how much trouble
installing Cython on Windows could be. This was actually a problem that
I encountered when I first tried Cython on Windows. Due to it’s ambigu-
ity, it was very difficult for me at the time to figure the cause of this problem.

Overall, installing the RUS Cython files on a Mac or Linux machine is the
safest and easiest option. I would not recommend running the Cython files
on Windows due to it’s lengthy installation and error prone nature. I am per-
sonally running a virtual machine on Windows with Linux Ubuntu Gnome
installed to work on this project.

6 Profiler

During the testing phase of this project, I learnt about profilers. These are
built in tools that allow people to test the performance of their code function
by function. The results are displayed either on screen or to a output text
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file. I used Profilers throughout this project, most specifically, the built-in
profilers to test the performance of the original C implementation, Python
implementation and my Cython Implementation. I used profilers rather than
print statements because profilers list the performance of each functions,
along with other details such as how many calls are made to that specific
function. Profilers have helped me with my project because it allowed me
to identify the most commonly called and used functions in the RUS code.
Knowing what the most commonly used functions are allowed me to focus
on specific parts of the code that, when wrapped, would provide the most
increase in performance. The output of the profilers consists of the following
headings18:

• Number of calls (‘ncalls’)

– This shows the number of calls made by each function

• Total time (tottime)

– This is the total time a compiler spends within a specific function.
This excludes the time from the function calling other functions

• Percentage of call (percall)

– There are two type of percalls, the first one is

∗ The result of dividing tottime with ncalls, and
∗ The result of dividing cumtime with primitive calls

• Cumulative Time (cumtime)

– This is very similar to tottime but it also includes the time that
the function spends in the other functions that it calls

• Filename, line number and function name (filename:lineno(function))

– This provides details on the filename the profiler is working on, line
numbers of the functions examined and the name of the function.

Under each of the above headings are the results for each function. Here is
an example of the output you get after profiling:

Ordered by: internal time

ncalls tottime percall cumtime percall filename:lineno(
function)
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1043250 8.571 0.000 8.805 0.000 rus_tools.py:241(
gamma_helper)

4 0.544 0.136 8.603 2.151 rus_tools.py:230(
dgamma_fill)

214350 0.263 0.000 0.263 0.000 rus_tools.py:807(
volintegral)
2 0.248 0.124 0.277 0.138 rus_tools.py:866(

e_fill)
2 0.115 0.058 9.868 4.934 rus_tools.py:443(

formod)
3 0.108 0.036 0.261 0.087 __init__.py:1(<module

>)
2 0.039 0.019 0.792 0.396 rus_tools.py:944(

gamma_fill)

This is a small section of the output file. There are many more lines of output
that show both the internal (anonymous) functions and the functions shown
in the source code.

To use and run the built-in Python profiler, we can use a simple command
in a terminal (for Unix based operating systems). This command is:
python -m cProfile rus.py inverse

Sorting the results of the result is also possible by adding
-s [one of the headings shown above] e.g -s cumtime

into the command above. The final terminal command should look like this:
python -m cProfile -s cumtime rus.py inverse

There are three types of Python Profilers; these are ‘profile’, ‘cProfile’ and
‘hotshot’. I chose to profile with cProfile for this project because cProfile
produces less overhead and works with both Python and Cython implemen-
tations. Since I am using the same profiler, it will help me keep my profiling
results as consistent as possible.

After wrapping and rewriting the functions, Profilers are a good way to test
each function for its performance. Profilers provide a lot of details related to
each of the functions performance, but it is still required to run a wall clock
timer on the entire source code. This is because there could be background
processes related to Cython that we are not aware of, that could hinder that
performance of the overall code if we are not careful.

During the second half of this project, I was able to install and the pro-
file the C implementation. I had a bit of trouble with profiling the generated
C executable, so I asked Paul for some help. To profile the C code, gprof
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was required. This involved modifying the make file so that the terminal
commands would include gprof and that an output file would be generated
with all the profiling results. The make file has the following line of code:
CC = gcc

Changing this line to:
CC = gcc - pg

was the main changes made to allow profiling in C. Profiling is such a unique
and useful tool that I wish I found out about earlier, especially for one of my
courses where I had to write code for an assignment in the most optimized
way. If I did not find out about this tool, I would have used print statements
that printed out the total time taken to run each function. This approach
would not had been as accurate as profilers and would not provide as much
detail. I was lucky that my supervisor tasked me to look into this tool, as it
has really helped me understand the code better and it has really helped me
focus on particular parts of the code. This actually saved me a lot of time
because I didn’t have to worry about the functions that ran for 0.00 seconds.
Wrapping these code would not have made a difference so I was lucky I was
able to know this and not had to deal with them.

The profiling is also done on at least 100 iterations of the code so that I
can avoid any extra overhead that the profilers could produce when it starts
profiling. Running them at 100 iterations each 3 times and then comput-
ing the average also makes my profiling results more accurate. Please see the
next section for results. Although, there will always be overhead with the use
of profilers due to its intrusive behavior, it wont affect my results too much.
I am only interested in whether my results are faster or not after wrapping
and not really the “true” performance. Comparing the base Python results
with the Cython results is all I need to check whether I am on track or not.

7 Performance between C, Python and Cython

7.1 Performance of my Demo

During week 8 of semester 1, I was tasked to write a little demo showing
how Cython worked. I wrote a demo that wrapped one of the functions of
the RUS code. I decided to wrap the function ‘volintegral’ because it is one
of the most frequently called and slowest function. It was something that I
thought would be a good, simple and easy function to show my supervisors.
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I used profiling to test the performance of the code for the Python implemen-
tation of volintegral, it showed to be running at approximately 0.263 seconds:

ncalls tottime percall cumtime percall filename:lineno(function)
214350 0.263 0.000 0.263 0.000 rus_tools.py:807(

volintegral)

After wrapping the function, I ended up with the speed of 0.057 seconds:

ncalls tottime percall cumtime percall filename:lineno(function)
214350 0.057 0.000 0.060 0.000 rus_tools.pyx:808(

volintegral)

These times fluctuate and ranges from 76 to 80% faster than the pure Python
Code.

After my demo was demonstrated to my supervisors, my supervisor tested
the code’s performance against the C and pure Python code. The results are
as follows:

• Speed of C

– 29.545 seconds

• Speed of the Cython Implementation after wrapping the functions
volintegral and half of gamma_helper

– 13 minutes and 55.518 seconds

• Speed of Python

– 19 minutes and 16.073 seconds

These all ran at 100 iterations each, ran simultaneously and on the same
machine.

As you can clearly see, the C implementation is much faster than the other
implementations. By just wrapping one of the main functions that are con-
stantly being called, it has shown a very large increase in performance com-
pared to the pure Python code. The goal is to get as close as possible to the
original C implementation’s performance.
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7.2 Final Results and Comparisons

The following shows my final results after wrapping the main functions. I
tested the Cython implementation on the same machines so that I could
keep the results as consistent as possible. I used two machines, a desktop for
Windows and Linux, and a MacBook. I also made sure that my laptop was
plugged into a power socket to keep the results consistent. The following are
all measured in seconds, are performed at 100 iterations each and are for the
inverse code only. I chose to do these tests on the inverse code because it was
difficult to show the results for the performance of C’s forward algorithm
because the times were very low. Also, the inverse code calls the forward
code multiple times so showing the inverse code should be enough to get a
good representation of the performance increases.

7.2.1 Linux

- The wall clock time: C vs. Cython (.pyx file) vs. Python

Overall Run 1 Run 2 Run 3 Average
C 20.233 20.082 19.681 19.997

Cython 328.165 341.561 338.823 336.183
Python 586.143 598.744 591.379 592.089

- The wall clock time: C vs. Cython (.so file) vs. Python
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Overall Run 1 Run 2 Run 3 Average
C 20.233 20.082 19.681 19.997

Cython 346.459 334.156 338.566 339.727
Python 586.143 598.744 591.379 592.089

These wall clock results for the overall code performance shows that the
Cython code is around 44% faster than the Python implementation. Al-
though it is not as fast as C’s performance, it can still help save the end-users
quite a bit of time.

Here are some examples of the speed improvements that I have made to
the most called functions. I chose to show the following functions because
they are the main contributing factors to the performance of the overall code:

- volintegral

volintegral Run 1 Run 2 Run 3 Average
C 4.300 4.260 4.120 4.230

Cython 4.236 4.980 4.450 4.555
Python 17.090 17.860 17.430 17.460
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This is the fastest function that I got from using Cython. The performance
of this function is quite close to C and is significantly faster than Python. I
think the main reason why this function got the closest to C’s performance
is because it only performs simple calculations based on formulas. The main
computations in the function are also not based on a lot of different arrays
and lists. Although it does uses “dimensions”, it only uses it to retrieve data
and not store data, so it doesn’t affect the performance too much.

- The gamma functions

The gamma functions are a bit harder to show because the functions were
split into two functions when it was translated into Python. It was split be-
cause the code used in “dgamma_fill” and “gamma_fill” use the same code.
Paul has made a function called “gamma_helper” that both “dgamma_fill”
and “gamma_fill” call. The following are the results for just C and Python
for “dgamma_fill” and “gamma_fill”:

dgamma_fill Run 1 Run 2 Run 3 Average
C 1.980 1.910 1.860 1.940

Python 485.112 481.984 490.654 485.917

gamma_fill Run 1 Run 2 Run 3 Average
C 4.830 4.810 4.830 4.823

Python 47.347 48.165 49.681 48.398

The following are the Cython results
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Run 1 Run 2 Run 3 Average
dgamma_fill 302.288 298.585 300.965 300.613
gamma_fill 26.037 22.619 23.569 24.075
gamma_helper 309.435 301.222 303.213 304.623

The gamma functions did not get as close to C compared to volintegral. By
looking at the code, it deals with a lot of computations that involves arrays,
e.g. “tabs”, “dimensions” and “irk”. These as mentioned earlier, were hard to
wrap and could be the sole reason as to why it didn’t get as close to C. But
all the results show that it’s faster than Python.

- e_fill

e_fill Run 1 Run 2 Run 3 Average
C 4.98 4.98 4.95 4.97

Cython 12.601 11.654 12.485 12.238
Python 17.746 17.658 18.165 17.856
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This function showed the least improvement after wrapping the code. This
functions deals with a lot of arrays and actually creates its own array, per-
forms computations and stores it into the newly created array. These arrays
without wrapping them, would still run at Python’s performance and thus
shows little improvements.

7.2.2 Mac

- The wall clock time: Cython (.pyx file) vs. Python

.pyx Run 1 Run 2 Run 3 Average
Cython 531.656 528.774 536.849 532.426
Python 958.041 957.046 950.054 955.047
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- The wall clock time: Cython (.so file) vs. Python

.so Run 1 Run 2 Run 3 Average
Cython 542.632 523.159 536.038 533.943
Python 958.041 957.046 950.054 955.047

The overall performance of the Cython code on Mac was slower than on
Linux and Windows.
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7.2.3 Windows

- The wall clock time: Cython (.pyx file) vs. Python

.pyx Run 1 Run 2 Run 3 Average
Cython 349.627 340.098 336.409 342.045
Python 615.741 626.651 611.843 618.078

- The wall clock time: Cython (.pyd file) vs. Python

.pyd Run 1 Run 2 Run 3 Average
Cython 356.599 348.872 357.205 354.225
Python 615.741 626.651 611.843 618.078
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In summary, the following graphs shows all the overall times for each oper-
ating system:

The C results for Mac and Windows are not applicable as they cannot be
installed on those operating systems, hence not showing in the graph above.

Something to note: these are just some of my results that I found. They
are not official results. Although only 3 results are shown for each test, I
ran several tests throughout the day and picked the fastest results. For some
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reason the Linux and Windows results fluctuated a bit, but I found that
the Mac results were quite consistent. I would say that the final increase in
performance is around 44% +/- 2%.

8 Program Compatibility

Mac:

Python Version RUS Cython (.pyx) Cython (.so)
Python 2 X X X
Python 3 X X X

Although all of the above conditions work, there are a few things that needs
to be considered. The above conditions only works if the Anaconda (or equiv-
alent) package is installed. For troubleshooting purposes, if the Anaconda
(or equivalent) package is not installed, it will throw the following error:
error: "ImportError: No module named ’Scipy’

Cython would need to be installed and the files rebuilt if you intend to run the
pyrex files. Running them without rebuilding would result in a reduction in
performance compared to the Python version. I found that it could possibly
run slower than Python’s performance if it’s not properly built. Running
these files without Cython is possible by running the executable (.so file).
If the executable are built using Python 2, it will not work on Python 3, it
gives the following error:
Symbol not found: _PyString_Type

This is an anonymous function that is not recognizable by Python 3. I found
that it would be best to build it using Python 3 for backwards compatibility.

Also, the files that are built on a Mac OS are specific to Mac OS only,
it cannot be used on Linux and Windows.

Linux:

Python Version RUS Cython (.pyx) Cython (.so)
Python 2 X X X
Python 3 X X X

There are also a few things to note with the Linux version. They all also
require the Anaconda (or equivalent) package to be installed for it to work.
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For the pyrex files, just like for Mac, would require Cython to be installed
and the files rebuilt to see any performance gain. The executable are similar
to the Mac, but more specific, the executable built with Python 2 will only
work on machines with Python 2 installed. The Python 3 executable will only
work on machines with Python 3 installed, but I found that if your machine
has Python 3 installed, you can also run the Python 2 built executable by
running Python 2 instead of Python 3, e.g.
python2 -c "import rus" inverse

This makes it backwards compatible if you only have access to the Python 2
version of the executable.

Windows:

Python Version RUS Cython (.pyx) Cython (.pyd)
Python 2 X X X
Python 3 X X X

Installing and running Cython on Windows was far more difficult compared
to Mac OS and Linux. It involves more steps and modifying some of the
code to get it to work, these are all outlined in the “Installing and Running
the Cython Implementation” section under the Windows subsection. Again,
Anaconda or something equivalent is required for any of the RUS imple-
mentations to work. The RUS code works on Windows provided that either
Python 2 or 3 are installed, but this depends on which version you prefer
or already have installed. The Pyrex files work as well but it requires that
the Cython pyrex files to be rebuilt in order to benefit from the increased
performance. The executable do work but Python and Anaconda (or equiv-
alent) has to be installed for it to work. Cython is not required if you’re just
running the executable.

Something else to note with running the .pyd executable on Windows, its
not a normal .exe executable file where you can simply double click to get
it work. It can only be run from a command prompt or a develop prompt
using the proper commands which are mentioned earlier in this report. Some
people online has said that the .pyd files are simply .dll files, but running
it like a .dll file wont work either and would result in the following errors:
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Overall, I think that it’s best to run the Cython files on a Linux machine
or on a Mac. Although they all do work, the Windows installation involves
more steps during the installation phase, you have to modify the code and
you’re more likely to run into problems if you installed the wrong version, e.g.
installing the 64-bit version rather than the 32-bit. I found that installing
the wrong version causes some compiling errors, e.g.

9 Why Python is slower than C

As already mentioned earlier, the main motivation for wrapping C code into
and/or rewriting the original Python code was because Python is much slower
than C. There are several reasons why Python is slower, these are outlined
below:

9.1 Python Programming Language

Global Interpreter Lock (GIL)

A Global Interpreter Lock is a mechanism that is used by the Python in-
terpreter. It limits multiprocessing by making sure that only one thread ex-
ecutes a Python bytecode at a time. This is used to ensure that the Python
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Object model is safe against concurrent access. This decreases Python’s per-
formance because the GIL makes system calls incur a large overhead, which
is much more significant on a multi-core processor19.

Interpreted at runtime

Python is interpreted at runtime rather than compiled. When compiled,
a compiler can optimize the code for repeated or unused operations, which
can increase the performance of the code13.

Dynamically typed

Python is a dynamically typed language rather than statically typed. This
means that during execution, the Python interpreter does not know the vari-
able types of each of the defined variables. This makes programming more
convenient for the programmer, but this hinders the performance.

For example, by looking at the following C code:
int a = 1;
int b = 2;
int c = a + b;

The sequence of events:
1. Assign <int> 1 to variable "a"
2. Assign <int> 2 to variable "b"
3. Call binary_add<int, int> (a, b)
4. Assign the results to <int> variable c

During compilation, the compiler would know that the variables a, b and c
are integers. The compiler can then add the two integers and return another
integer which is a simple value located in memory.

The Python version is as follows:
a = 1
b = 2
c = a + b

The sequence of events:
1. Assign 1 to variable "a"

- Set variable a’s PyObject_HEAD’s "typecode" to an integer
- Set variable a’s "val" to 1

2. Assign 2 to b
- Set variable b’s PyObject_HEAD’s "typecode" to an integer
- Set variable b‘s "val" to 2
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3. Call binary_add(a, b)
- Find the "typecode" of a from a’s PyObject_HEAD
- When the variable type is found, retrieve a’s "val"
- Find the "typecode" of b from b’s PyObject_HEAD
- When the variable type if found, retrive b’s "val"
- Call binary_add<int, int> (a->val, b->val)
- After the addtion, store the results in "result"

4. Create a Python Object "c"
- Set c’s PyObject_HEAD’s "typecode" to an integer
- Set c’s "val" to "result"

The Python interpreter will not be aware that these are integers and will
treat these variables as Objects. During each execution of the Python code,
the Python interpreter has to inspect the “PyObject_HEAD” to find the
information on the type of the variable. When the type of the variable
is found, the appropriate addition routine is called. After computing the
result, a new Python Object must be created to store and hold the return
value. By comparing the sequence of events that occur at the assembly level,
Python’s sequence of events involves much more steps compared to C. The
more events that are running in the background, the longer the program
takes to execute20.

9.2 C Programming Language

There are two main reason why C is faster than Python, these include the fact
that C is compiled rather than interpreted and C is statically typed. These
two reasons are somewhat related because the compiler checks the variable
types during the compiling stage. Compilers convert the source code into
machine code, code that is compiled tend to have better performance com-
pared to those that are interpreted because the overhead of the translation
process is much higher for interpreters21.

10 GitHub

I started using GitHub Desktop to start learning the processes of how GitHub
works. I found that GitHub Desktop was a bit difficult to use as there wasn’t
much feedback. Most of the time, I spent searching online for solutions as I
wasn’t sure if I had done it correctly or not. For example, when I click on
“commit to master”, nothing happens after that so it was unclear whether
I’ve done it correctly or not. The first time I got it to work, I ended up in
the wrong branch due to the lack of feedback. Also, I was not able to see any
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of the files on GitHub Desktop, nor could I edit the files on the application.
It just detects the changes and highlights the differences. If I had to change
something, I had to change the files, then copy it to the GitHub Desktop
directory and then commit the changes. I could have changed the directory
of GitHub Desktop to the RUS files but I had to work on a lot of different
machines so it wasn’t centralized.

I found that Git Bash or a simple terminal are easier to use because you
can edit the files using “vim” and there are more feedback after each step. I
also knew exactly which branch I was committing to and I could also see all
the files I was working with. It was also colour coded when something is to
be committed or not. For example, when there are new files that needs to
the committed, it will be green and when it is committed and pushed, then
it will become red when you request for the status.

What I would recommend to others that are new to GitHub is to just dive
into using Git Bash rather than an GitHub application like GitHub Desktop.
Although GitHub Desktop looked easier, I found that it was much harder to
use compared to Git Bash. Git Bash definitely looked harder initially but
when I started to use it, I found it to be easier to use. Something that I
regretted was not using Git Bash from the start, while I was learning how to
use GitHub Desktop, I got it to work, but I didn’t actually learn the whole
concept of how it worked in the background. With Git Bash, I could see
every step and actually understand what I was doing.

There were a few things that I hated about GitHub, these were the ter-
minologies and concepts that they used. I found that the terminologies and
concepts used were quite confusing at times. For example, push, pull, com-
mit, clone, branches, master branch, my local branch, etc. I initially thought
that commit means that I was saving the files and updates directly to GitHub,
but later found out that commit only saves the changes and push is actually
the one that pushes it onto the GitHub page. After pushing it, I thought it
was on the page but had no idea I had to request a pull request so that the
admins or owners was able to accept these changes. Something that took
me a while to figure out was the fact that when I push the files to GitHub,
I was actually pushing to my own account’s version of the RUS code rather
than the actually RUS GitHub branch. This is when I actually started to
understand what a pull request was that actually transfers the files from my
own account to the RUS account.
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11 Weekly Log

Semester 1 Week 1 (Week starting 29 February 2016)

During the first week, we had a kick-off meeting with the Btech Information
Technology coordinator Sathiamoorthy Manoharan (Mano). We discussed
what we had to do and what was expected from us from the projects. Mano
gave us the option of finding our own projects or choose one from a list that
he gave us. I decided to choose a project from the list of eight that he sent
out. By the end of the week, Mano assigned me with the Resonant Ultra-
sound Spectroscopy project with Kasper van Wijk and Paul Freeman as my
supervisors.

Semester 1 Week 2 (Week starting 7 March 2016)

I had my first meeting on the 9th of March 2016 with my academic super-
visors Kasper Van Wijk and Paul Freeman. I also met Elvis Chuah who is
the other Btech student that is working on this project. During this meeting
we discussed what the project is about and what we would like to contribute
to the project. We mainly discussed the Graphical User Interface (GUI) and
optimization aspects of the project. I ended up choosing the optimization
side of the project, where I had to use wrapper functions to wrap C code
within Python to increase the performance.

Semester 1 Week 3 (Week starting 14 March 2016)

We had our second meeting this week, this meeting consisted of our su-
pervisor Kasper van Wijk giving us a demonstration in one of the physics
labs of how RUS worked. After the demonstration/ meeting, I was in charge
of writing and sending out an email that outlined what occurred during that
meeting. The email that I sent out was:

“The following is a summary of what we did today in our second meeting:
Kasper gave us a demo of what RUS is so that we could have a better un-
derstanding of the project. My understanding of what we did today (please
correct me if I’m wrong) is that through the experiment we were able to
determine the properties of a solid object without destroying it. With the
use of 2 transducers we were able to send signals with different frequencies
into the solid object and measure the resonance of the solid object. What
we are interested in for our project is the resonant amplitudes.
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My goals for this week is to:

• Further my understanding of RUS with what I learnt today and addi-
tional research

• Get a better understanding of Paul’s code

• Look at examples online on how to wrap C code within Python (through
Cython? I can’t remember what Paul recommended to look at)

We will have another meeting at the same time next week (Tuesday 22 March
at noon)”

As a bit of homework, I started doing some independent learning of what
RUS is and also started looking at the python implementation of RUS.

The following are my final goals and suggested dates of completion:

1. Research and recommend a Python method for wrapping C code (from
Cython and other options). (goal: 5 April)

2. Read through all Python code in the repository (maybe make a list
of which functions you understand and which you don’t). (goal: 22
March)

3. Check out your branch of the GIT repository (goal: 30 March)

4. Further research into RUS (goal: ongoing)

Semester 1 Week 4 (Week starting 21 March 2016)

What I have done up to this point is research on RUS for better understand-
ing and I’ve also gone through the Python implementation of RUS. I had
some trouble understanding some of the code but Paul Freeman explained it
to me. I also started cloning the GitHub respiratory to GitHub Desktop and
started writing my Btech report. So far, I’ve written the introduction.

Semester 1 Week 5 (Week starting 28 March 2016)

My goal for this week is to do some research on how I should optimize the
code using wrapper functions. I ended up choosing Cython because it allows
both C and Python code in one file. It also generated an executable which I
found could be quite useful. There were also quite a few forums online with
people talking about how fast Cython was, which made my decision easier.
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Semester 1 Week 6 (Week starting 4 April 2016)

This week, I described the tool that I’m going to be using for the project and
started doing research and learning the basics.

Semester 1 Week 7 (Week starting 11 April 2016)

After learning the basics, Paul wanted me to continue learning Cython and
to write a demo to show how it works. I also looked at Python profilers so
that I could test and find out which parts of the Python code were the slowest.

Semester 1 Mid-semester break (Week starting 18 April 2016)

No meeting and mid-semester break. I was preparing for my introductory
seminar that I will be presenting next week.

Semester 1 Week 8 (week starting 25 April 2016)

Continued to learn Cython and started to learn about Python profilers and
implemented it. I also had my introductory seminar this week.

Semester 1 Week 9 (Week starting 2 May 2016)

We had another meeting and I presented the output of the Python Pro-
filer implementation. This week I had to write my demo and present it next
week. I was told to wrap one of the RUS functions for the demo.

Semester 1 Week 10 (Week starting 9 May 2016)

No meeting – Kasper was busy. I continued to work on my demo. My
demo took longer than I originally thought to complete. I had a lot of com-
plications compiling the Python code into Cython. New due date for my
Demo is next week. I have also set a goal to complete a draft of my outline
to my mid-year report. I also wrote a few paragraph of my mid-year report
this week.

Semester 1 Week 11 (Week starting 16 May 2016)

This week, I presented my demo to me supervisors. I think they were happy
with the performance of ’volintegral’, I got it about 4 times faster than the
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original Python implementation. I also looked into and learned how to use
GitHub so that I could check my code onto GitHub, but I ran into some
trouble with some of the concepts of GitHub.

Semester 1 Week 12 (Week starting 23 May 2016)

During the meeting this week my supervisor, Paul, helped me with and
explained GitHub. Now my demo is on GitHub.

Semester 1 Week 13 (Week starting 30 May 2016)

For the final week before the break, I was working on the code and Python
profilers, so that I could test the performance of my wrapped code as I
wrapped them. I couldn’t profile the C implementation due to the difficul-
ties of installing the C version, but my supervisor has sent me some results
so that I could use them in my report and in my mid-year seminar.

————————————Inter-semester break————————————

During our inter-semester break, I worked on wrapping a bit more code and
preparing for the mid-year seminar. We had our mid-year seminars on the
15th of July.

Semester 2 Week 1 (Week starting 18 July 2016)

This was the first week back from the inter-semester break, this week we
didn’t have a normal meeting because my supervisors wanted to discuss my
mid-year report mark. I got some feedback and suggestions on how to fix
some of the problems discussed during meeting. Semester 2 Week 2 (Week
starting 25 July 2016)

We continued with our weekly meetings this week. This week I was tasked
to check the compatibility of my code on the 3 different operating systems
and also on Python version 2 and 3. Semester 2 Week 3 (Week starting 1
August 2016)

I presented my compatibility results to my supervisor. There were some
issues with Windows and I spent this week trying to fix those error. I man-
aged to get Cython installed and my code to build on windows. It generated
all the necessary files, but unfortunately the executable could not run. Run-
ning the pyrex file was possible.
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Semester 2 Week 4 (Week starting 8 August 2016)

During our meeting this week, our supervisor gave us a demo on how to
use GitHub via a terminal. There was a bug fix that we needed to get from
the PALabs/RUS repository into our code. Semester 2 Week 5 (Week start-
ing 15 August 2016)

I started working on installing the C implementation so that I could run
some tests. I also found that directly moving my code from one machine to
the next without rebuilding caused the code to be running at speeds that
were similar or slower than Python’s implementation. This was a major
problem that affected the how portable my code was. Semester 2 Week 6
(Week starting 22 August 2016)

This week I compared my codes performance to that of C’s and I found
out that some of the functions weren’t as fast as C’s speed, which was a big
problem. I then started looking into why this is.

Semester 2 Mid-semester break (Week starting 29 August 2016)

During the mid-semester break, I tried to improve the speed of the already
wrapped function. Unfortunately, I was still unable to improve the perfor-
mance. I tried to implement an Cython array as the Python used a lot of
different 2 dimensional arrays. This is where I found that implementing a
simple array in Cython deemed more difficult than anticipated.

Semester 2 Week 7 (Week starting 12 September 2016)

This week I told my supervisor about the problem I have with the arrays. I
still continued to work on it but my supervisor has suggested that the current
performance could be the limit.

Semester 2 Week 8 (Week starting 19 September 2016)

I continued to try and improve the performance of the code but still could
not improve the speed. My supervisor suggested I inline the functions from
rus_alloc.c, but this resulted in a lot of errors due to Cython’s limitations
with C and Python objects. I also started working on writing my final report
and thought about how I would test and present my results.
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Semester 2 Week 9 (Week starting 26 September 2016)

I gave my self 2 days to try and improve the final codes performance but
I had no break through. My supervisors has looked at my code and he has
suggested that it may not be worth the time and effort because the increase
in performance wont be significant. Since I was not able to improve the per-
formance, I focused on my report. I took out a few sections of my mid-year
report that I found was not too relevant to my final report and condensed
my report down. This week I added in 4.5 pages of new content and the final
word count was 6,004.

Semester 2 Week 10 (Week starting 3 October 2016)

This week I worked on getting my code into something that would be pre-
sentable and check it onto GitHub. I also worked on my final report, my
current word count is 10610. When I was reintalling the Cython code for the
installation of Cython section of this report, I was able to fix the executable
problem that I had from a few weeks ago. It is not working fine with both
the pyrex and executable files.

Semester 2 Week 11 (Week starting 10 September 2016)

I focused on my final report because my supervisors want a draft by the
17th of September so that I could get some feedback before the final report
was due. I did a lot of testing this week for the performance section of my
report.

Semester 2 Week 12 (Week starting 17 September 2016)

We had our final meeting this week to wrap up the whole project. This
week I prepared for my seminar which I will be presenting next week. I also
worked on my final report, which is also due next week.

12 Weekly Meetings

We had weekly meetings throughout this project. During each meeting we
discussed the issues we had, what we did in the last week, what we wanted
to do the following week and set some short or long term goals. I found that
having these weekly meetings kept me on track with this project. Knowing
that I had the meetings and deadlines to meet each week kept me motivated
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and on track with the workload. Without these weekly meetings, I think
would fall behind on the work really quickly. Having these weekly meetings
also gave me some experience with working in a team where we discussed
and shared ideas, which is going to be very useful in life and especially when
I start working. Ultimately, I found that having these weekly meetings gave
me some structure and increased my overall productivity.

I also learned new things during these meetings because my meetings also
included the other BTech student, Elvis, where he tackles the GUI aspects of
the project. Although I am not working on the GUI aspects of the project, I
can see his progress and actually learn a few things about the GUI aspects.
Listening to what he had to say or the questions that he had also helped
with my project because it gave me another perspective on how a specific
code worked. Also, explaining or sharing what we had both learnt during
some of the meetings also enhanced my understanding. Sometimes, my su-
pervisors would ask me specific questions that would actually challenge my
understanding further. I did not always know the answer but I tried my best
to find out and present my findings in our next meeting.

These meetings were not too long nor too short. On average, they usu-
ally last around 15 minutes, which is very manageable each week. After each
meeting, we send out a summary of what we talked about and what our goals
were. I found this very useful when we started to write our mid-year or final
reports because it helped with the writing process. Reading through these
weekly summaries helped remind myself of the different ideas we discussed,
what we did and what we learnt. I also had some of my problems along
with some screenshots in the emails which I used in this report. These are
all shown in the “Weekly Log” section of this report and it has shown the
amount of work I am have done throughout this project.

These meetings also help improve my confidence. I am a very quiet and
introverted person that doesn’t really work well in a team, but having these
meetings every week has helped with this. Each time we had our meetings
I try to push myself into talking more and sharing my ideas. I found that
I got more confident and comfortable after each meeting progressed, and I
was able to share more ideas and ask more questions.

There were also some demonstrations from Paul on how to use GitHub dur-
ing our meetings, which I found to be very useful because neither I nor Elvis
has really used GitHub before. There was a demonstration before we started
using GitHub followed by some instructions in the emails he sent out. We
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then attempted them and we asked questions the following week if we didn’t
understand it. He also showed us or fixed any problems we encountered dur-
ing the next meeting(s).

As mentioned earlier, during each meeting, we are required to set some goals
for the up coming weeks, these goals are quite specific and do not exceed 3
or 4 weeks. I found this quite useful because I was not stuck with doing the
same thing each week, each week usually consisted of something new I had
to do or something that I had to learn with some existing material.

I would highly recommend having weekly meetings in every project that
we encounter. It doesn’t matter if it’s a large or small project, having weekly
meetings would make the project run smoother with a better outcome in the
end. When we first started this project, I personally was terrified about the
idea of having weekly meetings. There were several reasons why:

1. I hated that it was every week

2. I thought that communicating online would be better

3. I was worried about the criticism that I would get weekly on my work

4. I thought it would get repetitive after a few weeks

Let me elaborate on these points, 1. I was worried that there was going to
be too much work that I had to complete before the next meeting and that I
would struggle with the workload. What I have discovered after a few weeks
were that the tasks for each week were flexible. If I was busy that week or if
I had other commitments, then I could talk to my supervisors and work out
something that would mutually work. 2. Initially, I thought communicating
online was better but I quickly found that meeting in real life was a better
approach. There were things such as the peaks on the graphs that would
be better explained on a whiteboard in person than online. 3. I’ve always
feared criticism on my work and I would always avoid it when I could, but
I’ve found that criticism has helped improve my work and it has opened my
eyes to a new perspective to tackle the problem. Sharing my ideas with my
supervisors to see what they think, I found actually gave me confidence in
my work. I remember after my first demo, my supervisor was really happy
with the speed that I got after wrapping one of the functions that actually
motivated me. 4. I thought that meeting weekly when our work was due
in a week or 2 was going to get repetitive but I found that even though our
work was set for a couple of weeks to complete, I could tell them or show

53



them what I’ve done so far. This not only confirms whether I am on the
right track or not but it also gives me another perspective on how to solve
that problem or what the most efficient way to approach the task is.

From these points, it has shown that weekly meetings are very effective and
it can help with the tasks that I got. Although there were things that I
terrified or was worried about, these weekly meetings has changed me and
given me a bit more confidence when doing projects or group meetings. It
has given me confidence because I was able to step out of my comfort zone
and experience first hand what it felt like working on a project in a group.
Since the meetings were every week, I felt that I got more and more practice
that lead to more confidence. I still have a long way to go before I am very
confident in working, talking or leading a group but this has shown me that I
should always step out of my comfort zone and challenge myself to do better.
If I had the choice of choosing whether I would have weekly meetings or not,
I would definitely choose to have them.

13 What I wished I did differently

When I started this project, one of my goals for the first few weeks was to
understand the Python code. Something that I should have done as well was
to try and understand the C code. Maybe if I had a better understanding of
the C code, I would be able to detect that Cython may not have been the
best tool to use for this project. Also, understanding the C implementation
early could have helped me wrap the code faster. I remember spending most
of my time trying to figure out and understand how the C implementation
worked rather than the actual wrapping itself.

As a requirement for BTech, we are all required to do 3 seminars, an in-
troductory, mid-year and final seminar to showcase our progress throughout
the project. I think a lot of the Btech students would agree that we should
cut out the seminars part of the requirements, but I found that there are
some advantages in doing seminars, these are they help build my confidence,
I got to learn new things from other BTech students, I got a better under-
standing of my own project and I got some criticism from other supervisors.
During the questions and answers part of my mid-year seminar, one of the
other supervisors suggested/hinted that it would be impossible for me to im-
prove the speed of Python to C’s performance, this was something that I did
not believe at the time and is something that I now regret not considering
as a possibility. I chose to ignore what he said due to what I read online
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on Cython and what I experienced when I was working on my demo for my
supervisors. When I was writing my demo I was able to wrap a function
that got really close to C’s performance, which is actually the closest I got
to C’s performance throughout my entire project. This actually gave me
some confidence that I was able to wrap the whole code and this might have
been the biggest reason why I chose to ignore him. Something that I should
have done was wrap a function that performed more complicated operations
rather than simple formulated calculations for my demo.

I really wished that I installed the C implementation and profiled it earlier
on in the project. I was blindly wrapping the C code within Python without
actually having a goal to work towards in terms of the performance increase
for each function. After wrapping some of the functions, I thought that they
would be the limit, but I was wrong. When I profiled the C implementation
in semester 2, I found that a lot of the functions that I have already wrapped
weren’t as fast as I had hoped. The main reason why I didn’t implement C
implementation earlier was due to time constraints and because of the level
of difficulty to install and run. I made it a goal to get the C implementation
installed and running in semester 2. By this time the C implementation was
much easier to install because my supervisor, Paul, created a new version
of the C implementation by cleaning up the dependencies that the original
implementation had. This was done during the inter-semester break and I
was able to install it during semester 2.

During my initial wrapping of the functions before I compared the perfor-
mance results to C, I ignored the creation of the arrays phase as they were
implemented using numpy.array. The reason why I chose to ignore them
were because I read that creating arrays using numpy.array was quite effi-
cient compared to creating them in Python. My initial thoughts were that
they were quite close to C’s performance, but I have now seen that it isn’t.
As described earlier, creating arrays in Cython was extremely difficult and
time consuming, if I had attempted to create these arrays using Cython ear-
lier on in the project, I could have told my supervisors that it would be
impossible to achieve C’s performance early and looked into other solutions
instead. I only found out that the numpy.array were not fast enough when
I installed the C implementation, profiled it and compared it with Cython’s
performance. By this time, it was roughly halfway through semester 2 and
looking at alternative solutions would not have been a good idea so I kept
attempting to implement the arrays in Cython.

I looked into several tools that would help improve the performance of Python,
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these are all listed in the alternatives of Cython subsection. When I was look-
ing into these tools, I should’ve taken some time to actually implement each
tool into the RUS code. This would have taken me longer to do but if I had,
I could have easily identified which tool worked best instead of finding that
out halfway through the project. Learning these different tools early on in
the project could have also helped me write better and efficient Cython code
as all these tools are fairly similar to Cython.

I spent most of the second half of the project trying to find different ways
to implement different aspects of the already wrapped code so that I could
improve the performance further. My supervisor also hinted that the per-
formance of the already wrapped code could just be the limit and trying to
implement different aspects of the code, for example, the arrays, wouldn’t of
had a huge impact on the performance. This was something that I should
have listened to, if I had listened and didn’t try to implement the code fur-
ther, I could have made more progress in terms of the project in the second
half.

There were also a lot of different formulas that were involved, although I
didn’t necessary needed to understand the formulas used, I believe that it
could have helped. Cython alone could be considered a language on its own
and I think that if I was able to understand how all the formulas worked, I
could have written more efficient code, by moving the code or by changing
how each function was called. Most of the formulas were just copied and
pasted from C or slightly tweaked without any real knowledge of how they
worked.

14 Further implementations or improvements

Since I spent most of the second half trying to improve the performance of
the already wrapped code, I ended up wasting a lot of time which I could’ve
used to help further develop the RUS project. There were some things that
I wanted to do for the project:

• Create a Makefile

– After being exposed to the Makefile when I as trying to profile the
C implementation, I really wanted to learn and try to implement
it for Cython. I ran out of time so I wasn’t able to learn and
implement it.
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• Dimensions problem

– Kasper mentioned that there was something wrong with the di-
mensions as parameters in the code. This is where some of the
dimensions variables weren’t used but they were still shown or be-
ing used in some way. This is something that I could’ve helped
with if I had extra time at the end of the project.

• Testing aspects of RUS

– During our early meetings for this project, we had a choice be-
tween 3 parts of the project. These were the performance, GUI
and testing parts. The testing part could have been something
that I could’ve started on if things went according to plan and
if I had some free time at the end. This part was to make sure
that the code did what is was intended to do. This would have
involve actually performing the physics experiment in the labs and
comparing the results.

15 My Contribution to RUS

The Cython implementation has improved the performance of the Python
implementation and has made it easier to distribute and use. As you have
already seen in the performance section of this report, the Python imple-
mentation runs for 592.089 seconds at 100 iterations, which could be costly
to the end users. The end users are likely to be geoscientists, these geosci-
entists run and test multiple samples each day, the more samples that they
can run in the day, the more that they can accomplish. The Cython code
is about 44% faster than Python so the geoscientists would roughly double
their productivity. Although the newer C implementation is now easier to
install, the Cython implementation is much easier to distribute and use due
to its enhanced portability. It’s executable can be used on any system that
these geoscientists use, as their systems would definitely have Python and a
package like Anaconda installed. Since it’s an executable, no other installa-
tion is required, the geoscientists can just download and execute using the
proper commands.

16 Conclusion

In conclusion, the RUS project deals with many different formulas and cal-
culations that involve a lot of repeating and calling of different and specific
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functions within RUS. I’ve looked at several different implementations for
wrapping C code within Python and have decided to choose Cython to in-
crease the performance of the Python implementation because it allows the
interchangeability between C and Python within one file called a Pyrex file.
It also generates an executable which could be very beneficial for portability
reasons.

Initially, before I started any coding/wrapping, I thought that after wrap-
ping the functions, I would be able to get an overall time that was closer to
the performance of C. In the end, I was not able to reach C’s performance
but I did get the code to run faster than the Python implementation. I am
a little disappointed that I was not able to get it as fast as C’s performance
but I tried my best. Maybe if I had chosen another tool or had more time
to implement the arrays in Cython, I would have been able to get something
faster than what I have now.

Although the performance of the end result was not what I had hoped, I
did contribute something to the RUS project. There is now something in
between the C and Python implementations. I have created something that
combined the best of both C and Python. I have increased the performance
of the Python implementation to something closer to the C implementation
and I’ve also made it easier to install which is what the translation into
Python version was for.

Overall, I really enjoyed the project and I’ve definitely learned a lot of new
skills that I will definitely take into the future. I feel that after completing
this project, I have also developed and improved as a person. I used to find
it really hard to work with people, communicate with people and present in
front of people, but I’ve improved quite a bit this year. I can honestly say
that this project has really helped with this and I’m very grateful. I couldn’t
have done this without my supervisors Paul Freeman, Kasper van Wijk and
Sathiamoorthy Manoharan (Mano). Thank you very much for the constant
support throughout this year. I really appreciate it.
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18 Appendix

A. Example of Cython Code

C implementation:
1 double volintegral (double d1, double d2, double d3, int l,
2 int m, int n, int shape)
3 {
4 if ((l%2==1) || (m%2==1) || (n%2==1)) return 0.0;
5 else
6 switch (shape) {
7
8 /* ell. cylinder shape */
9 case 1: return 4.0*PI*pow(d1, l+1)*pow(d2, m+1)*

10 pow(d3, n+1)/(double)(n+1)
11 *doublefact(l-1)*doublefact(m-1)/doublefact
12 (l+m+2);
13
14 /* spheroid shape */
15 case 2: return 4.0*PI*pow(d1, l+1)*pow(d2, m+1)*
16 pow(d3, n+1)
17 *doublefact(l-1)*doublefact(m-1)*doublefact(n-1)/
18 doublefact(l+m+n+3);
19
20 /* rp shape */
21 default: return 8.0/((l+1)*(m+1)*(n+1))*pow(d1, l+1)*
22 pow(d2,m+1)*pow(d3, n+1);
23 }
24 }

The Python Implementation:

1 def volintegral(dimensions,l,m,n,shape):
2 global _memo_vol_max
3 global _memo_volintegral
4
5 hl = l//2
6 hm = m//2
7 hn = n//2
8 small = hl < _memo_vol_max and hm <
9 _memo_vol_max and hn < _memo_vol_max

10
11 if small and _memo_volintegral[hl][hm][hn]:
12 return _memo_volintegral[hl][hm][hn]
13
14 # ell. cylinder shape
15 if shape == 1:
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16 ds = dimensions[0]**(l+1) * dimensions[1]**(m+1)
17 * dimensions[2]**(n+1)
18 df_lm = doublefact(l-1) * doublefact(m-1)
19 result = 4.0 * scipy.pi * ds / (n+1) * df_lm
20 / doublefact(l+m+2)
21
22 # spheroid shape
23 elif shape == 2:
24 ds = dimensions[0]**(l+1) * dimensions[1]**(m+1)
25 * dimensions[2]**(n+1)
26 df_lm = doublefact(l-1) * doublefact(m-1)
27 df_all = doublefact(l+m+n+3)
28 result = 4.0 * scipy.pi * ds * df_lm
29 * doublefact(n-1) / df_all
30
31 # rp shape
32 else:
33 result = 8.0 / ((l+1) * (m+1) * (n+1)) * ds
34
35 if small:
36 _memo_volintegral[hl][hm][hn] = result
37
38 return result

Cython Implementation:

1 cpdef volintegral(dimensions, int l, int m, int n, int shape):
2
3 global _memo_vol_max
4 global _memo_volintegral
5
6 hl = l//2
7 hm = m//2
8 hn = n//2
9 small = hl < _memo_vol_max and hm < _memo_vol_max and hn <

_memo_vol_max
10
11 if small and _memo_volintegral[hl][hm][hn]:
12 return _memo_volintegral[hl][hm][hn]
13
14 /* ell. cylinder shape */
15 if shape == 1:
16 result = 4.0*scipy.pi*pow(dimensions[0], l+1)*pow(dimensions

[1], m+1)*pow(dimensions[2],n+1)/<double>(n+1)*doublefact(l
-1)*doublefact(m-1)/doublefact(l+m+2);

17
18 /* spheroid shape */
19 elif shape == 2:
20 result = 4.0*scipy.pi*pow(dimensions[0], l+1)*pow(dimensions
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[1], m+1)*pow(dimensions[2], n+1)*doublefact(l-1)*
doublefact(m-1)*doublefact(n-1)/doublefact(l+m+n+3);

21
22 # rp shape
23 else:
24 result = 8.0/((l+1)*(m+1)*(n+1))*pow(dimensions[0],l+1)*

pow(dimensions[1],m+1)*pow(dimensions[2], n+1);
25
26 if small:
27 _memo_volintegral[hl][hm][hn] = result
28
29 return result

B. Function: ’index_relationship’

1 cpdef index_relationship(int *itab, int *ltab, int *mtab,
2 int *ntab, int d, int *irk):
3 """
4 Creates and returns tabs and irk data.
5
6 tabs and irk are used in future functions.
7 This function populates them based on the
8 values of d.
9

10 TODO: Improve description of what this
11 function is actually doing and why.
12 """
13
14 #ORIGINAL
15 # Since this function creates and returns ’tabs’, I will be

modifying the following:
16 # tabs = numpy.zeros((int(problem_size), 4), dtype=numpy.

int64)
17
18 # cpdef int tabs[problem_size][4]; GIVES ERROR: "Not allowed

in a constant expression" - slow?
19
20 # cdef int *tabs = <int *>malloc(problem_size * 4 * sizeof(

int));
21
22 """
23 This works but type error because when called from e_fill,

it requires an int.
24 cpdef list[:, :] tabs = numpy.empty((problem_size, 4), dtype

=list);
25 http://stackoverflow.com/questions/19054756/arrays-of-arrays

-in-cython
26 """

63



27
28 """
29 http://stackoverflow.com/questions/25974975/cython-c-array-

initialization
30 Example:
31 cdef int mom2calc[3]
32 mom2calc[:] = [1, 2, 3]
33
34 cdef int mom2calc[3][3]
35 mom2calc[0][:] = [1, 2, 3]
36 mom2calc[1][:] = [4, 5, 6]
37 mom2calc[2][:] = [7, 8, 9]
38 """
39 #irk = [0 for i from 0 <= i < 8] not needed for now
40
41 # Separating and recreating ’tabs’
42
43 """
44 cdef int itab[r];
45 cdef int ltab[r];
46 cdef int mtab[r];
47 cdef int ntab[r];
48 """
49
50 """
51 cdef int *itab = <int *>malloc(r);
52 cdef int *ltab = <int *>malloc(r);
53 cdef int *mtab = <int *>malloc(r);
54 cdef int *ntab = <int *>malloc(r);
55 """
56
57
58 """
59 cdef array.array[int] itab = array.array(’i’, 0)
60 cdef array.array[int] ltab = array.array(’i’, 0)
61 cdef array.array[int] mtab = array.array(’i’, 0)
62 cdef array.array[int] ntab = array.array(’i’, 0)
63 """
64 # http://cython.readthedocs.io/en/latest/src/userguide/

external_C_code.html
65 # https://github.com/cython/cython/wiki/FAQ
66 # http://telliott99.blogspot.co.nz/2010/12/cython-3-my-own-c-

source-file.html
67
68 """
69 cdef r = 3*(d+1)*(d+2)*(d+3)/6;
70
71 cdef int *itab
72 global itab

64



73 itab=alloc1int(r);
74
75 cdef int *ltab
76 global ltab
77 ltab=alloc1int(r);
78
79 cdef int *mtab
80 global mtab
81 mtab=alloc1int(r);
82
83 cdef int *ntab
84 global ntab
85 ntab = alloc1int(r);
86 """
87
88 """
89 C Version:
90 cpdef int r = 3*(d+1)*(d+2)*(d+3)/6;
91
92 itab=alloc1int(r);
93 ltab=alloc1int(r);
94 mtab=alloc1int(r);
95 ntab=alloc1int(r);
96 """
97 cpdef int ir = 0;
98
99 # k == 0

100 for i from 0 <= i < 3:
101 for l from 0 <= l < (d + 1):
102 for m from 0 <= m < (d - l + 1):
103 for n from 0 <= n < (d - l - m + 1):
104 if (i == 0 and l % 2 == 0 and m % 2 == 0
105 and n % 2 == 0) or \
106 (i == 1 and l % 2 == 1 and m % 2 == 1
107 and n % 2 == 0) or \
108 (i == 2 and l % 2 == 1 and m % 2 == 0
109 and n % 2 == 1):
110 # tabs[ir] = [i,l,m,n]
111 itab[ir] = i;
112 ltab[ir] = l;
113 mtab[ir] = m;
114 ntab[ir] = n;
115 ir += 1;
116 irk[0] += 1;
117 # k == 1
118 for i from 0 <= i < 3:
119 for l from 0 <= l < (d + 1):
120 for m from 0 <= m < (d - l + 1):
121 for n from 0 <= n < (d - l - m + 1):
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122 if (i == 0 and l % 2 == 0 and m % 2 == 0
123 and n % 2 == 1)

or \
124 (i == 1 and l % 2 == 1 and m % 2 == 1
125 and n % 2 == 1)

or \
126 (i == 2 and l % 2 == 1 and m % 2 == 0
127 and n % 2 == 0):
128 # tabs[ir][:] = [i,l,m,n]
129 itab[ir] = i;
130 ltab[ir] = l;
131 mtab[ir] = m;
132 ntab[ir] = n;
133 ir += 1;
134 irk[1] += 1;
135 # k == 2
136 for i from 0 <= i < 3:
137 for l from 0 <= l < (d + 1):
138 for m from 0 <= m < (d - l + 1):
139 for n from 0 <= n < (d - l - m + 1):
140 if (i == 0 and l % 2 == 0
141 and m % 2 == 1 and n % 2 == 0) or \
142 (i == 1 and l % 2 == 1
143 and m % 2 == 0 and n % 2 == 0) or \
144 (i == 2 and l % 2 == 1
145 and m % 2 == 1 and n % 2 == 1):
146 # tabs[ir][:] = [i,l,m,n]
147 itab[ir]=i;
148 ltab[ir]=l;
149 mtab[ir]=m;
150 ntab[ir]=n;
151 ir += 1;
152 irk[2] += 1;
153 # k == 3
154 for i from 0 <= i < 3:
155 for l from 0 <= l < (d + 1):
156 for m from 0 <= m < (d - l + 1):
157 for n from 0 <= n < (d - l - m + 1):
158 if (i == 0 and l % 2 == 0
159 and m % 2 == 1 and n % 2 == 1) or \
160 (i == 1 and l % 2 == 1
161 and m % 2 == 0 and n % 2 == 1) or \
162 (i == 2 and l % 2 == 1
163 and m % 2 == 1 and n % 2 == 0):
164 # tabs[ir][:] = [i,l,m,n]
165 itab[ir]=i;
166 ltab[ir]=l;
167 mtab[ir]=m;
168 ntab[ir]=n;
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169 ir += 1;
170 irk[3] += 1;
171 # k == 4
172 for i from 0 <= i < 3:
173 for l from 0 <= l < (d + 1):
174 for m from 0 <= m < (d - l + 1):
175 for n from 0 <= n < (d - l - m + 1):
176 if (i == 0 and l % 2 == 1
177 and m % 2 == 0 and n % 2 == 0) or \
178 (i == 1 and l % 2 == 0
179 and m % 2 == 1 and n % 2 == 0) or \
180 (i == 2 and l % 2 == 0
181 and m % 2 == 0 and n % 2 == 1):
182 # tabs[ir][:] = [i,l,m,n]
183 itab[ir]=i;
184 ltab[ir]=l;
185 mtab[ir]=m;
186 ntab[ir]=n;
187 ir += 1;
188 irk[4] += 1;
189 # k == 5
190 for i from 0 <= i < 3:
191 for l from 0 <= l < (d + 1):
192 for m from 0 <= m < (d - l + 1):
193 for n from 0 <= n < (d - l - m + 1):
194 if (i == 0 and l % 2 == 1
195 and m % 2 == 0 and n % 2 == 1) or \
196 (i == 1 and l % 2 == 0
197 and m % 2 == 1 and n % 2 == 1) or \
198 (i == 2 and l % 2 == 0
199 and m % 2 == 0 and n % 2 == 0):
200 # tabs[ir][:] = [i,l,m,n]
201 itab[ir]=i;
202 ltab[ir]=l;
203 mtab[ir]=m;
204 ntab[ir]=n;
205 ir += 1;
206 irk[5] += 1;
207 # k == 6
208 for i from 0 <= i < 3:
209 for l from 0 <= l < (d + 1):
210 for m from 0 <= m < (d - l + 1):
211 for n from 0 <= n < (d - l - m + 1):
212 if (i == 0 and l % 2 == 1
213 and m % 2 == 1 and n % 2 == 0) or \
214 (i == 1 and l % 2 == 0
215 and m % 2 == 0 and n % 2 == 0) or \
216 (i == 2 and l % 2 == 0
217 and m % 2 == 1 and n % 2 == 1):
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218 # tabs[ir][:] = [i,l,m,n]
219 itab[ir]=i;
220 ltab[ir]=l;
221 mtab[ir]=m;
222 ntab[ir]=n;
223 ir += 1;
224 irk[6] += 1;
225 # k == 7
226 for i from 0 <= i < 3:
227 for l from 0 <= l < (d + 1):
228 for m from 0 <= m < (d - l + 1):
229 for n from 0 <= n < (d - l - m + 1):
230 if (i == 0 and l % 2 == 1
231 and m % 2 == 1 and n % 2 == 1) or \
232 (i == 1 and l % 2 == 0
233 and m % 2 == 0 and n % 2 == 1) or \
234 (i == 2 and l % 2 == 0
235 and m % 2 == 1 and n % 2 == 0):
236 # tabs[ir][:] = [i,l,m,n]
237 itab[ir]=i;
238 ltab[ir]=l;
239 mtab[ir]=m;
240 ntab[ir]=n;
241 ir += 1;
242 irk[7] += 1;
243
244 print("irk[0]=" + str(irk[0]))
245 print("irk[1]=" + str(irk[1]))
246 print("irk[2]=" + str(irk[2]))
247 print("irk[3]=" + str(irk[3]))
248 print("irk[4]=" + str(irk[4]))
249 print("irk[5]=" + str(irk[5]))
250 print("irk[6]=" + str(irk[6]))
251 print("irk[7]=" + str(irk[7]))
252
253 return *itab, *ltab, *mtab, *ntab, *irk
254 # ERROR: rus_tools.pyx:1254:33: Cannot convert
255 ’int *’ to Python object if I use alloc
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