BTech Project - HazApp

The Geospatial Hazard Management System

Rowan Carmichael
University of Auckland
June 2015

Abstract

This paper will be following my progress as a fourth year BTech student working with the software
development team of Opus International Consultants Limited to solve a company-wide problem of
on-site hazard reporting and management. Everything from the highest level of planning for the
problem, to the lowest level programming will be documented, as well as research and
recommendations for the technologies | see best fit for any design problems that arise, and any
testing that has been to help us complete this project to the highest of quality.

Contents

FY o1 - Lot OO PRSP UPTOVPRRTOUSOUPI i
T =(0| =L PP PPPPPPPPRPPPRS iv
L1 o1 LT T TP U TSSO PPTOPRTOPRRRPSRN v
F Yol g Lo LTY] 1=To Pl <Y o Y=Y o RSP PR Vi
O oY T=Tot Al [g d o Yo [T o1 4 T o ST vii
00 R I o T @ o Yo - 1Y PSP vii
N I g Tl o o] o [=T s o O T TPV P PP PR PPPRTOPPPRRNt vii
IS T N o T = o ot AU vii
B =Tol o] o o] Lo = =TSP SR viii
2.1 Programming LANBUAEE ..ccoiiiiiii i viii

N LAYl 1Y To] o 11 LI 2Y o o PRSP viii

N LAYl D LT G oY AN IO SRR iX
L= < 1Y o o PSPPSR iX

[Yo Y YT CT- Y o J PSR ix
[DL=To1 1] o T o TP TP PP PP OPP RO iX

2.2 Database ManagemeNnt LangGUAEE.ccuiiiiiciieeeeciiiee e eeitee e ettt e e esie e e e ssabaeeessabaeeessasaeeessnsaeeesnnnaeeeens X

K] O | OO PPPPPPPPPPPPTPTRE X

1 Lo 1] © | TP PP PSPPSR X

2.3 JavaSCript FramMEWOIKS.ccuiiieeeiiiee ettt ettt e e e et e e e e ata e e e e ata e e e eabaeeeeasaeeeeansseeesansaeeans Xi
KNOCKOUL ..ttt et ettt e bt e s bt e s ae e ea b e eabeesbeesbeesaeesareeane Xi

N Y U] - | oS PRP Xi
BaACKDONE. ... et Xi
(AT ol = Y OO P PR PP R PR PRTPPRRPRO Xii

(e Tor- 1l Sl - -SSP SP Xii

2.4 Mobile Web APP FrameEWOIKSoceiciiiieeiiiie e ettt e esite e e esiaee e eeiatee e e e abee e e enreeseenbaeeeennteeasennsenas Xii
@ TUT=T Y1/ o o 11 L= SRR Xii

0] 01T PSPPSR TSP Xiii
1200] o -] o Xiii

2.5 StYlESNEET LANGUAEES .. .vviieeiiieee ettt e eitee et e et e e e sae e e e sabte e e e s ataeessnabaeesensbaeesenbaeeeenaseeeeennsens Xiii
LS ittt e a e e s s a e s s ara s Xiv
K= PP P PO PP PR PPPRNE Xiv

SNV =T o o1 =40 Y = N Xiv

F Y oL G 1 Xiv

I T oL a1 T = Ta Lo I D 1T T o PSPPSR XV
N D Fo =] o F= Y 1T = o SRR XV
3.2 USer INtErface DESISNuviiiiiiiie ettt ettt e et e e e e e ae e e e eabae e e erabae e s eenbaeeeeeabeeeeennreeas Xvi
e B to Y= T o 1Yo SRR Xvii

O 1 £l o o] (o] 4V o T PP PPPPPPUPPPPPI Xix
4.1 Accessing Database USING PHPcoouiiii ittt sttt stte e e e s sbee e e s sbae e e s sneeeessanes Xix
4.2 Creating the Mobile Side USiNg HTIVILSccooviiiiiiiiee ettt e siee e e e s e e XX

ATCGIS IMAPPINEG ceerereiiiiiiieitititteeetteeeererereee ...ttt XX
HTMLS FOIm Creation......cooi ittt s e s XXii
Development in the COMING WEEKSveiieiiieeeeee et e et e e et e e e abee e e e xxii

(O - I o = T TP PPPUPRRN XXiii

(00T ool (VLo 1o = I a Vo TU T ={ o1 {3 PPPPRRN XXiii

21T o] FTo Y= =T o] o1V SR XXVi

Figures

Figure 1 - FIrst ERD draft..cccuviiiiciiie ettt st e et e e e ta e e esaar e e e s nta e e e snbaeeesanneeaens XV
FISUPE 2 - FIrST ERD ittt ettt ettt ettt e e e e e st b et e e e e e e s saabbeeeeeeeeesaanseneeaeeeesesannrrnen Xvi
Figure 3 - Mobile user interface prototype [1] ...ccueeeeciieiiiiiiee e e XVii
Figure 4 - Connecting to the PostgreSQL database USINgG PHPcocciviiiiiiiie e XX
Figure 5 - A Simple SELECT PHP QUETY ..uiiiiiiiiee ittt sttt e ettt e e et e e s vte e e e svte e e s sbteeessnseaeessnseeeasnnns XX
Figure 6 - Basic PHP €rror NandliNg.........ooiiuiiiiiiiiie ettt ettt e e st e e s st e e s sbee e e s sneeeaeeans XX
Figure 7 - BasiC ArcGIS JAVaSCript COUR....ciiiuiiiiiiiiiiiiccieie et e et e et e e e et e e e esaar e e e s sasaeeesansaeeeennaeeaeas XXi
Figure 8 - Gray view / Figure 9 - Hybrid VIEW.......cccuiieuiiieiee ettt ettt et e e vee e v XXi
Figure 10 - TOPO View / FIGUre 11 - STrEELS VIEW ...ccveiiieiiieeieeireeiteesteeeteeereeireebeeteesteessaesaseeaseeseenseans xxii

Tables

Table 1 — Progress plan for first release

Acknowledgements

A special thanks to Mano for giving me this wonderful opportunity. Also a massive thank you to the
Opus team: Kodie Wixon, Taylor Carnell, Sulo Shanmuganathan, Roquito Lim and Mitchel Bennett,
who have all made this process as equally enjoyable as it is fulfilling.

Vi

Chapter 1 - Planning

1. Project Introduction

The HazApp system is a proposed geospatial hazard management system to be used by Opus
employees and contractors. It will consist of both a mobile app for on-site hazard reporting and real-
time hazard alerts, and a desktop app for statistical analysis and management of hazards. The
original proposal was an outcome of Opus’ Big Ideas Competition [1] as an improvement to Opus’
current paper-based hazard reporting system.

1.1 The Company

Opus International Consultants Limited is a multi-disciplinary international consultancy company
consisting of over 3,000 engineers, designers, planners, researchers and advisors, situated across 5
countries (New Zealand, Australia, Canada, America, and the United Kingdom). Their work services
include transport asset development, building design, water, and other infrastructure. Because of
the nature of their work fields, many Opus employees and contractors working for Opus are very
often found on work sites (rather than in the office).

Some of Opus’ more recent projects include, but are not limited to, the Newmarket Rail Station
redevelopment, Ngatamariki Geothermal Power Plant construction, the Waikato Expressway, and
the Carterton Events Centre. All of these projects are of massive scale and as such are relatively
prone to on-site hazards. HazApp hope to minimise the time spent towards reporting and managing
on-site hazards so that work can continue on the more important aspects of planning and
construction.

1.2 The Problem

Offering professional consultancy services in asset development and management often requires
Opus employees to be working on-site where if any hazards occur they must be reported and stored
for management, however the current hazard reporting system is a paper-based form (See Appendix
Item 1 for a sample hazard reporting sheet) which is tedious to complete, takes time to be
transferred into a database, and does not offer any advice or alerts to the reporter or anyone else
working on the same site.

As well as having an inefficient paper-based hazard reporting system, each different Opus office
(both nationally and internationally) has a different means of reporting and storing the hazard data.
This lack of connectivity has misaligned Opus’ safety and business practices and is continuing to
promote an absence of interconnectivity within the company.

1.3 The Project

HazApp was created to rectify these problems by both moving the hazard reporting away from
paper towards utilisation of smartphones and tablets, and realigning databases to make the best use
of the reported hazard data. Using a mobile map-based hazard reporting not only allows for real-
time hazard reporting and management, it also has room to offer immediate advice and mitigation

vii

devices to best handle reported hazards. Using a desktop management system with a single global
database allows for powerful statistical analysis.

2. Technologies

Due to the general complexities and cross-platform nature of the project, HazApp will be heavily
reliant on technologies if it is to be a success. The discussion following will outline key decisions
defining how the project is to be made and how it will function. The discussion and ultimate
decisions will be based on a review of current technologies that are able to fit the required function
specifications. These will range from development languages, technical application program
interfaces (APIs), user interface (Ul) frameworks, and database systems.

| will also note that in many of these cases, decisions will not be made until development starts, and
any decisions that are made here may be subject to change when actual development does
commence.

2.1 Programming Language

Seeing as this project requires both a mobile (smartphone and tablet) and desktop component it is
crucial to decide on a language (or languages) that accommodate the platforms and functionality of
the application. The primary programming languages that | will be considering for this project are;
native app for mobile (consisting of some/all of Android, iOS, and Windows Phone), native
application for desktop computer (likely in either C#.net or Java), a web based application (HTML5)
for both mobile and desktop, or an HTML-built application utilising PhoneGap.

Native Mobile App

Perhaps the most obvious solution for the mobile side of this project, native mobile apps allow for
very powerful functionalities and generally faster speeds for functionalities such as use of GPS
tracking and photo capturing (when compared to web based applications). Another attractive
benefit for developing a native mobile app is the ease of use for either offline work or in areas that
have sporadic network connectivity. This is going to be something that may not be a primary
decision factor now, but will definitely need to be considered for the completion of this project.

One big drawback for both forms of native applications, in comparison to a web application, is that if
the project is ever updated (which will most definitely occur), the native applications will have to be
manually updated. This is not the case for the web application as all of the updates will occur server-
side so whenever a user goes to the web page it will be showing the most updated version. Along
with having to update the application where necessary, both native apps require disk space on the
device being used. While this may not be an issue for a desktop computer, it is something we have
to keep in mind for mobile devices with limited storage space.

Unfortunately another major drawback of creating a native mobile app is that it would likely like
more than one language codebase (as some combination of Android, iOS, and Windows Phone) for
the mobile side alone. Taking into considerations the limitations of time, expertise, and money we
have decided that a native mobile app approach would not suit what we hope to achieve.

viii

Native Desktop App

Similar to native mobile apps, a native desktop application can offer increased speed and
functionality in comparison to a web application. However it also shares the same drawback of
requiring separate code bases for both the mobile and desktop sides. With this in mind it is clear
that the two options we could take in terms of coding languages are either a native mobile app and a
native desktop app, or a web app for both mobile and desktop.

Web App

The limitations of web applications compared to native mobile and desktop applications somewhat
numerous, however due to the relatively simple functionality of the project, we feel as though a
HTML5 web application using JavaScript would more than suffice the primary needed functionality
of mapping, geolocation tracking, photo/video capturing, and connectivity to a server side database.

As mentioned earlier, having some functionality for offline use or intermittent internet connectivity
needs to be considered. Fortunately there are options utilising HTML5 and JavaScript which allow for
such functionalities. The possible solutions to this problem will be assessed later.

Finally, using a HTML5 web based application will allow for a lot of code sharing between the mobile
and desktop application. This is an incredibly attractive trait of web applications and is a main
contributor to why we have ultimately chosen to develop a web application in HTMLS5, utilising
JavaScript APIs, and a PHP database.

PhoneGap

PhoneGap is a special case that we will be also looking into specifically for the mobile and tablet side
of our project. In terms of development it should be exactly the same as a web application using
HTMLS5, CSS, and JavaScript. However it differs in how it is deployed, instead of being a web based
application PhoneGap would allow for out HTML/CSS/JavaScript codebase to be converted into
native mobile applications for Android, i0OS, and Windows Phone. This would eliminate the problem
of having multiple code bases for each different device type and could also allow for better local
storage on the device for offline or poor-connection usage. While in theory this sounds great it may
not be as easy to include such functionalities. [2]

Although this seems like a good middle ground decision it does not come without its own faults. The
most glaring problem that would most likely arise is decreased performance compared to a regular
native application or a web based application. From what has been suggested from some of the
other Opus developers, PhoneGap may not be the best choice if we are interested in having decent
performance speeds from out application. From what | have gathered PhoneGap’s conversion comes
with a cost, and seeing as it is important for our app to function fast enough as to not have a
negative impact on the user’s view of the app, PhoneGap may not be the most obvious choice.

Decision

Due to the very small size of our development team and the large size of the project itself we have
decided that we will be developing using HTMLS5 for both the desktop and mobile/tablet side of the
application. As mentioned earlier HTML5 comes with more than enough functionalities to
accommodate the project requirements and by chOosing HTML5 we will be able to share a decent
amount of code between the two sides of the application.

2.2 Database Management Language

One of the key inspirations for this project was to connect the entire Opus community through a
global database system, as such the decision for the database management language is very
important to the longevity of the project. As discussed earlier we are going to be creating a HTML5
based web application and as such we will be using PHP to connect client and server databases. In
terms of database implementations we will be looking into two of the most popular options being a
regular SQL database and a NoSQL database.

SQL

SQL (structured query language) databases have been around for many years, with their first
appearance in 1974 and initial release in 1986 and as such have been the dominating framework for
databases up to present day. The biggest difference between SQL and NoSQL is that SQL databases
are primarily relational databases utilising tables containing data fitted into predefined categories.
While SQL has been around significantly longer than NoSQL it does come with its limitations. The
major limitations to note are scalability and complexity. As SQL uses relational databases scaling the
size of a database is an expensive and difficult task which requires powerful servers. The other major
drawback as compared to NoSQL databases is the complexity of relationships within the database.
SQL requires a network of tables all connected through some means of relationship strings. An
implication of this is that altering the design of the database structure can be very complex and can
downright break your database (especially in the case of deleting data/tables).

One benefit that regular SQL databases have over NoSQL databases is that, for complex queries, SQL
offers standard interfaces aiding in working with such queries. In general SQL databases are best fit
for heavy duty transactional type applications, the reason being is that they offer more stability and
promise atomicity as well as integrity of the data. This is emphasised through SQL’s ACID properties
(Atomicity, Consistency, Isolation and Durability). The HazApp project will be including some form of
transactions (most likely on the management side of the application) so the benefit of stability and
atomicity will be kept in mind.

Finally the last advantage to note that SQL has over NoSQL is that, as it has been around for so much
longer, SQL offers excellent support for their databases from vendors. Whereas NoSQL largely has to
rely on community support. [3]

NoSQL

NoSQL databases have surged in popularity since their release in 1998. The aim of NoSQL was to
move away from the idea of concrete relational tables for a more flexible framework. NoSQL
databases focus more on key-value pairs, no longer requiring fixed table schemas and relational join
operations. They have traded off the ACID properties for Brewer’s CAP (Consistency, Availability,
Partition tolerance) theorem.

One of the bigger positives NoSQL has over has over regular SQL is that no schema are required.
That is to say data can be inserted into a database without having to define a rigid database schema.
This also allows the format of the data being inserted to be changed at any time without application
disruption, leading to massive application flexibility. In general NoSQL databases process data faster
than relational databases as their data models are more flexible and often simpler. [4]

While both SQL and NoSQL databases have their own differences and benefits, we are yet to make a
decision on what database type we will be implementing. This decision will be made closer to
development start.

2.3 JavaScript Frameworks

Selecting appropriate JavaScript frameworks can greatly reduce the need for tedious manual
calculations. Essentially what we are looking for in a JavaScript framework is functionalities which
will aid help with manipulation of the webpage’s data through things such as functions and bindings.
In this case we will not necessarily be settling for a single JavaScript framework, but instead we may
use several in different areas which we see fit. For general JavaScript we will be considering
Knockout.js, Angular.js and Backbone.js. This decision will likely be influenced by how the JavaScript
framework combined with the web app framework. For offline storage functionalities we will be
looking at Lawnchair and Local Forage.

Knockout

While Knockout, AngularlS, and Backbone all offer some of the same very useful functionalities that
regular JavaScript does not naturally support (such as data binding and DOM templating of code into
smaller maintainable pieces), Knockout is different as it is primarily a lightweight data-binding
library. Unlike AngularlS it has explicitly put work towards focusing on unobtrusive code, which
could be important for our project. While at times each of these three frameworks may outperform
the others in terms of performance speed, Knockout has a stronger focus on speed and should offer
better performance than the other two for common tasks that we will be implementing. [5]

Angular

Angular is different to both Knockout and Backbone as it is a full-fledged framework (rather than a
lightweight one). It has be built from testability and as such of this can clear project organisation
more effectively that the other two alternatives. It is the “heaviest” of the three frameworks, and
because of this it can offer more luxury functionalities such as custom elements. It is difficult to say
whether or not these extra functionalities will be of any benefit without having started development
yet. [6]

Backbone

More similar to Knockout, Backbone is a lightweight JavaScript framework and as such in general it
will also perform better that AngularJS in terms of speed. Unfortunately this comes at a cost; while
Backbone excels in simple applications, it may fall behind when dealing with heavy built-in data
interactivity or extensive scaling. As mentioned earlier, it is difficult to tell which of these
frameworks will suit out problem, although in terms of the mobile side of the application we are
going to try and make it as simple as possible so both Knockout and Backbone may have the slight
edge at the moment. It is going to be our job when we start developing to identify and handle the
balancing act between these frameworks. [7]

With all of this in mind | will conclude that all of these frameworks essentially are solving the same
problems. There are small differences between the functionalities and syntax between the three but
ultimately any of these frameworks seem as though they would adequately work for our project.
While this decision is still undecided, it will probably be influenced by more specific problems we
encounter while actually developing. If any one framework can manage a specific problem better

Xi

than the others, it will most likely be the one we use, however that will be judged on a case-by-case
basis.

Lawnchair

Again Lawnchair and Local Forage share the same roll of maintaining data offline. Although we are
still in a very early stage of planning and offline data management is rather low on our priority list |
still thought it would be beneficial to review two of the most popular options for local HTML5
storage using json.

Lawnchair has been designed with mobile in mind, which is great to hear as the mobile hazard
reporting side of our project is where we will be wanting offline support. It has a few very simple but
powerful functionalities which cover the basis of offline data storage. These include mapping key-
value pairs, saving them to a local “store”, and accessing them later. Unlike Local Forage, Lawnchair
has stopped releasing new builds and has been “finished” as a project. This means that as time goes
on it most likely will fall further and further behind the regularly updated Local Forage. [8]

Local Forage

Mozilla’s Local Forage seems to be a more complete solution to the problem of local storage for
HTMLS. It shares a similar methodology of saving and retrieving data as Lawnchair, but it also offers
built in error handling. This essentially means it is slightly more complex but covers lightly more
functionality than Lawnchair. As mentioned earlier it is continually updated and from what | have
gathered has far more extensive documentation and support. [9]

At this time in our research, offering offline storage functionalities has one of the lowest priorities
and will probably not be mentioned again until we are nearing our final release.

2.4 Mobile Web App Frameworks

The web app frameworks we will be deciding to use will primarily be based on user interface and
ease of use. With this in mind we will only be looking at a select few (although there are a numerous
amount of potential contenders) that we deem most likely to fit our needs. We will consider JQuery
Mobile, lonic Review, and Bootstrap.

JQuery Mobile

JQuery Mobile is a very well know and very popular choice for HTML5/CSS/JavaScript development
for smart phones and tablets. It is a very easy to use framework that does a lot of useful work for
you (especially in terms of automatically generated user interfaces). It is such a popular choice for
smart phones and tablets as it includes a very clever built in scaling system so that you program can
easily be transferable between many different screen sizes. In essence JQuery Mobile is a
minimalistic upgrade to JQuery designed for responsive web pages and platform independent
applications.

Another great benefit of JQuery Mobile is that seeing as it is so simple, it is incredibly easy to extend
further JavaScript libraries. As such it should be able to fit well with any of the JavaScript frameworks
discussed above. As well as working great for mobile devices JQuery Mobile also offers smart designs
and implementations on desktop applications. This may come into our decision making process as it
is important to have coherency between out mobile and desktop application which can be boosted
by having a similar user interface style for both.

xii

The final benefit that JQuery Mobile which is very attractive for our project is the fact that it offers a
lot of mobile-specific function handling such as swipe-events, page transitions and touch-friendly
components. However while it does offer a lot of useful functions it can be have very slow
performance, especially if the application is not designed properly. [10]

lonic

The lonic framework is the most recently created web app framework we will be considering, with
the alpha release in November 2013. Similar to JQuery Mobile, lonic Review primarily focusses on
the user interface, however it differs in the fact that it is built on top of Google’s Angular)S
framework. This pairing is a necessity for lonic to function to its fullest potential so if we were to
choose it we would also have to be working with AngularJS.

Another similarity lonic shares with JQuery Mobile is having a strong focus on responsive web
design, which is a big plus. We will be wanting to have our application provide optimal viewing and
interaction experience, as well as quick and easy navigation, and the ability to function on a wide
variety of devices. By utilising a responsive web design to its maximum potential, we should be able
to share a lot of code between out desktop and mobile applications. [11]

Bootstrap

Bootstrap is a front-end framework which also offers a number of great user interface components
such as dropdowns, breadcrumb navigations, and button groups. Unlike JQuery Mobile, it has not
been designed to primarily focus on mobile applications and as such seems to have the appearance
of a desktop application (even when on a smartphone screen). To fix this, custom code would be
necessary. As it is less dependent of JQuery, it generally will exhibit better performance. [12]

While we will be developing for both mobile and desktop we are yet to decide if we will use any of
these frameworks for both sides of the application or if we will divide our application by using
different frameworks for the two sizes (for example JQuery Mobile for the mobile/tablet side, and
Bootstrap for the desktop side).

2.5 Stylesheet Languages

While not a major priority for the project, utilising an effective stylesheet language that can be
compiled into CSS, can make the CSS code easier to understand and simpler to create. The two big
names in this area that we will be considering are Less and Sass. It should be noted that while we will
be considering both, we may end up not using either and just stick to regular CSS.

Both Less and Sass share a lot of syntax and functionalities, and are essentially attempting to solve
the same problem of decreasing the amount of code needed for stylesheets through added
functionalities. These include but are not limited to:

e Mixins: which allow embedding of properties of a class into other classes, creating a soft of
variable which can be repeatedly used.

e Parametric Mixins: act as functions by allowing passing of parameters

e Nesting: similar to a nesting in a language like Java, cuts down on repetitive code

e Functions and Operators: allows for mathematical equations within your CSS code (for
example taking a colour variable and making it slightly darker by adding to the RGB value)

xiii

e Namespaces: which are groups of styles that can be called by references (rather than
requiring several CSS files)

Less

While both Less and Sass are pre-processors for CSS, Less has been greatly influenced by Sass. This is
very apparent in the shared functionalities of the two. One difference between the two is that Less is
a JavaScript library and is processed client-side. Being a JavaScript library it is incredibly easy to
incorporate into a web based application. All that is needed is two extra lines of code in the HTML
file, one referring to the .less file and one referring the less.js file. [13]

Sass

As stated earlier the one significant difference between Less and Sass is that Sass is not a JavaScript
library, it instead uses Ruby. However it seems as though this is not a big deal at all as if | were to
develop using either of these framewaorks | wold have to be learning new syntax anyway. [14]

It seems as though if we do decide to use either of these frameworks it will most likely come down
to personal preference as the differences between the two seem to be minimal. However we will
probably be ignoring these for the start of our development as we will be wanting to only focus on
the most necessary functionalities.

2.6 Mapping AP|

It is of immense importance to get the mapping technology that will best suit our project. The
primary properties we will need from our mapping APl is an attractive interface, capabilities to
effectively send user input to, and retrieve and map data from a server’s database. We would also
really like to have easy and flexible movement options for the user (in particular moving the map
location and zooming), and a fast overall performance. Although the mapping API ArcGIS has already
been chosen by Opus for this project (as for all mapping-based projects within Opus ArcGIS has been
used) | will still review this API in hope that | will gain a better understanding on how | will end up
developing with it.

ArcGlS

The ArcGIS engine allows for adding dynamic mapping and geographic information system (GIS)
capabilities to both existing applications and custom built mapping applications. Some very useful
features include creating custom and prebuilt drawing/graphics features, such as points, lines, and
polygons. These graphical features are not just for show, ArcGIS offers powerful manipulation and
geographic operations on these shapes, such as calculating differences, finding intersections, and
even assigning points on a map to database objects. This is exactly the kind of functionality we are
looking for in our HazApp project. As well as the interfacing side of the mapping technology, ArcGIS
also offers network analysis which is another crucial part to the success of our project. All this is very
well documented and there are many demos on their site which will most definitely speed up my
learning process as so far | have had no exposure to ArcGIS. [15]

In terms of the visuals of the mapping, ArcGIS seems to offer an abundance of choices. Again this is a
massive positive as we can customise how the map looks to best represent the data, and maximise
the ease of use for users. | will be reviewing some of the more specific visualisation options later in
the planning phase.

Xiv

3. Planning and Design

Now that the majority of decisions have been made on the technologies we will be using to
construct HazApp we now have the opportunity to move onto planning specifics of the project.
Again, seeing as we are at an early stage in development, it is very important to create a sound
foundation before development starts. Our planning and design phase will cover the underlying
database design, a basic user interface design, and an initial plan for our development phase.

It should be noted that while we are still only in the planning and design phase any decisions made
here are subject to change.

3.1 Database Design

The decision has been made for this project to be implemented using a PostgreSQL database [16].
The reason we have chosen to go with a more typical SQL database rather than a NoSQL database is
due to the relational nature of the data we will be storing. The figure below shows our first ERD
(Entity Relationship Diagram) including the fundamental tables, attributes, and relations.

To begin the planning we started with mapping the most important entity in our database: the
Hazards. From this we expanded the database outwards, keeping in mind the relationships that
would follow the new tables. The most important tables that we identified were: Hazards, Projects,
Users, Lookups, Attachments, User_history, and Sync_history. While the Hazards, Projects, and
Users tables are fairly self-explanatory, | will be briefly covering a few of the details of the less
obvious tables. To start, the Lookups table is to help define and categorise specific hazards. Also
closely related to the Hazards table is the Attachments table, this is to be used for linking
photos/videos with reported hazards. And finally, User_history and Sync_history are there to offer
some form of documentation on users and to help synchronising the database (for example in times

of a lack of internet connectivity).

Figure 1 - First ERD draft

As this was our very first draft of the database design there was a lot of room for change. Through
several iterations of reviewing the ERD we finalised the design (as shown below) with several
changes. These include but are not limited to the addition of attribute variables, further defining the

XV

relationships (as well as the relationship types), and the addition of new relational tables (in this case
the table User_project which is used to resolve the many-to-many relationship between the User
and Project tables).

User_project Project

Hazard_project

i Attacment

Hazard

User

S Lookups

.'/

User_his tory Sync_histary

App_setting

Figure 2 - First ERD

This ERD represents the basis of our database for the first implementation of our project. After
creating it and going through several iterations (using draw.io [17]), we have now converted this
design into a PostgreSQL database using pgAdmin 3 [18]. This allows us to quickly and easily edit the
database through a simple interface, and it also has allowed me to set up a local version of the
database on my machine (for testing purposes).

3.2 User Interface Design

The user interface is not the highest priority at the moment, however it is important to create an
easy to use interface that the first testers (Opus employees) will be able to understand and use
effectively. For our first prototype not much time will be allocated into making the user interface
look “nice.” This time will instead be put towards the primary functionalities of the application. With
that being said, the first prototype will ultimately be used by a group of Opus employees, and as
such we don’t want the user interface to have any negative connotation due to the way it looks. It
should be as simple and clean as possible.

The following figures are mock ups created at the very first idea proposal stage and were used as a
tool to aid HazApp’s application process. While they are slightly dated and a lot has changed since
my involvement in the project, | will be using these as a very rough template for the user interface
design | will be working on.

XVi

Hazard Type:
Saloct ™

e—

nt Black Spot Location Type:
8 vehicle Accidents PrTE———— Click to add
recorded since 2008 picture
> Hazard Description:

Figure 3 - Mobile user interface prototype [1]

| really like the idea of having a full screen map view that showing the local area’s project sites and
hazards. Due to the limited screen sizes of mobiles, maximising the efficiency of space by minimising
the amount of unneeded clutter is a must. Similar to the above figure | will also include a small
hazard form popup that will take up about half a screen when someone wishes to view or log a
hazard. This should still leave enough room for the user to accurately select the correct area on the
map.

3.3 Progress Plan

With a more concrete game plan forming we are now working on a scheduled plan for the first
release of the mobile and desktop application. The table below is our finalised development plan for
this stage. It should be noted that this plan covers all aspects project and there will be some areas
that | will not be directly involved in (mainly the desktop side of the application). This is primarily to
allow me to focus purely on the mobile side of the application. In terms of general development the
areas that are of critical importance to me are the database design (which will be implemented as a
PostgreSQL database), accessing the database and performing simple CRUD (Create, Read, Update
and Delete) operations using PHP, the ability to add hazards to the database using a mobile interface
| will be creating (this should also incorporate the mapping technology ArcGlS), and the ability to
retrieve all local hazards from the database and display them via the ArcGIS map on the mobile

application.
Iteration |Due
Type Feature Description (Week) [Date
28th
Design Stage | Database Design database (ERD) 0| April
Project 29th
Initiation Planning Low level task assignment and plan 0| April
First Release
Dev Database Setup dev, uat databases with Postgis 0| 6th May
First Release 13th
Dev Database Implement database 1| May

XVii

First Release 13th

Dev Base Application [Base CI app with required libraries etc 1| May
First Release 20th
Dev Base Application | Mapping requirements 2| May
First Release 20th
Dev Base Application [Theme, styling, look / feel. mock pages 2| May
First Release |Adding a Hazard 27th
Dev on Desktop CRUD for hazards 3| May
First Release Prepare a list of the hazards in the system, with an 27th
Dev Hazard List ability to search and query 3| May
First Release

Dev Base Application | Configure to authenticate with AD 413rd June
First Release [Base Mobile

Dev Application Base app setup for the HTML5 WebApps 4|3rd June
First Release | Mobile App Add 10th
Dev Hazards Ability to add hazards on the mobile interface 5|June
First Release [Mobile App View [Ability to view all hazards on the mobile device 10th
Dev Hazards (using GPS as well) 5[June
First Release Map view of all hazards with the additional of other 17th
Dev Hazard Map spatial queries 6)June
First Release To prepare users for UAT and any adjustments 24th
Admin UAT Feedback before commencing full pilot 7[June

Table 1 - Progress plan for first release

As seen in the table above, the final due date we are aiming for (at least for our initial prototype) is
the 24 of June. At this point we hope to have a working desktop and mobile application that can be
tested in a real world environment by a small group of Opus employees. As it is the first prototype
we will only be focussing on the most important aspects of the application that we deem necessary.
This means we will not be implementing functions such as offline use or statistical visualisations until
a later release. Assuming all goes well the first prototype will be the most important part of the
project so far. It will enable us to truly see if the idea is viable, and it will definitely highlight aspects
that are weak in the design.

XViii

Chapter 2 -
Development

4. First Prototype

After the successful completion of our planning phases we will now be beginning the development
on our first prototype. As mentioned in the project plan, | will primarily be focussing my
development on the mobile side of the project, and as such this chapter will be following
development from my point of view. Throughout this chapter | will be making reference to the
desktop side of the project however my involvement in that part of the project may be limited for
the time being.

The first working prototype will be due at the end of June. By then | hope to have the mobile
application accessing the database servers and preforming simple CRUD operations for hazards, a
basic form for adding hazards, and utilisation of the ArcGIS mapping technology which will show
localised hazards and have some functionality for reporting of hazards through a geospatial
navigation interface.

As this is only the first prototype and we have a limited time frame before the first iteration of user
testing commences, several “luxuries” will be left out depending on time. As mentioned earlier we
will not be bothering applying any functionality for offline testing at this stage and | will most likely
not be spending a lot of time on the user interface and other things like fancy transitions between
screens. As such | will probably be ignoring the mobile web app frameworks, stylesheet languages,
and will only be using JavaScript frameworks where absolutely necessary.

It should be noted that due to a differential between the submission time for this report and the
time for our first application testing phase, several of the above features may not be completed by
the time this report is completed. With this in mind the final area in this report will summarise what
will be completed in the coming days (leading towards the first deployment).

4.1 Accessing Database using PHP

While | have had some experience with HTML, JavaScript and CSS, this is my first exposure to PHP
programming. Fortunately | have also had some experience with SQL databases and the functions of
such databases. Because of this PHP for database management felt very familiar, and no real
difficulties were encountered when trying out the basic CRUD operations. One minor setback | did
encounter was when trying to access the database tables. At first | did not realise that when using
PostgreSQL queries in PHP, all table names in single quotations were automatically converted to
lower case. This essentially meant my PHP code was not recognising any of the tables in my queries
(as they were defined in the database with a capital first letter, for example ‘Hazards’). After some
minor confusion | contacted one of the PHP experts at Opus who informed me of the problem, and a

XiX

few solutions. One being changing the table names in the database to be all lower case, and the
other to slightly alter my queries to include an extra set of quotations around the table name so that
it keeps its case.

| have included below the two most important aspects of using PHP to access the database; creating
a connection to the database, and defining a query (in this case a simply lookup). [19]

$db = pg_connect("host=1localhost port=5432 dbname=postgres
user=postgres password=password")

Figure 4 - Connecting to the PostgreSQL database using PHP

If you notice in the above code | have set the host to localhost, | have done this as while we are yet
to deploy our first version, | have been testing my code using a localised copied version of the
database. To access the database through the localhost on my computer | have used the free
database connection program XAMPP [20] which opens specific connection modules such as Apache
or MySQL. When we release the first version of our applications to some Opus testing staff | will
instead be connecting to a server database created by the company.

$query = 'SELECT * FROM hazards;
$result = pg_query($query)

Figure 5 - A simple SELECT PHP query

This PHP query is the most simple of queries, all it does is get all of the entries in the ‘hazards’ table
and stores them in a result. For testing purposes | continued this followed this code with a few
simple echo statements to view the data.

For purposes of error handling and safety | have also included catches to handle and display any
errors that may occur while either connecting to the database or querying the database. Again this is
very simple to do but it holds massive benefits in terms of resolving errors in the early development
stages. This is done within a single line that follows either an attempted connection or query (as
seen below):

or die("Error: ".pg_last_error());

Figure 6 - Basic PHP error handling

4.2 Creating the Mobile Side Using HTML5

The second piece of the mobile prototype is the actual HTML5 application, it will essentially be the
interface between the user, the map, and the database. Due to its complex nature | have separated
this task into 4 smaller subtasks. These are; the ArcGIS map, the HTML5 form, adding hazards to the
database via the HTMLS5 form and a PHP connection, and retrieving and displaying local hazards from
the database onto the map.

ArcGIS Mapping

While | have had some experience using enterprise mapping API’s (in particular Google Maps), this is
my first experience using Esri’s ArcGIS mapping technologies. As such | have had to put in quite a lot
of time towards learning the API as there are a lot of different functionalities that | will have to be
utilising to effectively solve the problems. To start, | simply tried to get a map displayed within my

XX

testing browser. This was done purely using JavaScript and some of Esri’s libraries [15]. The code
snippet | have included below is the most basic of maps which is located above Auckland city.
require (["esri/map", "dojo/domReady!"], function (Map) {
var map = new Map ("map", {
center: [-174.7400, 36.84006],
zoom: 8§,
basemap: "topo"
1)
1)
Figure 7 - Basic ArcGIS JavaScript code
The most important aspect to using ArcGIS through JavaScript is the first line of the above code. The
‘require’ keyword defines what libraries are to be downloaded from Esri as well as the functions
that will operate on the given map.

The first functionality that | have decided to add is the ability to zoom to the current device’s
location (using Geolocation to get a latitude and longitude value). The reason | have prioritised this
functionality so highly is because even for this first prototype, the users will be wanting to log
hazards using their mobile devices while on work-sites. By allowing them to automatically zoom the
map to their current location by the click of a button, Opus employees will be able to quickly locate
the area where they wish to report a hazard and can easily view all hazards in the local area (to be
completed later).

In terms of the map style | want to have something that is clean and not overly complicated, but also
shows enough detail of streets, building groups, and environmental areas to not only be visually
appealing, but also practically useful.

Below are a few of the alternative map styles | have considered. While there are many more map
styles available (both created by Esri and created open source), these were the four that | found to
best fit the design requirements.

thaven

St Marys
Bay

Auc
Ce

Pons onby

Figure 8 - Gray view Figure 9 - Hybrid view

XXi

Figure 10 - Topo view Figure 11 - Streets view

My decision was narrowed down to either the ‘streets’ view or the ‘topo’ view. Both ultimately
function very similar but have slight differences that | have used in my decision making process. The
‘streets’ view offers more detail of roads; it has several different shade to categorise the different
types of roads (for example the darkest road in the above image is State Highway 1). Whereas the
‘topo’ view does not focus so heavily on the roads (although it does show them in adequate detail),
instead it offers better visualisations of building areas. In the above image it is clear what area is
more residential (the left half) and what area has a higher density of larger commercial buildings
(the right half). While both the ‘streets’ view and the ‘topo’ view have only minor differences, | have
decided to go with the ‘topo’ view as | believe it gives enough detail of roads, it is clean and easy to
look at, and the building density shading system will be massively beneficial to users when locating
particular work sites.

HTMLS Form Creation

Crucial to reporting hazards is the form detailing the specifics of a given hazard. | will be reducing the
possible inputs to only those | consider a necessity. First and foremost is a hazard categorisation
input, which will give the option to either chose a pre-set hazard type or input a custom hazard site.
This will be followed by the location (latitude and longitude) of the current hazard, which will either
take the values from the area selected on the map or another value directly input by the user. The
third most important aspect of the hazard reporting form is a short description detailing the specifics
of the hazard. This will just be a simple editable text box.

Some optional inputs which may or may not be implemented in the first prototype based on time
are the ability to attach a photo or video, the ability to link a hazard to an existing project site in the
database, the ability to add any additional notes such as mitigation techniques used, as well as input
verification.

Development in the Coming Weeks

At this stage | am still well on track to complete the mobile side of the application by the intended
date (end of July). | will now be continuing the form creation, after which | will be focussing on the
ArcGIS map to allow users to select a specific point or area, so that the location may be recorded and
used in the hazard form. Once this is finished | will then move on to joining my PHP code with my
HTMLS5 so that when a user successfully fills in a hazard form, the details may be recorded and saved
in our database. After this | will be working on the last most important area of the first release,
which is displaying local hazards (and potentially projects) on the map based on the user’s current
location.

XXii

If | manage to finish all of the above with time to spare | will most probably move onto areas such as
allowing capturing and attaching of photos/videos onto hazards, improving the user interface and
overall flow of the application, and incorporating some basic form of logging hazard updates to a
history list.

Overall Progress

Looking at the greater schemes of things, | believe we will have no problem completing this project
to entirety by the end of the year. In terms of big ideas for the mobile side we will need to
implement offline storage of data, some form of user login, and a hazard alert system. In terms of
the desktop side we will need to incorporate more management systems (for example for issuing
alerts to employees), some form of statistical analysis to hopefully help Opus identify and minimise
common hazards and alter training for mitigation and resolution techniques. Also we will most likely
be adding functionalities to view and edit a particular hazard based on the level of accessibility
(either the creator of the hazard, or a management admin).

Concluding Thoughts

So far | have thoroughly enjoyed this project and | am very much looking forward to completing the
first prototype and seeing my work in a real-world environment. The experience so far has been
great and | have been trying my best to learn as much as | can (not only for the project itself, but also
experience of working in a real software development team, albeit rather small). Due to the complex
nature of the entire project I'm sure that as our development progresses we will run into obstacles
or road blocks of some kind, but I intend in making the most of any difficulties that arise, as | believe
that is the time we learn most.

XXiii

Appendix

Item 1 - Simple Hazard Reporting Template

Area/Locality of hazard Date

(Name of person preparing report)

DESCRIPTION OF HAZARD (Include area and task involved, any equipment, tools, people involved.
Use sketches if necessary.)

POSSIBLE REMEDIES (List any suggestions you may have for reducing or eliminating the problem,
e.g. re-design mechanical devices, procedures, training, maintenance work, etc.)

XXiv

To be submitted to the Manager

ACTION TAKEN

CONTROL IMPLEMENTED & EVALUTATED

XXV

Bibliography

[1] Opus International Consultants Limited, “HazApp: The Opus Geospatial Hazard Management
System,” Auckland, 2015.

[2] Adobe, “PhoneGap,” 2015. [Online]. Available: http://phonegap.com/. [Accessed 2 May 2015].

[3] Wikipedia, “SQL,” May 2015. [Online]. Available: http://en.wikipedia.org/wiki/SQL. [Accessed
10 May 2015].

[4] Wikipedia, “NoSQL,” May 2015. [Online]. Available: http://en.wikipedia.org/wiki/NoSQL.
[Accessed 10th May 2015].

[5] Knockout, “Knockout JS,” May 2015. [Online]. Available: http://knockoutjs.com/. [Accessed 10
May 2015].

[6] Google, “AngularlS,” May 2015. [Online]. Available: https://angularjs.org/. [Accessed 10 May
2015].

[7] Backbone, “Backbone JS,” April 2015. [Online]. Available: http://backbonejs.org/. [Accessed 14
May 2015].

[8] B. LeRoux, “Lawnchair simple json storage,” 10 March 2015. [Online]. Available:
http://brian.io/lawnchair/. [Accessed 14 May 2015].

[9] Mozilla, “Local Forage,” April 2015. [Online]. Available: https://mozilla.github.io/localForage/.
[Accessed 14 May 2015].

[10] The JQuery Foundation, “JQuery Mobile,” 2015. [Online]. Available:
https://jquerymobile.com/. [Accessed 20 May 2015].

[11] Drifty, “lonic,” 2015. [Online]. Available: http://ionicframework.com/. [Accessed 22 May 2015].

[12] Bootstrap, “Bootstrap,” 2015. [Online]. Available: http://getbootstrap.com/. [Accessed 24 May
2015].

[13] Less, “Less - Getting started,” 2015. [Online]. Available: http://lesscss.org/. [Accessed 26 May
2015].

[14] W. N. E. C. Catlin H., “Sass - CSS with superpowers,” 2015. [Online]. Available: http://sass-
lang.com/. [Accessed 28 May 2015].

[15] Esri, “ArcGIS,” May 2015. [Online]. Available: http://www.arcgis.com/. [Accessed 28 May
2015].

[16] The PostgreSQL Global Development Group, “PostgreSQL,” 2015. [Online]. Available:
http://www.postgresql.org/. [Accessed 20 May 2015].

XXVi

[17] JGraph Limited, “draw.io,” 2015. [Online]. Available: https://www.draw.io/. [Accessed 24 May
2015].

[18] pgAdmin, “pgAdmin - PostgreSQL Tools,” 12 December 2014. [Online]. Available:
http://www.pgadmin.org/. [Accessed 28 May 2015].

[19] The PHP Group, “PHP,” 14 May 2015. [Online]. Available: http://php.net/. [Accessed 1 June
2015].

[20] Apache Friends, “XAMPP Apache + MySQL + PHP + Perl,” 2015. [Online]. Available:
https://www.apachefriends.org/index.html. [Accessed 2 June 2015].

XXVii

