HTML1st—A Lightweight Dynamic Web

by

Boyang Tang

Supervisor: Dr Sathiamoorthy Manoharan

BTech 451 Final Report

Tamaki Campus
Department of Computer Science
The University of Auckland
New Zealand

October 2016

Abstract

This report is for my final year BTech project. My project is intended to build a light-
weight C# engine that handles Server-side Scripting, the engine will convert HTML pages
embedded C# code fragments to pure HTML pages. This report will illustrate what tasks |
have done and what open problems still exist, and discuss serval challenges that occurred
throughout the year. The researches, design, implementation, and evaluations of my
project are all discussed in this report.

Acknowledgments

I would like to express my very great appreciation to my academic supervisor
Dr. S. Manoharan for his patient guidance and encouragement. |1 would also like to thank
all those who provide valuable and constructive suggestions in completing the project and
writing this report. Last but not least, many thanks to my parents for their supports.

Boyang Tang
Auckland
October 21, 2016

Contents

Abstract ii
Acknowledgements
iii
Contents iv
1 Introduction 1
1.1 ProjeCtOVervieW. o o e 1
1.2 Expected OutcOomes. 2
1.3 ReportStructure. 3
2 Project Basics 5
2.1 Programming Knowledge Overview 5
211 CH.INET. e 5
2.1.2 .NET Framework 6
2.1.3 Difference between Framework and Library 8
2.2 Reflection and Dynamically Loading. 10
2.2.1 Reflectionin .NET. 10
2.2.2 Dynamically Loading ASSEMbBIYcccoviiieiiiiiececee e 13
3 HTMLI1st Design 15
TR Yo] o] (o I Ta o T o =SSOSR 15
3.1.1 Scripting Language OVEIVIEW...........cccerererieieieene s 15
3.1.2 CHent-Side SCHPLINGcciiiiiiiiierie it 17
3.1.3 Server-Side SCIIPLINGcccoviiiiiiee e 18
3.2 Treating C# like A SCripting LanQUAgEccoviveiieiieeiese e 21
3.3 HTIMIL PAISEI ..ttt ettt bbbt bbbt ab e sb e e nbeenbeens 25
3.3.1 HTML AQIlItY PACK ...ocviiiiiiieiieeeeeeee et 25
3.3.2 Processing INSrUCTIONc.oiviieieieee e 27
3.3.3 Second plan .29
4 Implementation 29
4.1 EXternal LiDraries.o et e e e e e 29
4.2 ParsiNg HTML ... e e e e e e 30
4.3 Using the compiled COUB. ... e e e 32
4.4 Producing pure HTML file.....cooo i e 34
45 OptiMIZation DESIGN.ttt et e e e e e 36
5 Evaluation 38
700 A =T 1 T 38
6 Conclusion 46

7 Appendixes

8 Bibliography

48

57

Chapter 1

Introduction

This section will give an overall introduction of my project, it illustrates the goal that my
project is designed for, and what do | hope to gain from this project, and then conclude
the report pattern.

1.1 Project Overview

As so far, the html parser has been widely used in collecting specific data from the
intended HTML sources, where these data would motivate the subsequent development
activities. With the rise in requirements of acquiring dynamic information, it is becoming
essential to build an efficient and effective engine that can satisfy this attempt, however,
my project is to create a light-weight C# engine that can handle two main functional
domains which are parsing HTML files and converting a HTML file with embedded C#
code fragments to a pure HTML file.

As we know, nowadays for making dynamic and interactive Web pages. Some powerful
tools such as PHP and ASP.NET have been wildly used, but why also do we need to
create another alternative approach such like HTML1st. Take PHP for instance, PHP is
not light-weight, someone cannot see the contents if without running the PHP script, and
it is too costly or time-consuming for people to write such a lot of script when they decide
to build a large application. Additionally, there may have some security issues, since it is
open sourced, so all people can see the source code, if there are bugs in the source code, it
can be used by people to explore the weakness of PHP. While my task is to designed a
light-weight engine that gives a convenience to people who want to make a dynamic Web,
this engine saves a lot of time and avoids the security issues.

We want to have C# function calls within <? ... ?>, here is a very simple example that
shows the expected ability of this C# engine.

E.g.,

<html>

<head><title></title></head>

<body>

<p>

Here is how I would greet you: <? GetGreeting(''Boyang'); ?>
</p>

<p>

Here i1s when I would greet you: <? DateTime.Today; 7>
</p>

</body>

</html>

Chapter 1. Introduction

Assuming the call GetGreeting() returned "Boyang", and the call DateTime.Today
returned current date and time.

<html>

<head><title></title></head>

<body>

<p>

Here i1s how 1 would greet you: Hello Boyang
</p>

<p>

Here i1s when I would greet you: Sun May 29 2016 21:10:04 GMT+1200
</p>

</body>

</html>

This illustrates HTML pages with some embedded C# fragments and these fragments will
be replaced by the output of running these fragments.

1.2 Expected Outcomes

--Enhance individual programming skills and formal report writing skills.
--Enhance my collaborative abilities of working one-on-one with supervisor.
--Sharpen my critical and analytical thinking skills.

--Gain individual research skills

Chapter 1. Introduction

1.3 Report Structure

The remainder of this report will explain some details as follows: the chapter 2 will
explain project basics which contains the program language, language Framework and
some powerful feature given by that framework. The chapter 3 explains serval aspects of
project development. And the chapter 4 will describe the project implementation. After
that, the testing and evaluation will be shown in chapter 5. Lastly, the chapter 6 gives a
summary and conclusion of my whole year project.

Chapter 1. Introduction

Chapter 2

Project Basics

This section will introduce the basic knowledge and background of my project, it contains
the program language, framework and some powerful features or functionality that
provided by which framework.

2.1 Programming Knowledge Overview

211 C#NET

First of all, C# programming language is a modern language created by Microsoft and it
is same as VB.NET, Managed C++, and F# which is a part of .NET languages that
capacitate developers to build a diverse range of applications which run on the .NET
Framework [1]. Based on acknowledge of C, C++ or Java programming language, it is
not hard to recognize similarities of syntax among these languages. However, compared
to C++, C# is able to reduce the time that may be taken by users to employs it during
development processes due to optimizing the complexities of syntax. In addition, some
incredible useful functions which cannot be found in Java while provided by C# such
like nullable value types, enumerations, delegates, lambda expressions and direct
memory access [2]. Furthermore, some other advantages such as C# supports generic
methods and Language-Integrated Query (LINQ) expressions, which means the former
convenience facilitates the implementations of specific collection behaviours and the
latter one improves the time mobility of developers during writing code.

Chapter 2. Project Basics

2.1.2 .NET Framework

The .NET Framework is a software technology created by Microsoft that enables C#
programs to run on it. Once you install .NET Framework, it creates a type-safe and
object-oriented programming environment which supports developing and running a
branch of various applications and XML Web services. The attempt of .NET Framework
is not only to provide a capability of orderly accessing code database and Web-based
applications but also to afford an interoperability of serval programming languages,
which means a consistent code-execution environment is possible to minimize
versioning conflicts.

Based on studies of [3], the .NET Framework is combined of two fundamental
components which are Common-Language-Runtime (CLR) and Framework-Class-
Library (FCL). The CLR is used to compile and run applications, beyond that, it is also
used to manage .NET code, memory, exceptions, debugging, code safe verification, and
other services. And the FCL is a myriad of predefined classes or reusable types that you
can use to define object properties in your programs, these classes provide runtime
functionality which can be derived when managing your own code, additionally, other
database interactions and features given by FCL make it possible to employs .NET
Framework types more efficiently. Third-party libraries or source code produced by
programmers also can be merged seamlessly into .NET Framework.

Once the program source code written in C# is compiled, then a managed assembly or
executable file is generated with an extension of .exe or .dll which are stored on the disk.
After that, when the C# program is executed, the assembly is load into CLR, and then if
the requirements of security features are satisfied completely the CLR would convert it
to native machine instructions. The following figure shows the interactions among .NET
Framework, assemblies, the CLR, and the FCL in compile-time and run-time of C#
programs.

Chapter 2. Project Basics

Visual C# Project

C# Saource Resources |

Fileys} References |

T

C# Compiler

Creates

Managed Assembly (.exe or .dll)
MSIL Metadata

IL metadata & references
loaded by CLR

.NET Framework

Ccoemmon Language Runtime
Security [/ Garbage
Collection / JIT Compiler

.NET Framework
Class Libraries

Converted to native
machine code

Operating System

Figure 2.1: NET Framework Platform Architectural [2]

There are some further information for deeper understanding .NET Framework which
given by [4]. In brief, the .NET Framework is integrated by Common Language Runtime
and Framework Class Library, the primary principle concerning a natural phenomenon
of runtime can be regarded as code management. To be more specifically, the .NET
Framework can not only be hosted by managed components but also unmanaged or
third-party runtime hosts, take ASP.NET for instance, it is an example of a managed
application whereas the Internet Explorer is an example of an unmanaged application.

The following diagram illustrates the connections between CLR and FCL to the whole
system and shows how managed and unmanaged applications implemented in a bigger
architectural model.

Chapter 2. Project Basics

Hardware

Class o f
library ,wﬂ QpEraﬁng ﬂsmm’f

!
N
[t

Figure 2.2: Overview of .NET Framework [4].

2.1.3 Differences between Framework and Library

The last thing | would like to finish on is the difference and relation between library and
framework. Actually, the library is a collection of predefined classes which have been
written by other programmers, a library gives a lot pieces of functionality that you may
pick up and choose from. Whereas, typically framework is more complicate than library,
it introduces an architecture that your application will follow. The design decisions and
code structure are based on what framework you choose, which means once a framework
is chose then your code will be called by the framework appropriately. In fact, it is more
likely to regard the framework as a top level which is centered by many libraries.
Basically, “Inversion of Control” is the core difference between a framework and a
library, the following diagram shows control in different ways.

Chapter 2. Project Basics

[Your Code]

'}Call LibraryAFrﬁln‘IE!work %
[Library]-—camams—[Framework]

Figure 2.3: Library vs. Framework [5].

Chapter 2. Project Basics

2.2 Reelection and Dynamically Loading

2.2.1 Reflection in .NET

Reflection is a functionality that enables computer program to fetch type (assembly) at
runtime, which means it is able to estimate and modify the structure and behaviors of
the program that cannot be achieved at compile time. There is a list of useful classes
given by System.Refelction namespace that allows you to collect information within
assemblies, the information could be types, properties, methods and so on. Additionally,
all types such like types of classes, types of interfaces, and value types can be acquired
from loaded assemblies by using System.Type. .NET Reflection makes it possible to
dynamically create an instance of a type, bind the type to an existing object, or get a
type of existing object. In the next you can invoke the type’s methods or access its
fields and properties [6].

Currently, in my project, the embedded functional fragments extracted from HTML file
will be merged into a single C# file, which is named “MyOwnMethods.cs” or any other
proper names, my project will be presented as a Command-Line program, here is a
Command:

CAR exe -cs MyOwnMethods.cs SomeonesLib_dll -output SampleQutputHTML html
SamplelnputHTML html

When running the program, the code in MyOwnMethods.cs will be loaded as assembly,
the program CAR will compile the code therein, and then run it. In this case, in order to
replace the embedded code fragments by the output of running these fragments, .NET
Reflection allows you to invoke the type of existing object in this C# file as well as
invoking the type’s methods at runtime.

10

Chapter 2. Project Basics

As we know, in .NET Reflection the combination of System.Refelction namespace and
System.Type class allows you to reflect over many other aspects of a type. Before using
Reflection, it is important to know what these two are made of, the following figure
shows a road map of .NET Reflection.

Assembly

Module | | GetType()

AssemblyName InvokeMember()
Interfacelnfo | | GetInterface(), GetInterfaces()

Constructorinfo | | GetConstructor(),GetConstructors()
Parameterinfo | FindMembers()

Eventinfo GetEvent(),GetEvents()
Memberlnfo GetMember(), GetMembers()
MethodInfo GetMethod(), GetMethods()
FieldInfo GetField(),GetFields()
Propertylnfo GetProperty(), GetProperties()

Figure 2.4: .NET Reflection Road Map [7].

According to above road map, there are some commonly used classes such as
Assembly, Module, Interfacelnfo, Parameterinfo, and MethodInfo and so on. The
details about abilities of them are shown below:

11

Class

Assembly

Module

Assemblyllame

EventInfo

FieldInfo

MemberInfo

MethodInfo
ParameterInfo

PropertyInfo

In the other hand, the Type class represents a type in the Common Type System
(CLS), and it is more capable of accessing metadata as well as representing type
The type information can be obtained from type declarations such as
class types, value types, interface types, and enumeration types through three ways.
First of them is System.Object.GetType(), this method can only be achieved when
you have compile time knowledge of the type, and it will return a Type object that

declarations.

Description

Represents an assembly, which is a reusable, versionable, and self-describing building block of
a Common Language Runtime application. This class contains a number of methods that
allow you to load, investigate, and manipulate an assembly.

Performs Reflection on a module. This class allows you to access a given module within a
multi-file assembly.

This class allows you to discover numerous details behind an assembly's identity. An
assembly's identity consists of the following:

* Simple name

* Version number

* Cryptographic key pair
* Supported culture

This class holds information for a given event, Use the EventInfo dass to inspect events and
to bind to event handlers.

This class holds information for a given field. Fields are variables defined in the class.
FieldInfo provides access to the metadata for a field within a class, and provides dynamic
set and get functionality for the field. The class is not loaded into memory until Invoke or
get is called on the object.

The MemberInfo class is the abstract base class for classes used to obtain information about
all members of a class (constructors, events, fields, methods, and properties).

This class contains information for a given method.
This class holds information for a given parameter.

This class holds information for a given property.

Figure 2.5: Class Description.

on behalf of the type of an instance.

12

The second approach is System.Type.GetType(), this is more flexible than former
one, which means this way enables you to get a type with particular parameters and
the last one is C# typeof operator. The Figure 2.6 is the outline of these methods.

.NET Reflection

Figure 2.6: Obtaining Type Information [7].

2.2.2 Dynamically Loading Assembly

In .NET Framework, dynamic assemblies loading can be regarded as an advanced
topic of Reflection. Dynamically loading libraries is widely used in programming,
this functionality is presented by using Dynamic Link Library (DLL) in native C#.
This capability makes the applications become more modifiable, which means it is
able to add some specified features to existing computer program or modify them at
runtime without need to re-compile them again. Likewise, dynamic assembly
loading is another powerful tool provided in .NET Framework.

13

Dynamically loading can only occur when there is a medium for communication
between applications and assembly components. This can be realized with the use of
a commonly agreed interface, the content of interface can be changed not until
entire lifecycle is over, since any change of the interface will cause whole
application and all components to be completely recompiled [7].

In detail, based on .NET Framework, once the application has been created, then we
can dynamically load assemblies, where these assemblies could contain more one
class which implement interface, however, the application has no visibility of the
classes implemented in assemblies, thus, the interface between an application and
assemblies builds a bridge for them. The Figure 2.7 shows the relationship.

Component 1

Application CO /
Interfa;\\ Component 2

Figure 2.7: Dynamically Loading.

14

Chapter 3

HTML1st Design

This section will discuss several core parts of HTML1st development.
3.1 Scripting Language

3.1.1 Scripting Language Overview

Scripting languages or scripts are sometimes considered as high-level languages. By
comparing scripting and normal programming, scripts are interpreted while programs are
compiled, which means they are executed in different ways. To be more specifically, the
scripts are interpreted by another program at runtime, where these scripts are distinct
from the core language used in that application, they are probably written in different
languages [10].

Scripting languages make it possible to integrate and communicate with other
programming languages, take dynamic Web pages for instance, JavaScript is one of
mostly used client-side scripting languages, which is usually embedded within HTML, it
enables you add extensive capabilities to Web pages, in this case, Web pages become
more flexible. Additionally, there are some other commonly used scripting languages
such as PHP, ASP, JSP, Perl, Python, and Ruby and so on [8].

In recent years, there is a trend to develop an application by using the conjunction of
scripting languages and system programming languages, each of them can be looked as a
complement of another one. Scripting language is more likely to be designed for gluing
[9], the attempt of glue language is to connecting the software components with scripts.
Another very powerful feature of the scripting languages is typeless, which means an
instance and hold a variable type at one moment and another the next.

15

Chapter 3. HTML1st Design

In my project, there is a step that using C# program to compile the C# code fragments
extracted from HTML pages, where those fragments are scripts. Typeless enhances the
ability of scripting languages that allows data and code to be interchanged, so that the
HTML1st engine can execute the fragments as another program on the fly.

In the end, it is essential to talk about a set of trade-offs that exist in scripting languages.

With the increasingly wide use of scripting languages in such fields like: graphical user
interfaces (GUI), Internet, and framework components. For example, a growth of the
Internet interactions have been realized by scripting languages, as the scripting
technology makes it easier to exchange things between database and web browser. It is
really efficient and attractive when application is large and complex [9]. Moreover,
scripting languages are easy to learn and use, it allows you to manipulate dynamic
activities and modify stuff that are already done. An interactive web page can be created
by user with less effort, which improves the speed of communicative response.
Furthermore, scripting languages strengthen the productivity of developers and reuse of
components. In contrast, it is more time-consuming due to scripts are interpreted at
runtime and bot compiled into machine code, meanwhile, the security concerns cause the
inconsistent distribution.

16

Chapter 3. HTML1st Design

3.1.2 Client-Side Scripting

Traditionally, the Web browser is a client-side environment that allows scripts to run on
the end users’ computers. Suppose there are some dynamic or custom web contents need
to be presented on someone’s computer, but a beautiful Web page only consists of
HTML without any scripts, the page cannot do anything but just sit there. Scripts
facilitate the ability that web pages can have varying and changing content depending on
user inputs. The best solution for interaction between end users and web pages is client-
side scripting. Sometimes, documents produced after running server scripts, which
contains some client-side scripts, then they are delivered to the user’s computer over
internet and run directly in the browser, the only requirement at client-side is the
browser understands what theses scripts mean [12].

Usually, client-side scripts are embedded in a HTML or XHTML document, which is
designed to create instructions for the browser to follow in response to user actions such
as window or menu display, button or mouse events or keyboard typing. As we know,
the most popular client-side scripting language is JavaScript, this language is a member
of object-oriented languages. Within web browser, the aim of JavaScript is to manipulate
the elements on a web page and control behaviours such like the occurrence of an event.
Although, the JavaScript is easy to learn and understand, but before we start using it, we
need to be aware of its connections with HTML. The elements in the HTML document
are constructed in Document Object Model (DOM), this structure is presented as s
hierarchical architecture style. And this structure is applied to organize the objects of a
web content (see Figure 3.1). However, different DOMs give different flexibility levels
to design a web page when you implement JavaScript.

Window
frame] parent self [top
| |
| history | | document | | location |
l I
| link | | form [| anchor |
| | | |
radio textarea hutton text checkhox
| If Il Il | |
| password | | reset | | select I

Figure 3.1: Simple hierarchy of DOM [11].

17

Chapter 3. HTML1st Design

Compared to server-side scripting, the client-side scripting works in the front of a
website, user can see whatever the Client-side code have done and the stuffs have been
presented out. Once the document has been transferred from back-end, if there is no
additional requests in response to Web server, the specified contents of code will be
processed by browser in an isolated circumstance until a new request was sent back to
the server. In this case, the immediately interactive communication between the Web
browser and end users has speeded up sharply. In the front-end web development, the
Client-side scripting languages is a mix use of HTML, JavaScript, and cascading style
sheet (CSS), where the CSS is a file that applied to style the way the page looks.
Additionally, there are varying kinds of JavaScript Frameworks such like AngularJS,
JQuery, Node.js, and AJAX.

3.1.3 Server-Side Scripting

In contrast to Client-side scripting, the Web server provides an environment that allows
a Server-side scripts to run whenever a user’s request is received. Usually, there are
database or data stores on the server side, the primary advantage to Server-side scripting
IS granting permission for accessing the database when specified information required by
users. In other words, a dynamic web page can be generated by running scripts on
Server-side based on custom requirements. The whole web development is a client-
server system, any web browser resides on a computer can be regarded as a client and
the web pages which have been requested will be sent back to the client [15]. This
process can be shown as following diagram:

Reguest web page
from server

Web page sent fo

client

Figure 3.2: Client-Server System [14].

18

Chapter 3. HTML1st Design

This diagram shows that client can only require static web pages from the server, but
these days most websites on the Internet have dynamic contents, the common gateway
interface (CGI) provides a functionality that enables the web server to run the scripts
and automatically process a set of instructions. Typically, a dynamic page would have
an extension such as .cgi or .php.

Once a request with one of these extensions, it will be delivered from the web server
to CGl, and then the scripts will be correctly interpreted and executed. At last, the
standard HTML page will be sent back to the client, the end user’s browser only needs
to worry about what results are presented to users rather than the underlying script
used to generate this web page [14]. The following diagram shows the extensive
ability of web server:

Requested
Page
with .cqgi

Request wab page Script o

EOM ANV extension process
Requested
Page with
Web page sen 1o SCript now

client processed

Figure 3.3: CGI with Web Server [14].

In the development of back-end, there consists three core parts: server, database, and
APIs, where the APIs structure how data is exchanged between a database and any
software accessing it. The server can be any remote powerful computer located at
anywhere. And there is a back-end software written by back-end web developers via
server-side scripting languages. Then, a fast and secure channel has been created for
exchanging information among user, server, and database. Server- side scripts process
requests and pull what they need from the database, then update information for the
end users. For instance, if user want to see his (or her) online banking details, after
login step, the request is sent to server, the server-side scripts will interact with the
database to collect the specified account information the user needs, then process it on
the server, at last, the dynamic page will be updated and sent back to browser.

19

Chapter 3. HTML1st Design

In my project, the C# engine could be looked as the software on server side to build
your website behind screen, using it to parse HTML pages and figuring out embedded
C# code fragments within it, we should treat them as scripting language, it is more
likely to using the C# engine to compile C# scripts and then execute them. Eventually,
a pure HTML page will be collected and render it into a human viewable website.

There are some popular server-side languages such as PHP, C#, Ruby, C++, Java, and
Python, and their Frameworks such like Ruby on Rails, ASP.NET, Django, and
Node.js: JavaScript. In conclusion, the Web development is combined of front-end
and back-end development, any website should base on three components: the server,
the client, and the database, the following two diagrams illustrate an overview of
client-side and server-side working flow:

A site is loaded Client-side scripts When a call to the Server-side scripts
in a browser from Run in the browser and database is required process the data,
the server. process requests without JavaScript and AJAX send then update the
call-backs to the server requests to the back end. site—populating
drop-down menus,
Request loading products to a
- Internet - page, updating a user
Response profile, and more,
- Database
Servers
Responsive front-end Everything a user sees in the The back-end server-side scripts process
design allows a site to browser is a mix of HTML, the request, pull what they need from the
adapt to a user's device. €SS, and JavaScript. database then send it back,

Figure 3.4:Front-End Development [13].

) THE FRONT END
server-side
software Server
FRAMEWORKS are libraries (scripts & framewaorks)
of server-side programming i
languages that construct the server-side scripts process APIs structure i
back-end structure of a site. requests and pull what they how data is
need from the database exchanged b
between a g
[database and g
' AP any software il
The “STACK" comprises i accessing it Y
the database, server-side
framework, server, and
operating system (0S). Database Internet

Figure 3.5: Back-End Development [16].

20

Chapter 3. HTML1st Design

3.2 Treating C# like A Scripting Language

In my project, C# code fragments embedded in HTML page are very simple, most of
them are exact some functions or methods with a parameter, the problem here is how we
can process them. Suppose there has a single file that contains all the functions which
are embedded in HTML file, I wonder if it is possible to look them as a scripting
language, then they can be interpreted at runtime. As a consequence, we can dynamically
manipulate and modify the code during runtime.

What | found was that C# does indeed have the capability to accomplish this task, it
allows you to load C# from anther file and execute them therein. However, it is a little
bit more complicated in this case due to the C# is a complied language, the code needs to
be compiled into an assembly before using it. Once the C# code fragments are loaded as
an assembly, then we can invoke a type of existing object and invoke the type’s methods
at runtime by Reflection in .NET Framework.

It is likely to use C# to compile C#, this powerful feature is provided by .NET
Framework in Microsoft.CSharp and System.CodeDom.Compiler namespaces without
any third-party libraries [17].

For compiling the C# code on the fly at runtime, there are several core steps you need to
follow:

1. To programmatically compile your code you need to create a C# compiler, the Figure
3.6 shows the compiler created by using an instance of CSharpCodeProvider class:

CsharpCodeProvider codeProvider = new CSharpCodeProvider();
ICodeCompiler icc = codeProvider.CreateCompiler();

Figure 3.6: C# compiler.

21

Chapter 3. HTML1st Design

2. Then you can create parameters of the compiler by using an instance of
CompilerParameters class, which contains a set of parameters that will be passed to
compiler when compiling your code, additionally, you can also define whether your
code will be generated only in the memory or into the DLL or EXE file (see Figure 3.7).

System.CodeDom. Compiler.CompilerParameters parameters = new CompilerParameters();
parameters,Generatebxecutable = true,
parameters.QutputAssembly = Qutput,

Figure 3.7: Parameters.

3. Define the parameters, you can add any library to your compiler by using
parameters.ReferenceAssemblies.Add();

4. Compile your assembly: CompilerResults results
=provider.CompileAssemblyFromSource(parameters,SourceString);

5. Check errors and use the compiled code, once your code has been compiled into an
assembly, you can use that assembly to create instances of classes from your source code
and use reflection to invoke methods and get or set properties of those classes.

22

Chapter 3. HTML1st Design

Here is a small demo program of this part:

using System.Reflection;

using System;

using System.CodeDom;

using Microsoft._.CSharp;

using System.CodeDom.Compiler;
using System.Diagnostics;

class CarHTML{

static void Main(string[] args)

{
//create a new instance of the c# compiler
CSharpCodeProvider codeProvider = new CSharpCodeProvider();
ICodeCompiler compiler = codeProvider.CreateCompiler();

// Create some parameters for the compiler
System.CodeDom.Compiler.CompilerParameters parameters = new
CompilerParameters();

parameters.GenerateExecutable = false;

parameters.GeneratelnMemory = true;

parameters.ReferencedAssemblies.Add(args[1]);

var results = compiler.CompileAssemblyFromFile(parameters, args[0]);

// 1T there weren®"t any errors get an instance of "MyClass"™ and invoke
// the "Message' method on it

if (results.Errors.Count == 0)
{
var myMehtods = results.CompiledAssembly.Createlnstance("MyMethods™);
myMehtods.GetType() .-
GetMethod("'GetGreeting™).
Invoke(myMehtods, new []{ " Boyang " });
var math = results.CompiledAssembly.Createlnstance("'MyMethods™);
math.GetType() -
GetMethod(""GetNumber'™).
Invoke(math, new[] { "12", "13" });
}
else
{
var temp = results_Errors;
foreach (System.CodeDom.Compiler.CompilerError e in temp)
{
System.Console._WriteLine(e);
}
}
}
}

23

Chapter 3. HTML1st Design

Output:

C:slUsersshtan?obsDesktopicar.exe MyOunMethods.cs MathLibrary.DLL
Hello Boyang

The Sum of a and b i=s:

25

The Product of a and b i=z:

156

CislUsersshtan?ob~Desktops

24

Chapter 3. HTML1st Design

3.3 HTML Parser

3.3.1 HTML Agility Pack

The aim of HTML parsing is to extract some useful and powerful information from an
HTML document for further useable fields. However, the HTML is an irregular
language, it is crucial to find a way that easily read and modify the HTML string code,
which means it is able to identify the format and syntax of a string of symbols, in other
words, it is a syntactic analysis of HTML documents following rules or a formal
grammar. HTML Parsers is such a tool to accomplish this kind of tasks, and they can be
presented as a computer program or a library given by a Framework.

A HTML parser can be written in any popular language, but in my project, it is to find
an appropriate way to parse HTML using C#. What | found was the most widely used
and efficient way named HtmlAgilityPack, this pack is a .NET code library that allows
you to parse a real-world HTML and it is very tolerant in handling elements, text,
attributes, and other markups within HTML even the format is invalid.

In fact, HTML is a structured document format with a varying kinds of very clearly
defined rules. Basically, you can create a C# application to parse a HTML page with
regular expressions, but it seems more efficient when you use a DOM-based approach
with a functionality such as LINQ (or XPath) [18]. .NET Framework provides an
HtmIDocument class, along with HtmlElement, which allows you to access data by
calling DOM methods such like GetElementByld and GetElementByTagName.
However, there is no such a constructor when you build an instance of HtmIDocument,
even if you can use XmIDocument and XmINode to read from or write to XHTML
documents, it also needs a third-party library to check the validity of format and the
correctness of markup [19].

HTML Agility Pack is a free and open source library whose attempt is to load the
HTML from either a file or a remote website, and then parse it. The HtmIDocument and
HtmlINode classes are provided by HtmlAgilityPack, the capabilities of these classes are
quite similar to that of XmIDocument and XmINode classes. One attractive feature of
HtmlAgilityPack is that it constructs a Document Object Model (DOM) view of the
HTML document being parsed, which makes programmers easier to read through the
documents and move from parent nodes to their child nodes. Secondly, there is no need
to check markup validity due to HtmlAgilityPack will take care of making everything
valid by closing unclosed tags and fixing other markup errors. Moreover, the
HtmlAgilityPack allows you to return or retrieve specified nodes through the use of
XPath expressions [19].

25

Chapter 3. HTML1st Design

The code below shows an example for parsing with the use of HtmlAgilityPack:

// The HtmlWeb class is a utility class to get the HTML over HTTP
HetmIwWeb htmIWeb = new HtmlWeb();

// Creates an HtmlDocument object from an URL
HtmlAgi lityPack_HtmIDocument document =
htmIWeb_.Load(""http://www.somewebsite._com™);

// Targets a specific node
HtmINode someNode = document.GetElementbyld('mynode’™);

// 1T there is no node with that 1d, someNode will be null
if (someNode !'= null)

{
// Extracts all links within that node
IEnumerable<HtmINode> allLinks = someNode.Descendants(a');
// Outputs the href for external links
foreach (HtmINode link in allLinks)
// Checks whether the link contains an HREF attribute
if (link_Attributes.Contains("'href™))
// Simple check: if the href begins with "http://", prints it out
if (link.Attributes["href"].Value.StartsWith('http://""))
Console._WriteLine(link_Attributes["href"].Value);
}
¥
¥

A more efficient way with the use of XPath expressions:

// The HtmlWeb class is a utility class to get the HTML over HTTP
HtmIwWeb htmlWeb = new HtmlWeb();

// Creates an HtmlDocument object from an URL
HtmlAgi lityPack.HtmIDocument document =
htmlWeb_.Load(""http://www.somewebsite.com™);

// Extracts all links under a specific node

//that have an href that begins with "http://"

HtmINodeCollection allLinks = document.
DocumentNode.SelectNodes
('//*[@id="mynode*]//a[starts-

with(@href, "http://")]1"");

// Outputs the href for external links
foreach (HtmINode link in allLinks)

{
Console.WriteLine(link.Attributes["href"].Value);

26

Chapter 3. HTML1st Design

3.3.2 Processing Instruction

Processing Instructions are special tags with instructions to software applications, which
are in an SGML and XML node type. An XML processing instruction is enclosed within
<? and ?>, it is typically composed of a target and some string value. The most common
use of a processing instruction is to represent a XML style sheet at the beginning of an
XML document: <? xml-stylesheet type="text/xsl” href="style.xsl” ?> . Sometimes, the
same syntax has been used in a XML declaration: <? Xml version="1.0"
encoding="UTF-8" ?>, but this is not a processing instruction [20].

It was great to find out code fragments embedded in HTML file could not be simply
looked as elements or attributes of a node, since the functions take place within symbols
“<?” and “?>”, for instance, <? Function(); ?>, we should regard them as Processing
Instructions (PIs). Then, we need to check whether the HTML Agility Pack can identify
Processing instructions or not. Meanwhile, check to see if HTML Agility Pack can
ignore the set of pseudo-strings using same syntax during parsing documents.

Firstly, 1 have modified the sample input of an HTML file, following code shows a
simple html file embedded with some Pls:

<html>

<head><title><?xxx GetGreeting(''Boyang'); ?></title></head>
<body>

<I-- How we do function calls is to put

them within <?xxx GetGreeting(''Boyang'); ?>-->

<h1><?xxx GetGreeting(''Boyang'); ?></hl>

<p>

Here is how I would greet you: <?xxx GetGreeting(''Boyang'); 7>
</p>

<p>

Here i1s when I would greet you: <?xxx DateTime.Today; 7>
</p>

</body>

</html>

27

Chapter 3. HTML1st Design

Where the “xxx” is a target of the Processing Instruction, it can be named according to
your purpose of each function. Unfortunately, HtmlAgilityPack has no such an ability to
identify Processing Instructions which are embedded in the HTML documents. So under
this situation, then we can probably treat HTML as XML and use an XML parser to
Identify Processing Instructions. As the Processing Instructions are exposed in the
Document Object Model (DOM), thus, you can use an XPath expression to get Pls with
the “processing-instruction ()’ command. After a long process of trial, | found that a well
formatted HTML file cannot be parsed by a XML Parser without exceptions, as the
HTML and XML are not possible to be regarded as same thing under this condition.

28

Chapter 3. HTML1st Design

3.3.3 Second plan

As | mentioned before, the HTML Agility Pack does not provide an ability to
extract C# fragment codes with format of Processing Instruction (PI) from a HTML
file. There may have two alternative ways to resolve this issue, which are creating an
own HTML parser based on the requirements given by my project, or introducing a
new tag like <sourceCode> into HTML file instead of enclosing C# fragments within
<? ?>, then, the new format looks like < sourceCode > C# fragment < /sourceCode >.

However, considering the first choice is time consuming and cannot guarantee the
stability of its own, we prefer to take the second solution. Thereafter, each C#
fragment or function is enclosed within a new introduced element, we can also add
some attributes to these new elements, and each attribute is made of attribute name and
value. This gives HTML parser a convenience that by using specified attribute values
to extract the specific code fragments. Note that we always quote attribute values with
double quotes, such like < sourceCode class = “html1st” > function(); < /sourceCode
>, where the attribute name is “class” and its value is equal to “html1st”.

In this case, there is another issue may occur during the parsing step, some special
characters need to be escaped in HTML (e.g. <, >, &) and therefore if they appear in
code fragments, they need to be escaped too. This issue occurs in such condition, say,
<div_class="html1st”> Print(100 >> 1); </div>, there is a symbol “ > " within it, it
may mix-up the view of HTML parser, and errors will appear. This means HTML
must sometimes be encoded, the special characters such as “<”, “>” “&” can be
converted to “&It;”, “>”, and “&” respectively. Then, it can be presented as
<div class="html1st”> Print(100 &agt; &at; 1); </div>. During the HTML file creation
process, we can directly write them in the format of above, it promises future stability
in the period of HTML parsing. However, these symbols in ‘code’ cannot be figured
out by C# language, therefore, before you can execute the code, you need to reverse
those changes, with WebUTtility.HtmIDecode methods in the C# language, we do this
without writing any custom code. In addition, another fix might be to move such code
outside the HTML into the code’s own library (i.e., DLL) and link in the DLL at
compile time.

For example:

<p><source>PrintResult();</source></p>

Where PrintResult() { bool ok = 2 < 1; System.Console.WriteLine(ok); } is written
in the library code.

29

The total look of a simple input HTML file is following:

<html|>

<head><title> This is my project HTML1st </title></head>

<body>

<!I-- How we do function calls is to put them within new tag <div> -->
<h1><div class=""html1st"">GetGreeting(*'Boyang"’);</div></h1>
<p>

Here is how | would greet you:

<div class=""html1lst"">GetGreeting(**‘Boyang"");</div>

</p>

<p>

This should print out:

<div class=""html1st"">GetNumber(*'12","13"");</div>

</p>

</body>

</html|>

Chapter 4

4. Implementation

This section will merge all steps that | have already studied and finished, then integrate
them into a real application. Details about code and problems I encountered when I
was programming will be explained step by step. Lastly, this part will give a summary
and overview of the project code.

4.1 External Libraries

Before we set up the implementation, giving a recall to my project goal, my project
is to build a C# engine that can parse a HTML file in which is embedded with some C#
fragments code, and then convert this kind of file to a pure HTML file. | assume the
engine than can efficiently parse real-world HTML and extract code fragments should
be looked as a main success achieved by my project. Considering the application
should be light-weight and developing a new HTML parser is time-consuming, we
decided to rely on a third-party library which is already commonly used for parsing
HTML.

| tried to make the most of internal libraries which are offered by .NET Framework.
The second plan has been introduced in the last part of former section, it totally
depended on HTML Agility Pack. 1 only used this external library because it enabled
my program to parse real-world HTML that could not be done by standard .NET
libraries. This packet produces some significant benefits, to be more specific, HTML
Agility Pack is an agile HTML parser that builds a read/write DOM and supports plain
XPath, which means it allows you to return or retrieve specified nodes through the use
of XPath expressions. It is a .NET code library that allows you to parse "out of the
web" HTML files. The parser is very tolerant with "real world" malformed HTML. The
object model is very similar to what proposes System.Xml, but for HTML documents
(or streams).

29

4.2 Parsing HTML

This part shows how to get started with HTML Agility Pack and then use it to
parse HTML files. Some samples with HTML input and output will be listed in the
end of this part to see how parsing can be achieved by using this packet in .NET.
Firstly, in order to get HTML Agility Pack in my application, I can install it in my
project by running the following command in the Package Manager Console:

PM> Install-Package HtmlAgilityPack

In all cases, you can open the Console in Visual Studio through the Tools >
NuGet Package Manager > Package Manager Console command.

After adding the library via Nuget, we are still missing a using directive or an
assembly reference, then, we need to include the reference in my program page
using command as follows:

using HtmlAgilityPack;

There are two situations when we loading a HTML, it could be loaded as a page
from Internet, or it could be loaded directly from a saved document. In my project,
we attempt to parse HTML files which are already created by someone, so we did
the code like following:

HtmlDocument html = new HtmlDocument();
html.Load("sampleInputHtml.html");
var root = html.DocumentNode;

var commonPosts = root.SelectNodes("//div[@class = 'htmllist']");

As so far, we have loaded the entire HTML file into the object html, once the
loaded HTML document is ready to be parsed, using the DocumentNode property
of the HtmlDocument to return the root element of HTML, thereafter, we can
further filter my search by specifying elements that have certain conditions. In this
case, we want to select all elements with a class of “htmllst”. This code will
search all div with the attribute “class” is equal to “html1st” from the page and
return in nodes.

30

After that, we collect a set of nodes that contain those specific HTML elements,
but the most useful stuff that for further work are embedded code functions within
element tags. It is essential to wipe off all kinds of such tags or other characters
and only leave the C# code fragments. As | mentioned in the second plan, some
symbols such as “<”, “>”, and “&” should be escaped in HTML, thereby writing
them as “&It;”, “>”, and “&” instead. Before you can execute the code,
you need to reverse those changes, as those re-written symbols in ‘code’ cannot be
figured out by C# language. The WebUtility.HtmlDecode method in the C#
language enables to fix this issue without writing any further custom code. This is
shown as following code:

ArraylList list = new ArrayList();
foreach (var htmlNode in commonPosts)
{
string b = WebUtility.HtmlDecode(htmlNode.InnerText);
list.Add(b);

Where the InnerText is used for extracting code fragments within nodes and 1 also
create an ArrayL.ist to save them.

31

4.3 Using the compiled code

After parsing HTML pages successfully, we need to execute the methods or
functions that have been extracted from those documents. At this point, my
program does not have access to a .NET assembly at compile time but | want to
run those code in it. Reflection in .NET makes it possible to dynamically load an
assembly and run code in it without early access. So, | created a C# class file
named “MyOwnMethods” which contains implementations of all customer
methods that refer to extracted code fragments. In addition, | also created a C#
class library project named “MathLibrary” which includes some other useful
methods that would be called by methods in above class. Then, | putted
“MyOwnMethods.cs” and “MathLibrary.DLL” into the Debug folder within the
bin folder of Visual Studio for the user to reference those assemblies and invoke a
method of a type at runtime. Firstly, we can have a look at my solution for the
project, the code is shown as follows:

//create a new instance of the C# compiler
CSharpCodeProvider compiler = new CSharpCodeProvider();
// Create some parameters for the compiler
CompilerParameters parameters = new CompilerParameters();

parameters.GenerateExecutable = false;

parameters.GenerateInMemory = true;

parameters.ReferencedAssemblies.Add("System.d11");
parameters.ReferencedAssemblies.Add("MathLibrary.DLL");
var results =

compiler.CompileAssemblyFromFile(parameters, "MyOwnMethods.cs");

32

if (results.Errors.Count == 0){

ArraylList replace = new ArrayList();

int count = 0;

foreach (string i in list)

{

i.IndexOf('(");
i.Index0f(')");

int p

int q

string nameOfMethod = i.Substring(@, p);
string b = i.Substring(p + 1, q - p - 1);
string words = b.Replace("\"", "");

string[] parameter = words.Split(',");

if (parameter.Length <= 1){
var myMehtod = results.CompiledAssembly.CreateInstance("MyMethods");
var a = myMehtod.GetType().
GetMethod(nameOfMethod) .
Invoke(myMehtod, new[] { parameter[0] });
replace.Add(a);

if (parameter.Length > 1){
var math = results.CompiledAssembly.CreateInstance("MyMethods");
var par = math.GetType().
GetMethod(nameOfMethod) .
Invoke(math, new[] { parameter });

replace.Add(par);

33

To programmatically compile my code | need to create a C# compiler, the
compiler created by using an instance of CSharpCodeProvider class. Then |
created parameters of the compiler by using an instance of CompilerParameters
class, which contains a set of parameters that would be passed to compiler. In my
project, those parameters are some reference assemblies like dynamic link
libraries. In order to execute embedded functions extracted from HTML, firstly,
we can directly compile the code from a source file by using
CompileAssemblyFromSource method.

Once my code was compiled into an assembly, | could use that assembly to
create instances of classes from my source code, then, using reflection to invoke a
method which is corresponding to that of methods list (the ArrayList | have
mentioned before, it was used to collect all extracted methods). Note that | tried to
split up each method into two parts, one of them was name of a method, and
another was parameters included in that method. This gave a great convenience to
invoke a specified method. By then, I created another list to collect the outputs of
running those code fragments thereby using these return values to replace
embedded fragments in HTML pages.

4.4 Producing pure HTML file

The last step is to replace all C# code fragments within HTML file, which
means my engine enables to re-edit HTML and replace certain texts inside it. So
the idea is having a HTML template with some certain texts that are going to be
replaced by other texts, in this project, the certain text are the inner texts of some
specified HTML tags. In the former steps, | had collected a set of inner texts which
are C# code fragments, and | also collected a list of return values that are the
output of running these fragments. | found HTML Agility Pack did give an ability
to replace those fragments by return values, and generate a pure HTML file in the
end. Before we started, | made a copy of sample input HTML file to another file,
then we could reload this new file and modify the inner texts inside it, this made
no changes of the original one, so we could make a comparison of them after
replacing. The following code shows this action:

34

using (StreamReader stream = new StreamReader("sampleInputHtml.html"))
using (StreamWriter writeStream = new

StreamWriter("sampleOutputHTML.html"))

{
string line;
while ((line = stream.ReadlLine())!= null)
{
writeStream.WriteLine(line);
}
}

When | was trying to use HTML Agility Pack (with XPath expression) to
replace the InnerText of some tags, my program occurred an exception, and what |
found is that InnerText is read only, it cannot be modified directly. Fortunately, |
found a simple way to fix this issue, this is shown as following:

HtmlDocument html2 = new HtmlDocument();
html2.Load("sampleOutputHTML.html");

var root2 = html2.DocumentNode;

var countNum = root2.SelectNodes("//div[@class =

"htmlist']//text()");

foreach (var htmlNode in countNum)
{
var newNodeStr = replace[count];
var newNode = HtmlNode.CreateNode(""+newNodeStr+""
)
htmlNode.ParentNode.ReplaceChild(newNode, htmlNode);
count++;

html2.Save("sampleOutputHTML.html");

35

The expression is used here: //div[@class = "htmlist'] selects the div, which
is not an HtmITextNode, the countNum variable holds null, therefore, exception
will occur. HtmlTextNode has a property Text which could be used to set the
necessary value. But before this you should get that text node. This could be easily
done with this expression: //div[@class = 'htmlist']//text(). Lastly, | created
a new node without changing tags and attributes, meanwhile the InnerText had
been replaced by a new certain text. And using the new node to replace the
original one, the modifications inside HTML were saved.

4.5 Optimization Design

Up to now my program totally satisfies the requirements of this project, the
HTML1st engine can parse real-world HTML with some embedded C# code
fragments, and can extract those fragments thereby compiling them on fly, in the
meantime, using reflection to invoke each method at runtime. Thereafter,
HTML1st can replace those C# fragments with the return values.

The only drawback to this approach is that my program depends on a third party
library. Although the HTML Agility Pack is brilliant, it gives a lot of conveniences
and remains stable when parsing real-world malformed HTML. But we still have
to consider the self-independence of my program, since introducing an external
dependency sometimes brings with it a legal security risk. Beyond that, many
times the extensive features of external libraries become too large to test properly
and they add cognitive overhead to a project by requiring new developers to
understand additional knowledge. Let us suppose that the HTML1st would be
wildly used by other developers in the future, it seems to be better and safer if we
base our work on existing standard library packages.

36

However, as previously mentioned, the embedded C# code fragments were
enclosed within <? ?> and regarded as Processing Instructions (PIs). In that case,
XML parser could not parse an HTML as a XML, because it had no ability to
identify those Pls. But, after introducing the second plan, the formal semantics of
an HTML do not change, it is possible to use XML parser with XPath expression
to parse an HTML page. The optimization of this aspect allows my program to
perform as well as before without deploying any external libraries, since .NET
Framework provides an XmlDocument class, along with XMLElement, which
allows you to access data by calling DOM methods or to use XPath navigation to
query information in the DOM. You can use XPath to find a single, specific node
or to find all nodes that match some criteria. In my program, I only need to modify
the code where that part is used to parsing HTML. The modifications have been
shown as following:

//Parsing sampleInput Html

XmlDocument doc = new XmlDocument();

doc.Load("sampleInputHtml.html");

XmlNode root = doc.DocumentElement;

XmlNodelList commonPosts = root.SelectNodes("//div[@class = 'htmllst']");

//Parsing sampleOutput Html which is copied from sampleInput Html
XmlDocument doc2 = new XmlDocument();
doc2.Load("sampleOutputHTML.html");

XmlNode root2 = doc2.DocumentElement;

XmlNodeList countNum = root2.SelectNodes("//div[@class = "htmllst']");

Additionally, it is necessary to amend the part that is used for replacing:

foreach (XmlNode XmlNode in countNum)
{
XmlAttribute attribute = XmlNode.Attributes[0];
XmlElement newNode = doc2.CreateElement("div");
newNode.SetAttribute(attribute.Name,attribute.Value);
newNode.InnerText = (string)replace[count];
XmlNode.ParentNode.ReplaceChild(newNode, XmlNode);
count++;
doc2.Save("sampleOutputHTML.html");
}
The complete source code of this project is shown in Appendix.

37

Chapter 5

5. Evaluation

This chapter illustrates a practice examination for my project application

5.1 Testing

Basically, | want to ensure that what | create does what it is supposed to do, it is
very important to see whether the quality of my application is good or not.
Moreover, it is also necessary to ensure that the HTML1st engine should not result
into any failures. In order to evaluate efficiency and stability of my project, | have
written a set of test cases:

Test case 1: give a greeting and do some calculations
samplelnputHtml.html:

<html>

<head><title>Test case 1</title></head>

<body>

<!-- How we do function calls 1is to put them within a new
tag <div>

-->

<h1><div class="htmllst">GetGreeting("Boyang");</div></h1>
<p>

Here 1is how I would greet you:

<div class="htmllst">GetGreeting("Boyang");</div>

</p>

<p>

This should print out:

<div class="html1lst">GetNumber("12","13");;</div>

</p>

</body>

</html>

38

sampleOutputHtml.html:

<html>
<head>
<title>Test case 1</title>
</head>
<body>
<!-- How we do function calls 1is to put them within a new
tag <div> -->
<h1l>
<div class="htmllst">Hello Boyang</div>
</h1>
<p>
Here is how I would greet you: <div class="htmllist'">Hello
Boyang</div>
</p>
<p>
This should print out: <div class="htmllst">The Sum of a
and b is:25 The Product of a and b is:156</div>
</p>
</body>
</html>

We can see the input HTML and the output HTML are exactly consistent
without changes of format, the markups and all contents are same, expect the
embedded C# code fragments have been replaced by return values of running
those code fragments.

39

Test case 2: Random numbers
samplelnputHtml.html:

<html>

<head><title>Test case 2</title></head>

<body>

<!-- How we do function calls is to put them within a new tag
<div> -->

<h1>Any random number -1is:

<div class="foo">Random("6","10")3</div>

</h1>

<p>

The sum of random numbers 1is:

<div class="foo">Sum("6","10");3</div>

</p>

<p>

The remainder after division of random numbers:
<div class="foo">Modulo("6","10");3</div>

</p>

</body>

</html>

40

sampleOutputHtml.html:

<html>

<head>
<title>Test case 2</title>

</head>

<body>
<!-- How we do function calls 1is to put them within a new tag
<div> -->

<h1>Any random number 1is:

<div class="foo">random num between 6 and 10 is 6</div>
</h1>

<p>

The sum of random numbers -is:

<div class="foo'">the two random nums are 6 and 7, and the sum
of them is 13</div>

</p>

<p>

The remainder after division of random numbers:

<div class="foo'">the two random nums are 6 and 7, and the
remainder after division is 6</div>

</p>

</body>

</html>

In this test case, | want to see if | could choose a random number between 6 and 10,
next, randomly generating two numbers between 6 and 10, and calculating the sum
of them also the remainder of division. The result shows the HTML1st engine
successfully accomplishes the goal of my project.

41

Test case 3: Find factors of a random number

samplelnputHtml.htmil:

<html>

<head><title>Test case 3</title></head>

<body>

<!-- How we do function calls is to put them within a new tag
<div> -->

<h1>Any random number between 6 and 10 1is:

<div class="num">Random("6","10");3;</div>

</h1>

<p>

Find factors of a random number between 6 and 20:
<div class="num">Factors("6","20");</div>

</p>

<p>

Find factors of a random number between 20 and 50:
<div class="num">Factors("20","50");</div>

</p>

</body>

</html>

42

sampleOutputHtml.html:

<html>
<head>
<title>Test case 3</title>
</head>
<body>
<!-- How we do function calls 1is to put them within a new tag
<div> -->
<h1l>
Any random number between 6 and 10 fis:
<div class="num">random num between 6 and 10 is 9</div>
</h1>
<p>
Find factors of a random number between 6 and 20:
<div class="num">random num is 19, and the factors of this
number are 1,19</div>
</p>
<p>
Find factors of a random number between 20 and 50:
<div class="num">random num 1is 48, and the factors of this
number are 1,48,2,24,3,16,4,12,6,8</div>
</p>
</body>
</html>

In this test case, | give a more complex example to test the accuracy of my application,
the result shows the success as same as before.

43

Test case 4: Testing whether HTML1st can handle special symbols

samplelnputHtml.html:

<html>

<head><title>Test case 4</title></head>

<body>

<!-- How we do function calls 1is to put them within a new tag
<div>-->

<h1>Boolean function:

<div class="bool">printout("> and &It;")3;</div>

</h1>

<p>

The result 1is: <div class="bool">bigger("6>7")3;</div>
</p>

<p>

The result 1is: <div class="bool'">smaller("8&It;3");</div>
</p>

</body>

</html>

44

sampleOutputHtml.html:

<html>
<head>
<title>Test case 4</title>
</head>
<body>
<!-- How we do function calls 1is to put them within a new tag
<div>-->
<h1>Boolean function:
<div class="bool'>testing special symbols > and &It; in
HTML</div>
</h1>
<p>
The result dis: <div class="bool">6>7 is false</div>
</p>
<p>
The result dis: <div class="bool">8&Ilt;3 is false</div>
</p>
</body>
</html>

An Issue - Some characters need to escaped in HTML (e.g. <, >, &) and therefore if they
appear in the ‘code’, they need to be escaped too. So when someone creates an HTML file,
he or she can edit above symbols as “&It;”, “>”, and “&” instead. However, before
you can execute the code, you need to reverse these changes. This test case shows the
HTML1st engine can easily handle the above issue.

45

Chapter 6

Conclusion

This section will give a conclusion for my report and conclude with a summary of
strengthens and weaknesses of my project.

This project was given to me by Computer Science Department of UoA, and my
task was to develop a light-weight C# engine that handles server-side scripting.
The engine will convert HTML pages with embedded C# code fragments to pure
HTML pages. This report covers the entire work of my final year project, of which
the studies, researches, design, implementation, and evaluations were all discussed
in the former sections of my report.

| started by learning C# .NET programming language and then | did some
researches about functionalities given by Reflection in .NET Framework. After
having some extent knowledge about scripting language, | created a small program
and used it to load an assembly that contains some C# code, and then executed
them as part of my program, it did invoke a type’s method at runtime. The biggest
challenge in my project was that how to properly parse a real-world HTML page
with embedded C# code fragments. At the beginning of that phase, my program
was basically relied on a third party library HTML Agility Pack. | putted code
fragments within <? ?> and regarded them as Processing Instructions (Pls), but
this package could not figure out Pls. In the second semester, we decided to try the
second plan, which was introducing a new tag into HTML pages, and each code
fragment was enclosed within a new tag instead of PI. After that, I integrated all
finished segment into a real application, and my program did a well job without
errors. It could extract out of all fragments and dynamically loaded an assembly
which was corresponding to those code fragments thereby compiling them on fly,
in the meantime, using reflection to invoke each method at runtime. Thereafter,
HTML1st could replace those C# fragments with the return values.

46

But, considering this C# engine should be self-independent, 1 assume that it
would be better and safer if we base our work on existing standard library
packages. | found that it is possible to use XML parser with XPath expression to
parse an HTML page without deploying any external libraries, this version of my
program (without HTML Agility Pack) performed as well as before. | wrote a set
of test cases for both versions, and results gave a proof that my program exactly
did what it was supposed to do. Both of them worked out the task of my project
with no failures. Also, both versions can handle the issue such as some characters
need to escaped in HTML (e.g. <, >, &).

Personally, 1 think the HTML1st is potential to be wildly used in the real world
or used as a foundation of other developments, since this C# engine is efficient and
light-weight. From then on, people no longer need to write too much scripts to tell
server how and what contents should be rendered into a human viewable website,
because this is too costly or time-consuming. But now it is possible to directly
design a HTML page by using standard HTML format, and just put some
purposive actions as code fragments in an HTML page. The HTML1st C# engine
will handle those server-side scripting and then convert HTML pages with
embedded C# code fragments to pure HTML pages.

On the other hand, the accuracy and effectiveness of this engine to fulfil the task
may be limited by the lack of realistic work for large scale experimentation. These
days most websites on the Internet have dynamic content. In order to deliver
dynamic content the volume and variety of C# code fragments within HTML
pages may increase significantly. It is not possible to write all implementations of
those fragments in one assembly, then we would reference other assemblies at
runtime, this can be achieved by using dynamic link libraries (DLL). This part has
been completed in my project, but | believe there needs more tests in the further
work.

In conclusion, this project was successfully completed on time, while my
program does what exactly it is supposed to do, there may also have some other
drawbacks or bugs which are not mentioned and can be improved in the future.

47

Appendixes

Source code Version 1 (without HTML Agility Pack):

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Threading.Tasks;
using System.Net;

using System.Collections;

using Microsoft.CSharp;

using System.CodeDom.Compiler;
using System.Reflection;

using System.IO;

using System.Text.RegularExpressions;
using System.Web;

using System.Xml;

namespace Final
{
class Program
{
static void Main(string[] args)

{

//Parsing sampleInput Html

XmlDocument doc = new XmlDocument();

doc.Load("sampleInputHtml.html");

XmlNode root = doc.DocumentElement;

XmlNodeList commonPosts = root.SelectNodes("//div[@class = "htmllst']");
ArraylList 1list = new ArraylList();

foreach (XmlNode a in commonPosts)

{
string b = WebUtility.HtmlDecode(a.InnerText);

list.Add(b);

}

//create a new instance of the c# compiler
CSharpCodeProvider compiler = new CSharpCodeProvider();

// Create some parameters for the compiler
CompilerParameters parameters = new CompilerParameters();
parameters.GenerateExecutable = false;
parameters.GenerateInMemory = true;

parameters.ReferencedAssemblies.Add("System.d11");
parameters.ReferencedAssemblies.Add("MathLibrary.DLL");

var results =

compiler.CompileAssemblyFromFile(parameters, "MyOwnMethods.cs");

48

if (results.Errors.Count == 0)
{
ArraylList replace = new ArraylList();
int count = 0;
foreach (string i in list)

{

int p = i.IndexOf('(");

int q = i.Index0Of(')");

string nameOfMethod = i.Substring(@, p);

string b = i.Substring(p + 1, q - p - 1);

string words = b.Replace("\"", "");

string[] parameter = words.Split(',"');

if (parameter.Length <= 1)

{
var myMehtod =
results.CompiledAssembly.CreateInstance("MyMethods");
var a = myMehtod.GetType().
GetMethod(nameOfMethod).
Invoke(myMehtod, new[] { parameter[0] });
replace.Add(a);
¥
if (parameter.Length > 1)
{
var math =
results.CompiledAssembly.CreateInstance("MyMethods");
var par = math.GetType().
GetMethod (nameOfMethod).
Invoke(math, new[] { parameter });
replace.Add(par);
}
}

using (StreamReader stream = new StreamReader("sampleInputHtml.html"))
using (StreamWriter writeStream = new
StreamWriter("sampleOutputHTML.html"))

{
string line;
while ((line = stream.ReadlLine())!= null)
{
writeStream.WriteLine(line);
}
}

//Parsing sampleOutput Html which is copied from sampleInput Html
XmlDocument doc2 = new XmlDocument();
doc2.Load("sampleOutputHTML.html");
XmlNode root2 = doc2.DocumentElement;
XmlNodelList countNum = root2.SelectNodes("//div[@class =
"htmllst']");

49

foreach (XmlNode XmlNode in countNum)

{
XmlAttribute attribute = XmlNode.Attributes[©];
XmlElement newNode = doc2.CreateElement("div");
newNode.SetAttribute(attribute.Name,attribute.Value);
newNode.InnerText = (string)replace[count];
XmlNode.ParentNode.ReplaceChild(newNode, XmlNode);
count++;
doc2.Save("sampleOutputHTML.html");
}
}
else
{
var temp = results.Errors;
foreach (System.CodeDom.Compiler.CompilerError e in temp)
{
System.Console.WriteLine(e);
}
}

Console.Read();

50

Source code Version 2 (with HTML Agility Pack):

using
using
using
using
using
using
using
using
using
using
using
using
using
using
using

System
System
System
System
System
HtmlAg
System
System
Micros

System.
System.
System.
System.
System.
System.

3
.Collections.Generic;
.Ling;

.Text;
.Threading.Tasks;
ilityPack;

.Net;

.Collections;
oft.CSharp;
CodeDom.Compiler;
Reflection;

I0;
Text.RegularExpressions;
Web;

Xml;

namespace Final

{

class Program

{

stat
{

ic void Main(string[] args)

//Parsing sampleInput Html

HtmlDocument html = new HtmlDocument();

html.Load("sampleInputHtml.html");

var root = html.DocumentNode;

var commonPosts = root.Descendants().Where(n =>
n.GetAttributeValue("class", "").Equals("htmllist"));

ArraylList 1list = new ArraylList();

foreach (var a in commonPosts)

{
string b = WebUtility.HtmlDecode(a.InnerText);

list.Add(b);

}

//create a new instance of the c# compiler
CSharpCodeProvider compiler = new CSharpCodeProvider();

// Create some parameters for the compiler
CompilerParameters parameters = new CompilerParameters();
parameters.GenerateExecutable = false;
parameters.GenerateInMemory = true;

parameters.ReferencedAssemblies.Add("System.d11");
parameters.ReferencedAssemblies.Add("MathLibrary.DLL");

var results =

compiler.CompileAssemblyFromFile(parameters, "MyOwnMethods.cs");

51

if (results.Errors.Count == 0)

{

ArraylList replace = new ArraylList();
int count = 0;

foreach (string i in list)

{

int p = i.IndexOf('(");
int q = i.Index0f(')");
string nameOfMethod = i.Substring(@, p);

string b = i.Substring(p + 1, q - p - 1);
string words = b.Replace("\"", "");
string[] parameter = words.Split(',"');

if (parameter.Length <= 1)

{
var myMehtod = results.CompiledAssembly.CreateInstance("MyMethods");

var a = myMehtod.GetType().
GetMethod(nameOfMethod).
Invoke(myMehtod, new[] { parameter[0] });

replace.Add(a);
}
if (parameter.Length > 1)
{

var math = results.CompiledAssembly.CreateInstance("MyMethods");
var par = math.GetType().

GetMethod (nameOfMethod).

Invoke(math, new[] { parameter });

replace.Add(par);

}

using (StreamReader stream = new StreamReader("sampleInputHtml.html™))
using (StreamWriter writeStream = new StreamWriter("sampleOutputHTML.html"))

{
string line;
while ((line = stream.ReadlLine())!= null)
{
writeStream.WriteLine(line);
}
}

52

//Parsing sampleOutput Html which is copied from sampleInput Html
HtmlDocument html2 = new HtmlDocument();
html2.Load("sampleOQutputHTML.html");

var root2 = html2.DocumentNode;

var countNum = root2.SelectNodes("//div[@class = "htmllst']//text()");

foreach (var htmlNode in countNum)

{
var newNodeStr = replace[count];
var newNode = HtmlNode.CreateNode(""+newNodeStr+"");
htmlNode.ParentNode.ReplaceChild(newNode, htmlNode);
count++;
html2.Save("sampleOutputHTML.html");
}
}
else
{
var temp = results.Errors;
foreach (System.CodeDom.Compiler.CompilerError e in temp)
{
System.Console.WriteLine(e);
}
}

Console.Read();

53

Reference assembly (MyOwnMethods.cs):

using System;

using System.Collections.Generic;
using UtilityMethods;

class MyMethods

{

public string GetGreeting(string name)

{
string a = "Hello" + " " + name;
return a;
}
public string printOut(string a)
{
string s = "testing special symbols " + a + " in HTML";
return s;
}

public string GetNumber(string[] a)

{
long numl = long.Parse(a[®@]);
long num2 = long.Parse(a[1]);
string ¢ = "The Sum of a and b is:" + (numl + num2) + " The Product of a and
b is:" + (numl * num2);
return c;
}

public string Random(string[] a)

{
int numl = Int32.Parse(a[9]);
int num2 = Int32.Parse(a[1]);
Random rnd = new Random();
int one = rnd.Next(numl, num2);
string s = "random num between " + numl + " and " + num2 + " is " + one;
return s;
¥
public string Sum(string[] a)
{
int numl = Int32.Parse(a[©@]);
int num2 = Int32.Parse(a[1]);
Random rnd = new Random();
int one = rnd.Next(numl, num2);
int two = rnd.Next(numl, num2);
int ¢ = one + two;
string s = "the two random nums are " + one + " and " + two +
", and the sum of them is " + c;
return s;
}

54

public string Modulo(string[] a)

{
int numl = Int32.Parse(a[@]);
int num2 = Int32.Parse(a[1]);
Random rnd = new Random();
int one = rnd.Next(numl, num2);
int two = rnd.Next(numl, num2);
int ¢ = one % two;
string s = "the two random nums are " + one + " and " + two +
", and the remainder after division is " + c;
return s;
}

public string Factors(string[] a)

{
int numl = Int32.Parse(a[9]);
int num2 = Int32.Parse(a[1]);
Random rnd = new Random();
int number = rnd.Next(numl, num2);
List<int> factors = new List<int>();
int max = (int)Math.Sqrt(number); //round down
for (int factor = 1; factor <= max; ++factor)
{
//test from 1 to the square root, or the int below it, inclusive.
if (number % factor == 0)
{
factors.Add(factor);
if (factor != number / factor)
{
// Don't add the square root twice!
factors.Add(number / factor);
}
}
}
string f = string.Join(",", factors.ToArray());
string s = "random num is " + number +
", and the factors of this number are " + f;
return s;
¥

55

public string bigger(string a)

{
string s;
char[] chars = a.ToCharArray();
int numl = (int)Char.GetNumericValue(chars[0]);
int num2 = (int)Char.GetNumericValue(chars[chars.Length - 1]);
if (numl - num2 > @)
{
s =a+ " is true";
}
else
{
s =a+ " is false";
}
return s;
}

public string smaller(string a)

{
string s;
char[] chars = a.ToCharArray();
int numl = (int)Char.GetNumericValue(chars[0]);
int num2 = (int)Char.GetNumericValue(chars[chars.Length - 1]);
if (numl - num2 < @)
{
s =a+ " is true";
}
else
{
s = a+ " is false";
}
return s;
}

56

Bibliography

[1] C# and .NET Programming https://msdn.microsoft.com/en-
us/library/orm-9780596521066-01-01.aspx#

[2] Introduction to the C# Language and the .NET Framework
https://msdn.microsoft.com/en-us/library/z1zx9t92.aspx

[3] -NET https://www.microsoft.com/net

[4] Overview of the .NET Framework https://msdn.microsoft.com/en-
us/library/zw4w595w(v=vs.110).aspx

[5] Library vs. Framework?
http://www.programcreek.com/2011/09/what-is-the-
differencebetween-a-java-library-and-a-framework/

[6] Introduction to Reflection API
https://dotnetcademy.net/Learn/4/Pages/1

[7]Reflection in .NET

http://www.csharpcorner.com/uploadfile/keesari_anjaiah/reflection-

in-net/

[8] Scripting language
http://searchwindevelopment.techtarget.com/definition/scripting-
language

[9] J. K. Ousterhout, "Scripting: Higher level programming for the 21st
century,” Computer, vol. 31, no. 3, pp. 23—-30, Mar. 1998.

[10] Scripting language From Wikipedia
https://en.wikipedia.org/wiki/Scripting_language

[11] JavaScript — Document Object Model or DOM
http://www.tutorialspoint.com/javascript/javascript html dom.htm

[12] Understanding Client-side Scripting
http://www.pcmag.com/article2/0,2817,1554984,00.asp

[13] Client-Side Web Development: How Scripting Languages Work
https://www.upwork.com/hiring/development/how-scripting-
languages-work/

57

https://msdn.microsoft.com/en-us/library/orm-9780596521066-01-01.aspx
https://msdn.microsoft.com/en-us/library/orm-9780596521066-01-01.aspx
https://msdn.microsoft.com/en-us/library/z1zx9t92.aspx
https://www.microsoft.com/net
https://msdn.microsoft.com/en-us/library/zw4w595w(v%3Dvs.110).aspx
https://msdn.microsoft.com/en-us/library/zw4w595w(v%3Dvs.110).aspx
http://www.programcreek.com/2011/09/what-is-the-difference-between-a-java-library-and-a-framework/
http://www.programcreek.com/2011/09/what-is-the-differencebetween-a-java-library-and-a-framework/
http://www.programcreek.com/2011/09/what-is-the-differencebetween-a-java-library-and-a-framework/
https://dotnetcademy.net/Learn/4/Pages/1
http://www.csharpcorner.com/uploadfile/keesari_anjaiah/reflection-in-net/
http://www.csharpcorner.com/uploadfile/keesari_anjaiah/reflection-in-net/
http://searchwindevelopment.techtarget.com/definition/scripting-language
http://searchwindevelopment.techtarget.com/definition/scripting-language
https://en.wikipedia.org/wiki/Scripting_language
http://www.tutorialspoint.com/javascript/javascript_html_dom.htm
http://www.pcmag.com/article2/0%2C2817%2C1554984%2C00.asp
https://www.upwork.com/hiring/development/how-scripting-languages-work/
https://www.upwork.com/hiring/development/how-scripting-languages-work/

[14] Introduction to server-side scripting
http://www.pythonschool.net/server-side-scripting/introduction-to-
server-side-scripting/

[15] Server-side Scripting
http://www.seniornet.org/php/images/webximages/docs/Guide/pages/
sss-01-intro.html

[16] Server-side Scripting: Back-End Web Development Technology
https://www.upwork.com/hiring/development/server-side-scripting-
back-end-web-development-technology/

[17] Matthew Ephraim “Treating C# Like A Scripting Language”
http://mattephraim.com/blog/2009/01/02/treating-c-like-a-scripting-

language/

[18] Parsing HTML documents with the Html Agility Pack
http://www.4guysfromrolla.com/articles/011211-1.aspx

[19] Easily Parse HTML Documents in C#
http://blog.olussier.net/2010/03/30/easily-parse-html-documents-in-
csharp/#more-32

[20] Understanding Processing Instructions in XML
http://www.xmlplease.com/xml/xmlguotations/pi

58

http://www.pythonschool.net/server-side-scripting/introduction-to-server-side-scripting/
http://www.pythonschool.net/server-side-scripting/introduction-to-server-side-scripting/
http://www.seniornet.org/php/images/webximages/docs/Guide/pages/sss-01-intro.html
http://www.seniornet.org/php/images/webximages/docs/Guide/pages/sss-01-intro.html
https://www.upwork.com/hiring/development/server-side-scripting-back-end-web-development-technology/
https://www.upwork.com/hiring/development/server-side-scripting-back-end-web-development-technology/
http://mattephraim.com/blog/2009/01/02/treating-c-like-a-scripting-language/
http://mattephraim.com/blog/2009/01/02/treating-c-like-a-scripting-language/
http://www.4guysfromrolla.com/articles/011211-1.aspx
http://blog.olussier.net/2010/03/30/easily-parse-html-documents-in-csharp/%23more-32
http://blog.olussier.net/2010/03/30/easily-parse-html-documents-in-csharp/%23more-32
http://www.xmlplease.com/xml/xmlquotations/pi

31

	2.2.2 Dynamically Loading Assembly
	3.1 Scripting Language
	3.1.1 Scripting Language Overview
	3.1.2 Client-Side Scripting
	3.1.3 Server-Side Scripting

	3.2 Treating C# like A Scripting Language
	3.3 HTML Parser
	3.3.1 HTML Agility Pack
	3.3.2 Processing Instruction

