

BTech 451B

ASIST - Asset History In Real Time

Development of a

Mobile Computing Application

Anthony Peek

ID 2628256

UPI apeee229

26th October 2015

Acknowledgements

Kodie Wixon, Team Manager, Software Development

Opus International Consultants Ltd.

Roquito Lim, Senior Financial Analyst

Opus International Consultants Ltd.

Andrew Bruce, Business Group Manager

Opus International Consultants Ltd.

Duan Zhao, Information Analyst / Asset Manager

Opus International Consultants Ltd.

Dr. Sulo Shanmuganathan, Chief Technical Officer

Opus International Consultants Ltd.

Dr. Sathiamoorthy Manoharan, Academic Supervisor

The University of Auckland

 2

Executive Summary

Opus, an infrastructure consultancy firm have asked for ASIST, a mobile application theorised

in a recent in-house innovation competition, to be developed. ASIST’s, or asset history in real

time’s goal is to convert the significantly large amounts of data collected for their structures

such as buildings and roads from convoluted and expansive, to intuitive and minimal. This has

lead to a mobile augmented reality solution idea by Andrew Bruce.

Augmented reality in this case utilises the mobile device’s location with components such as

the GPS, compass and accelerometer to derive the absolute positioning and angle of the de-

vice. When paired with the device’s camera, information related to this positioning can be

visualised in real time against the real world using a data layer. Information collected about

assets such as condition data, past repairs, and future plans can then be displayed on this data

layer in real time while working in the field. This is a far more practical solution that can be

understood quickly and without prior knowledge of the domain, compared to the current data

tables used which require processing and transformation to gain understanding from.

The project is to transform this idea into a functional application. The first 12 weeks, or phase

one of this project was assigned to scoping and design. The key decision required in this time

was the choice of platform to use. First, an introduction to mobile programming and aug-

mented reality is presented (PART I). Next, research and reasoning with respect to the imple-

mentation of ASIST is presented (PART II), including research of current comparable applica-

tions, and platform and hardware limitations.

After making the decision to pursue native Android development, PART III discusses the de-

velopment process in detail, introducing the different components such as GPS, accelerometer,

and compass required by the application, and the integration of these to create the augmented

data layer which displays the road surface. This process presented many challenges, resulting

in many changes being made, and limitations being introduced throughout development.

Finally, an evaluation of the application is made, and areas for future work discussed (PART

IV). Due to the challenges faced throughout development, the scope of the project was reduced

to only the core component of ASIST - the visualisation of roads. Although the additional fea-

tures were not completed, this core functionality has been completed to a satisfactory level

which solves the given problem of road condition visualisation.

 3

Contents

PART I. Introduction and Preliminary Research . 4

 1.1 Problem Description 4

 1.2 Introduction to Mobile Application Development 5

 1.3 Differences Between Mobile & Embedded Application Development 8

 1.4 Introduction to Augmented Reality 9

 1.5 AR Requirements & Foundations 10

 1.6 Mobile AR 11

 1.7 User Evaluation of Mobile AR 12

 1.8 Conceptual ASIST 12

 1.9 Student Role & People Involved 15

PART II. Implementation Research & Reasoning. 16

 2.1 AR Overview 16

 2.2 Current AR Solutions 17

 2.3 Web Application Research 19

 2.4 Hardware Requirements 21

 2.5 Native Android Development 25

 2.6 Developer Capabilities 27

 2.7 Recommendations Moving Forward 27

 2.8 Risk Analysis 28

 2.9 Source Control & Android API Version Comparison & Selection 29

PART III. Development Process . 33

 3.1 Application Setup 33

 3.2 Camera Preview 35

 3.3 GPS Tracking 38

 3.4 Accelerometer & Compass Tracking 39

 3.5 Data Layer 41

 3.6 Additional Features 51

 3.7 Summary of Features 53

PART IV. Conclusions . 55

 4.1 Evaluation 55

 4.2 Future Work 57

 4.3 Lessons Learned 60

References . 62

 4

I. INTRODUCTION

1.1 Problem Description

ASIST, or asset history in real time, is one of the product ideas to emerge from the Opus 2014

Big Ideas Innovation Competition. Designed by Andrew Bruce and further documented by

Duan Zhao, ASIST aims to simplify the task of translating asset data such as the condition of

roads and buildings into a comprehendible form. A vast amount of data is gathered and stored

to describe these assets, and currently, this data is simply given to the user in tabular form, as

below:

Table 1. Current Road Assessment and Maintenance Management (RAMM) data

Although descriptive, this representation of data requires a significant understanding of the

domain and is overall difficult and time consuming to analyse. The proposed solution to this,

ASIST, aims to use augmented reality to visualise this data in real time as shown in figure 1:

Fig 1. Road Surface Condition

 5

1.2 Introduction to Mobile Application Development

In recent years the world has seen a shift in personal computer use. Once bounded to the family

home or work office, computers have been reshaped, resized, and re-imagined and are now with

us 24/7, either sitting in one’s pocket, attached to a wrist, or even as part of eyewear products.

Due to this, and the fact that approximately 93% of the population have an active mobile de-

vice, mobile development has undoubtedly become one of the biggest forms of software devel-

opment for the consumer market [1].

Beginning in the era of “The Brick”, or the Motorolla DynaTAC 8000X, Nokia introduced the

arcade video game Snake to their early monochrome phones in the 1980s [2]. Other games fol-

lowed and the phone developed into much more than a communications device. Unlike back

then when it were solely the device manufacturers who were capable of application develop-

ment, nowadays due to the very low barriers of entry into mobile development, anyone and eve-

ryone wanting to try and take advantage of the huge demand for applications can get involved

in mobile application development. This has lead to, as of July 2014, over three million applica-

tions being available to download from the leading application stores including Google Play

(1.3 million) and the Apple App Store (1.2 million) [3]. App stores like these are the main point

of sale for mobile applications and allow for standalone and multinational developers alike to

sell their products to the world, where the app store will then take a certain percentage of the

sale price if it were a paid for application. Many different categories of applications exist for

smart phones and tablets. In Apple’s app store, 20 different categories are listed, with over a

fifth of applications being games, followed by business, education, and lifestyle, each with ap-

proximately 10% of the market share [4].

In mobile development, as with any form of software development, many design principles

must be considered and enforced throughout implementation to produce a successful applica-

tion. Most importantly, and what most of the following factors will be classed under is the user

experience of the application. If the system isn’t responsive, intuitive, and correct, the applica-

tion will not be successful. A good idea may make an app visible in the marketplace, but in

terms of successfulness once the user has an application installed, it does not matter what the

program does, as long as it delivers on what was promised in a way that satisfies the user. With

that said, the first step to any software development project should be to research and investi-

gate the market for what technology already exists, and whether the current products are already

too established in the market to enter, or if there is a gap in the market that your idea can take

advantage of.

Once the idea is proven, countless other factors have to be considered. If the application is a

contracted project, then user and data requirements are of up most importance and should be the

driving factors behind the entire operation. Collaboration between developers and clients is

therefore paramount and should be taken as seriously as the development itself. Numerous other

factors make up mobile application development, most of which fall under the following areas

of development techniques and technologies:

 6

A. Platforms and Languages

With the rise of mobile development in recent years, there are now countless tools and tech-

nologies at the disposal of mobile application developers. One of the first things a developer

must decide in terms of technology is what mobile platform or operating system(s) he wants the

application to be compatible with. This will influence what programming language(s) will be

used. If the developer only needs to target a single operating system, then he can complete the

project using platform specific native programming. However if multiple platforms exist, then

native programming across multiple systems can be used, which requires knowledge of multiple

languages and the capability of translating code between the various languages. To negate the

need for this application translation, a cross platform application such as an HTML5 web app

can be created [5].

B. Programming Environment

Once a target platform and language has been chosen, then the programming environment can

be chosen. Anything from a simple text editor such as Notepad++ with language specific for-

matting to a fully inclusive integrated development kit (IDE) can be used, each with their own

advantages and disadvantages. If a developer is confident using the command line and doesn’t

need syntax auto correcting, then text editors are a light weight tool that allows for a program to

be created without the need of an abundance of extra files and programs. On the other hand,

IDE’s such as Visual Studio and Eclipse allow for the application to be created, tested, and pub-

lished all from within the application, with the downsides of extra files being generated by the

IDE and the developer becoming dependent on using such tools and not being able to then go

and work on that project easily in a text editor.

C. Third Party Libraries

Third party libraries - functionality built by other developers, is another tool available to devel-

opers, and one that should most definitely not be ignored. Unless development is on the cutting

edge of technology or is in an area where no development has been done before, chances are

someone has already created something that will be of use and will reduce development time,

and therefore increase productivity. The only downside of such third party library use however

is the potential learning time required to understand and take advantage of the library. If docu-

mentation is provided and the coding style used is intuitive, then uptake of the library should be

straightforward. However the opposite is possible, and a lack of, or poorly constructed docu-

mentation and code can cause adoption of said libraries to be troublesome and time consuming.

D. Structure

As is the case with tools and technology, there are also numerous frameworks, methodologies

and techniques that can be applied to mobile application development. In any development pro-

ject, even one being completed by a single individual, it is important to maintain a well struc-

tured program. A well structured program achieves two things—efficiency via using non re-

peating code, and readability via intuitively well defined sections. By correctly creating classes

and methods to complete recurring functions, development time should be reduced by not need-

ing to repeat code, and future developments, either internal or external to this project may be

able to use these functions as opposed to them not being able to if the functions were written in

line and specified for the current program directly. Additionally, a well structured program is

easy to understand by both the original author, as well as potential future users of the code base.

 7

E. Maintainability

Continuing on from having a well structured program, other efforts can be made to ensure

maintainability of a program, and other reasons exist for keeping a program in a well main-

tained state. Firstly, the code itself should be understandable by using intuitive function and

variable names. However in the presence of more elaborate programs, informative comments

should be used to explain the flow of an application and its components. Another need for

maintainability is driven by future proofing and version control, this is especially important in

mobile applications. Many mobile applications receive updates on a regular basis and hence it is

imperative that the program is kept in a manner which allows for future changes to be made and

previous versions to be kept safely. Git provides an easy to use and free version control system,

as well as plug-ins that can be used in commonly used IDEs such as Eclipse. Also to handle

regular updates and the issues that can arise by some users updating the application and others

not, it is important to create both forward and backward compatibility between versions when

needed. For forward compatibility, the more difficult of the two, assumptions about future re-

leases have to be made and current components created to be as unrestrictive as possible on fu-

ture releases. Backwards compatibility then requires newer released software to accept input

generated from older standards. Again, if the development is maintained using correct version

controlling, then it should be easy for developers to understand what will and won’t be compati-

ble with older systems.

F. Efficiency

At a lower level, applications are made competitive based on how efficient their algorithms are.

Efficiency is measured in many ways such as run-time, memory use, and storage use. For most

algorithms such as sorting and searching, there is in general no method that will perform best in

all measurements, so a trade-off has to be made. Fortunately however, when it comes to the vast

majority of mobile applications, they do not require striving for such low level efficiencies as

both the data involved and algorithms run on that data are generally relatively small and

straightforward, respectively. With that said, big data has become very important in the IT in-

dustry in recent years and is spreading over various platforms, including mobile [6]. Mobile

devices are fortunately now equipped with in most cases far more memory, storage and CPU

speed than is required to run the majority of mobile applications, such as the recently released

Samsung S6 with 3GB of RAM, 1.5GHz quad-core processor, and up to 128GB of storage, so

should be capable to run more intensive algorithms that weren’t necessarily developed with ef-

ficiency in mind [7].

G. Development Process

At the highest level of development—choosing the process in which to complete the project,

many options exist. Common methodologies include iterative and incremental development,

waterfall, spiral development, rapid application development, and the growing in popularity,

agile methodology [8]. Discussed will be two of the main methodologies; waterfall and agile.

Waterfall is the most traditional approach and has a linear flow of events from designing and

planning through to coding, then testing and delivery. This approach makes for easy measure-

ment of work completion and removes the need of much client communication once the initial

meetings planning the program are complete. Agile on the other hand divides time into short

‘sprints’ of usually weeks in which a deliverable is required and reviewed by the customer. This

means that the customer can have a larger input on the project. Additionally, if completion dates

are of concern for the application, then agile is able to have more basic versions of the software

available earlier than a waterfall approach which sequentially develops functions to a high level

of quality [9].

 8

But what makes mobile development different to regular embedded systems development?

Although similar overall, many additional requirements for mobile application development

exist, including the following as described by Wasserman [10]:

A. Additional Inter-Application Communication

Web services aside, the overall interaction between embedded applications is generally mini-

mal in comparison to that of mobile applications. With typically a large number of applications

coming from a variety of distributors, data is often shared and translated between applications

on mobile devices to provide users with additional services. Leveraging and maintaining this

capability can be vital to creating a useful and well performing application depending on the

domain of use.

B. Sensor Handling

As will be elaborated throughout this report for ASIST in particular, hardware sensors of mo-

bile devices drastically change what it means to interact with the system. Smart mobile devices

have access to an array of hardware sensors, and in Android these are divided into the three

broad categories of: motion, environmental, and position sensors. Motion sensors measure the

rotational and acceleration forces along three axes and includes gravity and rotational vector

sensors, accelerometers, and gyroscopes. Environmental sensors include barometers, photome-

ters, and thermometers which measure air pressure, illumination, and temperature, respec-

tively. Finally, position sensors measure the position of a device via orientation sensors and

magnetometers. Additional hardware sensors which are less common in embedded systems

that mobile devices make use of are cameras, microphones, and touch screens. Using any num-

ber of these sensors provides the application with an incredibly large amount of information

which can be leveraged in a variety of ways. It is becoming increasingly uncommon for mobile

applications not to make use of any of these sensors, meaning that it is becoming increasingly

important for developers to use this information to make effective applications. Embedded en-

vironments in comparison don’t far from mouse, keyboard and any domain specific inputs,

with variables such as location only being able to be estimated via the corresponding IP ad-

dress unless additional equipment is used.

C. Families of Hardware and Software Platforms

Compared to embedded systems which often execute custom-built programs created for the

properties of the device, mobile devices are often expected to support applications developed

for a range of devices, and support applications developed for different operating system ver-

sions. Therefore it is important for a developer to be aware of forward and backward compati-

bility across API versions, and to understand portability limitations [11].

D. Security

In the most “closed” cases, embedded devices work in isolation and are therefore difficult to

attack. Mobile devices on the other hand are comparatively “open”, allowing for installation of

potentially harmful applications capable of extracting local data.

1.3 Differences Between Mobile & Embedded Application Development

 9

E. User Interfaces

Embedded application development allows for complete control of the user interface. Al-

though still in control of the user interface in mobile development, it is generally accepted that

developers adhere to externally developed user interface guidelines, often included in the

SDKs used for development.

F. Difficulty of Testing

Embedded applications are easily tested by emulators or traditional methods. Due to some of

the differences mentioned above, particularly sections B. and C., difficulties are added for test-

ing mobile applications. When using sensor information, desktop emulators are unable to be

used due to not having access to those sensors. Likewise, emulators cannot always be used to

test across all platforms.

G. Power Consumption

Not an issue with desktop machines, but the power consumption of mobile applications can

vary and as a result, reduce the device’s battery life. Efficient use of sensors and other power

depleting services is required when developing to increase the longevity of the device and

therefore application.

1.4 Introduction to Augmented Reality

Continually growing in popularity to solve problems over a variety of domains, augmented

reality (AR) refers to the combination of digital and tangible information. Related to virtual

reality (VR), where an artificial space is created for the user to interact with via primarily vi-

sion and movement, AR replaces the artificial space with their real perspective of the world,

populating this perspective with corresponding digital information such as three dimensional

shapes and textual data [12]. Both of these fall under the broader category of mixed reality

(MR), which is defined more loosely as the general integration between the real and virtual

worlds and can be modelled by the following continuum [13]:

Fig 2. Virtuality Continuum [14]

 10

With ever increasing computing power, image recognition techniques, and locational aware-

ness, AR is being realised as a viable solution for an ever expanding array of problems. Two

examples include:

Home Decorating - Given images of a living space and a catalogue of furniture items, users

can effortlessly trial a large range of furniture arrangements in their home:

Clothes Shopping - Similar to home decorating, user’s can trial clothes that interact with their

movements without needing to wear them:

Closer aligned to the project at hand, location based augmented reality products are just as

popular as these primarily image recognition applications above, especially when considering

deployment onto mobile devices. These will be showcased in the forthcoming implementation

research and reasoning section.

1.5 AR Requirements & Foundations

A large amount of research and work has been conducted to develop both the visualisation of

the data layer, as well as algorithms to link real and virtual spaces [17]. However before unre-

stricted access to smart devices capable of all of the required hardware functions became avail-

able, early work was concerned with the fundamentals of AR. Such work which still applies

today includes the Tracking Requirements for Augmented Reality by Ronald Azuma [18]. In a

completely virtual environment, approximations of the user’s orientation and position are ade-

quate to create a sufficient visualisation since “small errors are not easily discernible because

the user’s visual sense tends to override the conflicting signals from his vestibular and proprio-

ceptive systems.”

Fig 3. Home Decorating AR [15]

Fig 4. Clothes Shopping AR [16]

 11

In AR however, small mismatches between the real world and the digital objects populating

that space due to a mistake in the calibration of tracking the user are easily noticeable i.e. when

a virtual object doesn’t align with the real world correctly. Millimetres in distance and frac-

tions of a degree in rotational error of the user tracking was shown to cause large errors when

dealing with objects two metres away, something that will need to be taken into account when

developing and testing the ASIST application.

Once accuracy is assumed sufficient, representation of these virtual three dimensional objects

is required. Typically in this style of application, objects to be rendered and their positional

and dimensional information will be stored in a database or at the simplest level, an array like

structure which is to be accessed when the device recognises that the object should be in it’s

frame of view. The next step is correctly representing these shapes. The standard approach to

displaying three dimensional objects is through the use of model view and projection matrices.

A model matrix is used to translate, rotate, and scale the model. The view matrix then trans-

lates and rotates everything in the world to put the camera in the origin. Finally the projection

matrix takes those points in the three dimensional space and projects them onto a two dimen-

sional screen as illustrated:

Kutulakos and Vallino [20] explain the geometrical foundations of this conversion from object

to image. The projection of the object requires knowing the combined effect of the object-to-

world, world-to-camera, and camera-to-image transformation, described by equation (1):

Where [x y z w]T is a point on the virtual object, [u v h]T is it’s projection, O4x4 and C4x4 are the

matrices corresponding to the object-to-world and world-to-camera transformations, and P3x4 is

the matrix modelling the object’s projection onto the image plane.

1.6 Mobile AR

Because the interaction between realities occurs in real time, AR opens the door towards a

paradigm shift with how everyday computing takes place. This is then further exaggerated

when applied to mobile computing which is becoming increasingly common, and in need of

alternative interaction methods [21]. Due to the ever increasing hardware capabilities of mo-

bile devices, such as camera, orientation, and location technologies, mobile platforms are be-

coming increasingly context-aware [22]. This allows for various pieces of information unob-

tainable by a desktop application to be leveraged and applied to the given problem, such as real

time local event information.

Fig 5. Model view projection transformation [19]

 12

1.7 User Evaluation of Mobile AR

On top of the heavily documented areas of AR requirements and technology, an important is-

sue to discuss, especially when developing for a large number of clients and potential users is

the user satisfaction of the system. Olsson et al. [22] focus on assessing what is required by an

AR application by conducting user research regarding expectations and acceptance by poten-

tial users. A collection of AR scenarios ranging from practical uses such as location navigation

while travelling, to leisure focused activities such as virtual street art creation where the user

can graffiti the real world via the augmented layer are trialled in the analysis. From user sur-

veys it was found that participants generally perceive AR solutions concerned with practical

cases such as navigation and furniture arrangement to be more useful than those of social and

personal benefit such as street art or a virtual mirror for testing makeovers. The effects of the

participants’ technology orientation, as well as other factors such as age and willingness to

share information on the internet were also assessed against their attitude towards AR. Age

differences provide inconsistent feedback with no significant correlations found with respect to

AR acceptance. Gender however was indeed found to have an impact, with males being more

positive towards AR services than females overall. In addition to this, and as expected, those

that were highly technologically orientated were found to have a more positive acceptance of

AR products. Due to ASIST being a practical use case for AR, and no known problems with

respect to the other features discussed at Opus being apparent, the outlook for user acceptance

of the proposed application is promising.

1.8 Conceptual ASIST

A. The Solution

Certain characteristics of data can only be seen when data is represented graphically. Hence a

more intuitive approach to interpreting this data is through visualisation [24]. This has lead to

the idea of an augmented reality visualisation of the data. Assuming that intended results are

like that displayed below, all gathered data will be intuitively recognisable, requiring little spe-

cialised knowledge of the domain, and increasing both productivity and user tolerance and ac-

ceptance of the system [25].

B. Application Functionality

ASIST is intended to contain a handful of related features which all revolve around the idea of

augmenting information of the asset in real time. This will be known as the ’live view’ func-

tion throughout this document. With respect to roading, the condition, such as skid resistance

and age of seal will be visualised with simple colour coding to represent the status of the road,

as displayed in figure 6.

Fig 6. Road Surface Skid Resistance

 13

Using a colour scheme that is recognisable by the user, such as green for good condition and

red for bad, or the use of an intuitive legend that allows for more detailed data to be repre-

sented maximises the information gained from the application, while minimising complexity

and user resistance of adoption. This data can then be used in other domains such as determin-

ing if there were any roading factors involved during a crash investigation. It is key that the

data is understandable in this scenario due to outside users such as the police force needing to

interpret the road condition correctly and easily.

Another augmented reality feature intended to be included in ASIST is the process of inven-

tory validation. Assuming high location accuracy of the device being used, the application

should be able to be used in the field to validate if the stored data of an object such as a cul-

vert/drain pipe is correct in relation to the real world. Figure 7 illustrates such testing.

The last main augmented reality feature pertains to structures such as buildings and bridges.

ASIST should be able to compare a current construction site or structure with either previous

historic images and information as shown in figure 8, or in the case of ongoing construction,

3D rendering of the proposed finished product. Again this simplifies and speeds up the proc-

ess of translating data into usable knowledge. This feature requires the same location based

information as the roading component, but utilises a more elaborate technique for displaying

data, so is planned to be implemented only after the roading component is complete.

As seen in the images, all of the functions are planned to have a historic time slider to allow

users to quickly compare and contrast the condition of assets over different periods of time,

allowing for trends in degradation of assets to be analysed and hence decisions on future im-

provements to be made while on site.

Fig 7. Inventory Validation—Misplaced Culvert

Fig 8. Asset Image Comparison

 14

C. Use Cases

Now that the application and it’s overall functionality is understood and reasoned, specific use

cases will be discussed and their relation to the back-end asset manager explained. The asset

manager is a more traditionally laid out interface that gives users the ability to access and mod-

ify details of an asset via text and other inputs. It works alongside the aforementioned live

view function and stores the data required to visualise the information in that format.

1. Management Portal—KPI Performance and Report Generation

Throughout the process of a construction project, the site manager will want to assess and

document the progress of the work being done. The user will have ongoing milestones and

goals which are to be achieved, and requirements which must be compared to key performance

indicators (KPI). This view will provide a real time dashboard of the current project and will

allow the user to generate reports regarding KPI, maintenance costs, custom reports and more.

These can then be accessed from both the mobile application and desktop applications that are

connected to the Opus network.

2. Asset Information Portal

Accessible from either the associated live view function, or directly through the asset manager,

this view will provide a listing of nearby assets while in the field, or a list of assets at a loca-

tion specified by user input. The user can then select which asset he/she would like to analyse.

Information specific to that asset, similar to that observed in the earlier data table, will be dis-

played.

This includes;

 Location data - New Zealand State Highway Treatment Length,

 Offset, GPS coordinates etc.

 Functionality - Use of the asset.

 Dimensions - Length, width, height etc.

 Age - Time since installation.

3. Condition Data

Extending from the asset information portal, the user can then view and update stored condi-

tion data of a given asset. This view combines features from the previous two use cases, lever-

aging the performance reports written in the management portal and displaying asset informa-

tion. Other related condition information of the asset is also included, such as current and pre-

vious photos and condition descriptions as seen in the live view function being accessible.

4. Maintenance Data

When a request to assess asset maintenance information is made, this portal will give access

to; previous work undertaken, such as initial construction and recent repairs, current mainte-

nance work being completed on the asset, and reports for future construction endeavours on

the asset.

 15

5. Asset Photo Library

When a user wishes to update the current photos on hand for an asset, the photo library is used.

Either linked to an external camera function or preview-able from within ASIST, the user can

take, annotate, and save an image. This will be automatically associated to the asset in ques-

tion, derived from location and perspective data of the device.

1.9 Student Role & People Involved

The above information outlining the vision and capabilities of the application has been derived

from initial concept documents developed by Andrew Bruce and Duan Zhao. The student’s

role is to make it reality. Chief technical officer Sulo Shanmuganathan has passed this project

to senior financial analyst Roquito Lim who has in turn given myself and software develop-

ment team manager Kodie Wixon the project to complete. Kodie acts as project supervisor,

giving tasks to complete and ensuring project requirements and deadlines are met.

During the scoping and design phase of the first three months, the task of assessing the poten-

tial development paths of ASIST and making the decision, with Kodie’s support on how to

proceed with development (II. Implementation Research and Reasoning). The following three

months saw the student play the leading role in the project, undertaking the majority of devel-

opment and making most development decisions (III. Development Process).

The intended outcome by submission time was to at a minimum have completed a working

prototype with the core live view functionality. Although this has been achieved, design deci-

sions have been continually changed due to difficulties faced to ensure a deliverable, leaving

room for future work to be completed.

Fig 9. Asset Manager—Management Portal, Asset Condition Data, Asset Maintenance Data

 16

II. IMPLEMENTATION RESEARCH & REASONING

Initial meetings with, and documentation from Opus had suggested for the development of

ASIST to be undertaken via either a web based application, or a Windows based native appli-

cation. Executives pushed for a web-based implementation due to the cross platform operabil-

ity that it would achieve, allowing all current company devices, independent of operating sys-

tem, to be compatible with a single implementation of the ASIST application. However, from

the development side:

 “The preferred software platform for the development of ASIST at this point

 in time is a Windows based platform as this is the current operating system

 within Opus so integration with existing infrastructure and support should be

 less complicated.” [26]

It was also mentioned however that the platform that ASIST would operate on is not critical,

and that the main factors when choosing a platform are the availability of key components

within the hardware.

Before researching specific platforms and their compatibility with an augmented reality appli-

cation, comparable, already completed augmented reality solutions were researched in an at-

tempt to adapt or use them as a reference while developing ASIST, and to discover what tools

and technologies were used in the development process. With augmented reality applications

being available on the Apple Store since 2009, it came as no surprise to discover many appli-

cations that fulfilled a similar purpose as the plans of ASIST [27].

2.1 AR Overview

Augmented reality solutions can generally be divided into two categories; either location

based, or image recognition based. Location based services use the device’s GPS to determine

the user’s location, and the device’s accelerometer to determine the angle the mobile device is

being held on and hence what it is looking at. Image recognition services on the other hand use

purely the device’s camera with image processing calculations to determine what it is looking

at. Simple implementations for domain specific applications can see a set of certain patterns be

hard coded and then easily recognised when aligned to the camera correctly. QR code readers

are a common example of this type of image recognition, with facial recognition being a more

elaborate and unconstrained domain.

The second component of augmented reality is a digital data layer which is superimposed over

the top of the user’s perspective. In either augmented reality case, once the target of the appli-

cation has been recognised, the augmented data layer is then populated with predefined infor-

mation over the top of the camera’s preview display.

During the early stages of this project, the decision to implement ASIST as a location based

augmented reality application was made as to not restrict the type of asset in which ASIST is

to assess. Following are the three main levels of current location based augmented reality ap-

plications researched and how they can be applied to ASIST.

 17

2.2 Current AR Solutions

A. Augmented Reality Fundamentals

Each of the three levels utilize the device functions of vision, location, and movement, along-

side a data layer to convey information to the user. Even if the data displayed is not in a form

as ASIST requires, the fundamental functionality behind the application can be used as a guide

to help direct initial development. Applications under this category include Junaio and Wiki-

tude Places which mark points of interest such as landmarks or restaurants on the data layer to

help users navigate [28]. Since this type of application contains the majority of functionality

that ASIST requires, the technology used should be able to be applied to ASIST as well. Both

Junaio and Wikitude Places are built using a web-based implementation. Junaio uses AREL—

Augmented Reality Experience Language, which is a combination of HTML, CSS, JavaScript

and PHP. Wikitude Places uses the Wikitude SDK, which again uses HTML5, CSS, and

JavaScript.

B. 3D Augmented Reality Rendering:

Continuing on from the augmented reality fundamentals, applications that render both realistic

and abstract 3D descriptions of assets are also widely available. Satellite AR and ESET Aug-

mented Reality are examples of this and extend from a basic augmented reality application by

applying interactive object specific graphics [29] [30]. Understanding how to use the data lay-

ers effectively as is done in these applications will be very important in contributing to the use-

fulness of ASIST. These techniques will be looked at further into the development lifecycle

when the time comes to finalising data representation.

Fig 10. Wikitude Places Augmented Reality Application

Fig 11. Satellite Augmented Reality Application

 18

C. Geographic Information System (GIS)

As part of the research process, a three hour seminar by local firm Augview discussing their

own augmented reality products was attended. Their main product is an augmented reality

powered geographic information system, and is by far the most comparable application to

ASIST discovered when researching the current market. A GIS is a “system for capturing,

storing, checking, and displaying data related to positions on Earth’s surface” and hence relates

closely to what ASIST is trying to achieve [31]. Winner of various 2014 NZ spatial excellence

awards, Augview “allows users to visualize underground objects that they wouldn’t usually

see” [32]. After talking to Augview business development manager Melanie Langlotz, she said

that the application was developed natively for both Android and iOS devices.

Due to the fact that the current applications researched had been developed using various tech-

niques, the conclusion from these findings was to continue research. Knowing that each of the

aforementioned platforms are capable of housing an augmented reality application, the deci-

sion on which platform(s) to pursue will depend on;

 1) Findings with respect to each of the different platforms

 2) Hardware limitations of the devices that are compatible with the different platforms

 3) Development capability of the student and others involved with development with

 respect to the different platforms

Hence the following sections will discuss these areas in the order in which they were com-

pleted.

Fig 12. Augview GIS Augmented Reality Application

 19

2.3 Web Application Research

Due to a web-based application being the least limiting in terms of platform from the solutions

suggested, much of the initial pre-development time was spent researching and testing the ca-

pabilities of this approach with respect to ASIST. Other than cross platform functionality, one

of the appealing factors of creating a mobile web application is that alongside a UI framework,

the only core tools required are simply HTML5, JavaScript, and CSS. This allows anyone with

experience in web design, one of the more common forms of software development, the ability

to create a mobile application.

Due to ASIST’s requirements of having access to the device’s camera, accelerometer, and lo-

cation, the first task was ensuring that these functions were accessible in JavaScript. This

quickly lead to the adoption of Apache’s Cordova:

 “Apache Cordova is a set of device APIs that allow a mobile app developer to access

 native device function such as the camera or accelerometer from JavaScript. Combined

 with a UI framework such as jQuery Mobile or Dojo Mobile or Sencha Touch, this

 allows a smart phone app to be developed with just HTML, CSS, and JavaScript.” [33]

Once it was apparent that a web based implementation had access to the essential features re-

quired by ASIST, various tools and methods such as IDEs, SDKs and APIs for augmented re-

ality web development were researched and tested.

A. Integrated Development Environment (IDE)

Due to being relatively new to web development, the first tool looked into was the integrated

development environment. An IDE combines all the tools required to develop for a chosen

platform to help automate or simplify common tasks such as compiling and testing applica-

tions while eliminating the need to use the command line or other external applications. There-

fore finding the right IDE would fast track adoption of the HTML5/JavaScript platform and

reduce the number of teething issues faced when starting development with this new platform.

After researching and testing different environments, the most appropriate choice to continue

with was Intel’s Cross Development Kit (XDK) [34]. As a free download from a reputable

name, along with sufficient development guides and samples, it was an easy decision to make

and using the XDK sufficiently reduced the time taken to adopt the platform.

Once familiar with the system, the sample augmented reality application from Intel was tested:

Fig 13. Location Based Augmented Reality Sample Application

 20

Much like the augmented reality fundamentals applications discussed previously, this applica-

tion appeared to be a great starting block to build ASIST from, with only the visual data layers

needing modification to display data correctly for ASIST. Unfortunately, as many other users

had mentioned, the application failed to perform correctly, and even after hours of modifica-

tions and additions, access to the camera was unavailable and hence the decision was made to

move on to further research in the form of third party software development kits:

Software Development Kits (SDKs)

As with most domains of software development, a code base of some description has already

been written to simplify development, and despite augmented reality’s reasonably recent arri-

val, a hand full of SDKs and APIs are available for use. Three viable SDK options were ana-

lysed; Wikitude, Layar, and Metaio.

1. Wikitude SDK

Carrying on from the aforementioned Wikitude augmented reality application, Wikitude also

offers their SDK to developers to create their own applications. Wikitude’s all-in-one AR solu-

tion includes image recognition & tracking, 3D model rendering, video overlay and location

based AR - everything that ASIST needs, and more.

An example of an ASIST-like application created using the Wikitude SDK is the Hermes Vir-

tual Tour:

The Hermes Virtual Tour recognizes via location and image recognition missing monuments,

and renders them on the augmented data layer.

The SDK is available in a variety of options, ranging from a free, watermarked trial, to an all

inclusive ~$6600 per year license. If it is decided to complete the development of ASIST with

a web based implementation, then the free version of Wikitude will be tested, and funding dis-

cussed with Opus if it appears to be a viable solution.

Fig 14. Hermes Virtual Tour Augmented Reality

 21

2. Layar SDK

As with the Wikitude SDK, the Layar SDK also implements both vision based and location

based augmented reality. As well as JavaScript Cordova libraries, Layar also offers plug-ins

for both native Android and iOS development, offering flexibility of platform if Layar is cho-

sen to aid development. Unfortunately the Layar SDK comes with only a 30 day free trial be-

fore a purchase is required, so the decision was made against investigating this tool further.

3. Metaio SDK

Metaio is the last web based add-on researched [35]. It shares a lot of similarities with Wiki-

tude, including a similar price model of a free unlimited trial followed by various pricing for

different features. Metaio then extends past the requirements of ASIST with a whole host of

features including Unity support and facial tracking.

In conclusion, if a web-app were pursued, any of the above SDKs would be applicable to the

ASIST project. However, all of the SDKs researched go well beyond what is required by

ASIST at this stage, such as image recognition and wearable technology integration. Provided

that the student is confident in using the fundamental Cordova device plug-ins, an SDK may

not be needed. If the decision to use an SDK is made however, that decision would be based

on ease of use, documentation, and price. From the findings thus far, Wikitude is the front run-

ner due to granting access to an unlimited free (watermarked) license, alongside very recent

documentation discussing the steps required to integrate and use the SDK with Intel’s XDK

and other IDEs.

2.4 Hardware Requirements

Once research on the web platform had been completed, time was spent researching hardware

that satisfies the needs of ASIST. The following has been adapted from the mid year project

plan completed to present to Opus.

A. GPS

When choosing a mobile device to use with the ASIST application, the most important feature

to consider is the accuracy of the device's GPS. If the GPS is inaccurate, then ASIST's usabil-

ity will be severely limited. There are a few different GPS technologies that can be used, each

with varying degrees of accuracy.

The standard GPS in older mobile devices uses triangulation (or multilateration) between

nearby cell-phone towers, input from in-range Wi-Fi, and tracking from your last known posi-

tion - without the need of an aerial or view of the sky [36].

'Real' i.e. satellite GPS systems can then be combined with this type of GPS to be known as

Assisted GPS/A-GPS/AGPS to enhance results further. It appears most modern mobile devices

have some form of assisted GPS technology, at least. The 'real' GPS system used is run by the

U.S. and provides services worldwide with 32 satellites [37].

 22

To aid this service, other satellite systems can be used in conjunction to provide more accurate

location positioning. These systems include:

 BeiDou and Compass - China

 Galileo - Europe

 IRNSS - India

 QZSS - Japan

 WAAS - North America

 GLONASS - Russia

B. GLONASS

GLONASS is Russia's equivalent to the above American satellite GPS system, is implemented

worldwide with 24 satellites, and is integrated in a number of common phones. By supporting

both US and Russian systems in a receiver, the number of available global satellites increases.

Therefore, more geographic locations are able to receive four or more signals from satellites,

which in turn means more successful position calculations and also better accuracy of the cal-

culated positions in challenging environments.

Field tests in downtown San Francisco found that the positioning accuracy increased by as

much as 50% when adding GLONASS. The tests were executed with the help of Qual-

comm using two Sony Ericsson Live with Walkman™ smart phones, and 600 measurements

were recorded and analyzed per device [38]:

Fig 15. GPS and GLONASS Accuracy Comparison

Configuration Number of satellites used* CEP 68% (m)**

GPS only 5, 5 30, 4

GPS + GLONASS 10, 9 17, 7

* The number of satellites on average that were used to calculate the position. More satellites usually mean a more reli-
able and accurate location.

**CEP 68% means that 68% of the 600 measurements are within this distance, in meters, from the reference location.

Hence lower values mean better accuracy.

Table 2. GPS and GLONASS Accuracy Comparison

 23

Personal testing with a Sony Xperia ZR smart phone which uses GLONASS achieved accu-

racy of three metres when running a Chartcross Ltd GPS test.

From these findings, it will be in Opus’s best interests to use such a device in conjunction with

ASIST. Fortunately, Qualcomm Snapdragon processors and chipsets, which are commonly

found in the vast majority of Android consumer mobile devices post October 2012 appear to

have GLONASS and BeiDou built in via iZat [39].

The Qualcomm website shows 21 Android, 1 Windows, and 3 Amazon Fire devices using this

chip, so the advice from this information would be to develop for Android tablets. Other chip-

sets offering GLONASS are available, but again, the majority of these are powered by An-

droid.

A breakdown on Apple tablets:

 Wi-Fi only iPads do not have a GPS [40].

 3G/4G cellular models do, but exactly what technology they use differs.

 GLONASS support has been integrated since the 3rd generation iPad (March 2012

release) [41].

Due to some remote locations not having network access to calculate position information

from, Wi-Fi only tablets without a 'real' GPS should not be considered.

C. Minimum Hardware Requirements

Required hardware specifications as given in original Opus document:

 Screen size - minimum of 7 inches

 Camera - minimum of 2 megapixels

 Storage - minimum of 16GB

PriceSpy lists 76 tablets with GLONASS support that satisfy the above attributes.

D. Requirements Expanded

Screen Size - The larger the screen size, the better ASIST will be able to convey information,

meaning that tablets with a screen size of 10 inches and above should also be considered. For

roads and un-detailed assets, 7 inches is sufficient, but may become cluttered with more com-

plicated assets.

Camera - At this stage, since the augmented reality is planned to only use positioning and ac-

celerometer data, image recognition isn't needed, thus camera quality isn't a concern. As long

as the terrain is distinguishable on screen, the camera will be sufficient. However, if accuracy

needs to be increased due to leveraging image recognition, then a higher quality camera may

be required.

Storage - The application size will be minimal, with cached map data requiring the majority of

the storage. Depending on how much space the operating system uses, 16GB should be suffi-

cient for ASIST and any other Opus and work related software.

 24

Memory and Processing - As with storage, given that the tablet is adequate in the above cate-

gories and has a recent chipset that includes GLONASS capability, then it is expected that the

CPU and memory will also be sufficient.

Network - Strong preference is given to devices with 3G/4G capability for live data commu-

nication, rather than relying on an additional device to be used as hotspot data source.

E. Conclusions

The original Opus report suggested a Windows device as to integrate with the Opus network

easier. However at this stage there is no Windows product that supports all project require-

ments. Additionally, the Opus network integration is most likely manageable on any operat-

ing system and so this shouldn't be a reason to choose Windows over the other options.

This has left the decision of tablet choice to be produced from either: Samsung (Android),

Sony (Android), Google (Android), and Apple (iOS). Price wise, the Android solutions are

generally more affordable.

If building for a single operating system while wanting to be compatible with as many prod-

ucts and brands as possible, Android development is the best choice from a hardware per-

spective. Next will be a review of Android's capabilities regarding housing and developing

this type of application compared to HTML5 and JavaScript. Web based examples of work-

ing augmented reality applications have been researched, but the difficulty of developing

these in comparison to Android development has yet to be evaluated. If neither Android or

HTML5 appear to be the correct solution, then Apple's Swift will be assessed as a possible

development language.

F. Specific Tablet Recommendation

Tablets that fulfil all requirements start at ~$500. The lower end of the Samsung Galaxy Tab

range is what to expect for this price. Screen sizes in this price bracket range from 7 to 10

inches. Storage of 16GB, but often with expandable storage up to 64GB. A low resolution

camera (2-5 MP), and CPUs between 1-2GHz. Above $500, sees the four brands mentioned

above represented by their various tablet models with various specifications. For testing pur-

poses, and most likely deployment, the lower priced models are adequate as the main features

that ASIST relies on such as the GPS are very similar or identical across tablets over all price

ranges.

The most affordable, suitable model is the Samsung Galaxy Tab 4 8" 16GB 4G, $448:

 1.2GHz Quad Core Processor

 1.5GB RAM

 16GB Hard Drive

 3MP Rear Camera and 1.3MP Front Camera

 Android KitKat

 SD Card slot for up to 64GB

 8 Inch Screen

 4G Cellular Network Connection

 25

G. Alternative Hardware Solution

Another option that would not restrict development language and possibly achieve more ac-

curate GPS results is the use of an external GPS.

If accuracy with the above technology is found to be insufficient, then external GPS products

that communicate with mobile devices are also an option that should be considered due to

their ability to increase accuracy and being able to be positioned away from other utensils

capable of degrading the device's internal GPS such as magnetic cases. Products are generally

in the $100-$300 range.

Examples include:

 Garmin GLO—combines GPS and GLONASS and connects to device via Blue-

tooth.

 GNS 2000.

 SkyPro XGPS160.

At first ASIST will be tested with an un-aided tablet, and only if the accuracy of results is

insufficient, then should an external device like this be trialled.

Due to this research giving preference towards an Android platform, the next step was to re-

search and test the augmented reality capabilities of native Android development:

2.5 Native Android Development

Again, as with mobile web development, one of the first steps in the development/testing

process is to find, if possible, a satisfactory IDE. In previous years, the tool of choice has

been Eclipse with an Android plug-in. However since December 2014, Google’s Android

Studio has superseded Eclipse and offers a dedicated and elaborate development environment

for mobile Android applications [42].

Initial research was again spent looking for available SDKs to simplify the development

process. Augmented reality kits such as Qualcomm’s Vuforia were found, but with Android

Studio only being recently released, documentation to utilise the SDKs were insufficient, so

research quickly turned into hands on development and testing with the standard Android

APIs.

First an understanding of the overall framework structure and interaction between different

files involved in an Android application were required. There are four main application com-

ponents that contribute to an Android application, each of which serves as a point for the ap-

plication to be accessed. They are; Activities, Services, Content Providers, and Broadcast

Receivers [43]:

A. Activities

Activities are generally the main component used when developing applications. A single

activity represents one screen of the application and any interactions available on that screen.

They are independent of one another and are then linked to form a multi-screen application.

ASIST will primarily use activities; one for the main live view function, and one for each

asset management task.

 26

B. Services

The opposite to an activity is a service. Services are user interface-less processes which run in

the background and do not effect the user’s current interaction with the application he/she is

using, whether it be the application that this service belongs to, or another application. ASIST

may use services to periodically update cached asset and structure data when road works or

construction has been conducted.

C. Content Providers

A content provider is the application’s file system, which allows access from other authorised

applications. In ASIST’s case, using a content provider will allow other Opus software to com-

municate with ASIST’s data source.

D. Broadcast Receivers

Broadcast receivers take action based on events from; the system, the current application, or

other applications. An example of ASIST utilizing this functionality may include initiating a

service such as inventory validation once the GPS of the system has achieved an accuracy

level above a certain threshold.

Once familiar with the composition of a native Android application, the remaining develop-

ment time was spent developing a prototype for one of the core requirements of ASIST, the

camera. When first deciding on implementation, the choice between two camera APIs had to

be made. With the recent release of Android 5.0 Lollipop, a new camera API, camera2, has

been released, deprecating the original camera API, meaning that no future capabilities will be

added. Unfortunately due to the main tablet being used in the Opus work force not having an

operating system update scheduled in the foreseeable future, the decision was made to use the

older API. This is only a minor issue however and is not going to be a problem for at least a

few years, which then the code can be adapted for adoption by the newer platforms. Addition-

ally by using the older API, many advantages exist, including the availability of far more docu-

mentation and examples.

The camera application was made from two java classes; one extending Activity, and the other

extending the SurfaceView class, along with a selection of xml files to initialise the interface:

This solution was achieved easier than the web implementation, as was expected due to greater

experience with Java development, as is discussed next.

Fig 16. Self Developed Android Camera Application

 27

2.6 Developer Capabilities

Throughout university, a variety of programming languages have been learned. Of these, the

majority of programming work completed to date, and hence strongest and most understood

language is Java. Due to native Android development being primarily Java based, this skill set

lends itself to this development path. A considerable amount of time has also been spent in-

vesting into HMTL5 and JavaScript over the past six months as well to give the multiplatform

approach a fair trial. This includes website development study as well as opting to complete a

recent mobile application assignment with web technologies, relating directly to the ASIST

project due to it’s use of location and spatial data. Knowledge of SQL and database principles

also exist if required to manipulate the data involved in this project.

2.7 Recommendations Moving Forward

Due to the information learned over the previous sections, decision to pursue development of a

native Android application has been made. The advantage of cross platform compatibility that

a web based solution would bring is enticing, but is ultimately outweighed by the increased

development efficiencies that will be observed moving forward with the project due to the stu-

dent’s personal experience and capabilities. In addition to this, the vast majority of tablets al-

ready deployed throughout Opus are Samsung Android devices, so a cross platform solution

isn’t strongly required. Discussions with Kodie and other members of the development team

support this decision, with another member of the team also being confident with Java devel-

opment.

The first task of development will be testing the accuracy of a purely location based implemen-

tation using the GPS, compass and accelerometer. To save time this will be conducted with

self generated GPS coordinates, rather than using real data provided by Opus due to a transfor-

mation of the data into GPS coordinates being required before being usable.

When accuracy is determined to be acceptable, development of data representation will begin.

Current ideas as illustrated in images throughout this document suggest some basic representa-

tions to use for road surfaces. These will be built on and expanded for a wider range of assets,

and to allow for more detail to be disseminated to the user. These descriptions will have to be

responsive and be determined by the user’s perspective, most likely requiring OpenGL render-

ing, or another alternative, which will be investigated when required.

After these live view components are complete, expansion and iteration of the application can

be conducted. This will include working through the use cases in order of priority decided by

Opus, and ongoing performance evaluations with involved parties to ensure correctness and

usability of the application. It is likely that not all functions outlined in the initial documenta-

tion will be achievable in the given time frame, so decisions and trade-offs between quantity

and quality of functions will need to be made throughout development.

 28

2.8. Risk Analysis

Due to the majority of this project being undiscovered territory for those involved, there are

numerous areas for this project to fall over. Here we take note of some of these, and suggest

solutions or alternative methods if forced to change our intended approach.

Low accuracy

One of the first hurdles to overcome in development is the accuracy of the GPS and other posi-

tioning hardware of the device. To simplify development and allow for maximal scaling of the

application to different assets, efforts will first be put towards a purely location based solution.

There is a real chance however that this will not be sufficient. Two alternatives have been

theorised:

The first is the addition of manual calibration. Given a road for example, where an offset in

accuracy of a few metres can be the difference between lanes, the user can manually input the

centre line of the road by drawing on the touch screen. ASIST will then shift it’s projection of

the asset to align with this input.

The second alternative relates to a change in data representation. If the device is unable to pro-

ject the description over the asset accurately, then data should be displayed in a way that does-

n’t rely on absolute accuracy. This may include a rendering of the asset that is partially inde-

pendent of the location information. Given that the user is in a specific location and the asset to

be analysed is selected, then that object can be rendered on the screen while not specifically

looking at the asset. This is a less optimal solution, however given that the user knows what

asset they’ve selected, this approach will still convey the same information.

Asset Data

As illustrated previously, the current structure of asset data isn’t directly usable as we require

GPS coordinates to plot information. It is expected that data will be received in a usable form

at a later date for testing. However this isn’t confirmed, and the task of this data conversion

may also be adopted, requiring additional time.

Platform Incompatibility

Despite research thus far suggesting a Java based Android implementation, there are still un-

knowns to be discovered throughout development. During the process of development issues

creating the requested functionality are likely to arise. The absolute worst case will be discov-

ering that Android is no longer a viable development path, although this is unlikely. This may

then require translating the project into another language. Fortunately with access to Java

skilled mentors, this is unlikely to occur.

 29

2.9 Source Control & Android API Version Comparison & Selection

After arriving at the conclusion that native Android development is indeed the most appropri-

ate path to follow with respect to both the application requirements, and the experience avail-

able of those involved, the next and main endeavour of this project to undertake is the develop-

ment of ASIST. Before planning of development can begin, the first step is to organise online

source control to provide both insurance of completed work in the event of incorrect develop-

ment decisions, as well as to keep those requesting information regarding project progress up

to date by granting access to this repository. As suggested by Opus due to the availability of

free private repositories, Bitbucket was chosen to be used for this task. Once created on the

website, a Bitbucket plug-in for Android Studio was used to commit, push, and pull changes to

this repository seamlessly throughout development.

Another predevelopment task was assessing which Android operating system versions were

capable of the features required to house this application, and appropriate for Opus with regard

to their current fleet of tablets distributed throughout the company. The following table out-

lines the key developer features added to the most recent Android operating system versions

with ASIST specific features in bold, along with the Android market share break down of what

operating systems are being used throughout all Android devices (development features made

available on earlier versions are available on future systems) [44]:

Version Key Developer Features Added Release Date Android Market Share

Android 6 Custom Chrome Tabs for better in app browser support 2015 October 5

 App Permissions management update

Android 5.1 No key developer features added 2015 March 9 5.1%

Android 5.0 Several new API 2014 October 17 15.9%

 Tracking battery consumption app

Android 4.4 Public API for SMS management. 2013 October 31 39.2%

 Improved memory usage

 Security enhancements

 NFC Host Card Emulation

 Printing Framework

 Storage Access Framework

 Hardware Sensor Batching

 Full-screen immersive mode

 GLES2.0 SurfaceFlinger

 Chromium WebView

 Audio tunneling to DSP

 Audio monitoring

 Wi-Fi certified Miracast

 New Bluetooth profile

 IR Blasters API

 Wi-Fi Tunneled Direct Link Setup (TDLS) support

 Tools for analyzing memory use

 Screen Recording

Table 3. Android API Version Changes

 30

Version Key Developer Features Added Release Date Android Market Share

Android 4.3 OpenGL for Embedded Systems 3.0 graphics support 2013 July 24 4.5%

 Logging and analyzing enhancements

 Wi-Fi scanning API

 Improved DRM (digital rights management) API

 VP8 encoding

Android 4.2 Secure USB debugging 2012 November 13 15.2%

 Vsync timing

 Triple buffering

 reduced touch latency

 CPU input boost

 Native RTL support

 External display support - Display Manager

 Nested fragments

 Renderscript Compute - run tasks on the GPU

 Renderscript ScriptGroups, built-in intrinsics

Android 4.1 App stack navigation for deep navigation 2012 July 9 12.1%

 Camera sound uodates

 NFC supports large payloads over bluetooth

 WIFI/WIFI-Direct service discovery

 Large, detailed, multi-action notifications

 Input manager allows you to query input devices

Android 4.0 Low-level streaming multimedia 2011 October 18 3.7%

 Grid Layout

 Spell checking service

 Address Space Layout Randomization

 VPN client API

 Remote Device camera enable/disable

 ZSL exposure, continuous focus, and image zoom

 Flags to help control system UI

Security enhancements

Once working with real data, security around storing, modifying, and transferring the vast and

valuable information that Opus and ASIST works with is of upmost importance, so the avail-

ability to include additional security measures makes Android 4.4 appealing to use. Of the se-

curity enhancements added in Android 4.4, the cryptographic algorithm improvements are the

most applicable to ASIST. Support for the Elliptic Curve Digital Signature Algorithm has been

added, allowing for increased security of digital signing. This can be applied to the signing of a

data connection between an onsite tablet and a central data source to ensure authenticity of the

mobile device requesting information.

Table 4. Android API Version Changes

 31

Storage Access Framework

The new storage access framework simplifies the process of integrating multiple storage ser-

vices into an application. Initial testing with ASIST will only use a small set of self generated

local data. However when this needs to be combined with multiple local and/or cloud based

file systems for different asset types such as roads and buildings, this should make the process

of using the data by both the developer and end user a more straight forward process. The data-

sets to be loaded and viewed while in the field will be easily selectable by the user.

Hardware Sensor Batching

The core functionality of ASIST relies on multiple ongoing sensors (location, accelerometer,

compass, gyroscope), all of which consume a significant amount of power. Hardware sensor

batching is an optimisation which dramatically reduces the power consumption of such proc-

esses. Sensor events are delivered efficiently in batches to allow the device’s application proc-

essor to remain in a low power idle state until batches are sent. As is done already to gain ac-

cess to this data, batched events can be requested from a sensor using a standard event listener,

and the frequency of batches can also be controlled. Sensor events can also be tracked while

the device is asleep, which will negate the satellite reconnection times that can occur when

reopening ASIST after turning the device’s screen off.

Fig 17. Storage Access Framework

 32

Full-Screen Immersive Mode

Like many camera based applications, having a full-screen in ASIST will be advantageous to

allow for displaying as much information as possible. This mode removes the status and navi-

gation bars, and allows areas where these bars would usually be to also contain touch events

like that of the rest of the screen, without the status bars reappearing. Transitions between full-

screen and the regular view can then be made by downward touch gestures from the top of the

screen which can be used to reveal options for ASIST.

Screen Recording

Primarily for documenting progress and showcasing the application in action, the screen re-

cording capability added in Android 4.4 allows for videos to be recorded via USB to Android

Studio directly. Recording controls are accessed directly from Android Studio which over-

comes the need of installing a secondary application which often requires rooting of the device

for screen recording to work.

OpenGL for Embedded Systems 3.0 graphics support

Android 4.3 adds native support for OpenGL ES 3.0 which includes texture compression

which will benefit ASIST if textures are used for the drawing of condition data. Additional

benefits include advanced texture rendering and shading which again may benefit ASIST de-

pendent on the comprehensiveness of the graphics used.

Tablets Available at Opus

Various tablets and devices are used throughout Opus, but the most common of these is the

Samsung Galaxy Note 8.0 GT-N5120, upgradable to Android version 4.4.2.

Due to all of these features as a whole, but primarily due to the tablets available at Opus and

the ability to record the screen directly, Android 4.4 has been chosen as a minimum operating

system requirement for ASIST. The reason to make such a decision at the beginning of devel-

opment is to guide development towards using the most appropriate features available at the

time, while minimising the use of deprecated classes and maximising forward compatibility.

With this said, the majority of development features available across Android versions 4.0 and

higher overlap, and so this decision can be changed in the future. A newer version such as An-

droid 5.0 was dismissed due to the currently low market share usage of that operating system,

and the current uncertainty around whether the tablets used at Opus will become eligible for

such an operating system upgrade.

Fig 18. Samsung Galaxy Note used at Opus

 33

III. DEVELOMENT PROCESS

Once source control was prepared and a target operating system version selected, development

could begin. Taken from the mid year presentation, the following high level schedule was at-

tempted to be followed, with source control contributing to ‘Application Setup’:

Task Iteration (Week) Time (Hours)

Application Setup 1 20

Camera Preview 2 10

GPS Tracking 2 10

Accelerometer and Compass Tracking 3 10

Data Layer 3-4 20

Generate Data and Test 4 10

Transform Real Data to Test 5 20

Re-evaluate Performance 6 5

Compile Documentation of Process 6 10

Basic Documentation and Stakeholder Meeting 6 5

Testing by Invercargill Team 6 1

Report on Outcome 7 10

3.1 Application Setup

In addition to source control, application setup involved implementing the overall structure of

the application. This included the creation of default activities for the live view, asset manage-

ment, and settings windows, with a main menu and buttons linking them together.

 public class MainMenu extends ActionBarActivity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main_menu);

 }

 public void liveView(View v) {

 Button button = (Button) v;

 startActivity(new Intent(getApplicationContext(), LiveView.class));

 }

 …

 }

Table 5. Development Schedule

Fig 19. Main Menu Code Snippet

 34

The remaining time was spent experimenting with the layout options available - both the full-

screen capability of Android 4.4 as previously discussed (left), and different button placements

dependent on the orientation of the device (right, bottom):

Fig 20. Main Menu Layouts

 35

3.2 Camera Preview

The next three points (camera preview, GPS tracking, accelerometer and compass tracking) are

the foundational building blocks in which any location based augmented reality application is

built, and thus required preparing before development could continue. One of the only nega-

tives that come from developing for Android 4.4 rather than Android 5.0 is related to the cam-

era. To be compatible with earlier versions, the Android camera class was used. Unfortunately

this has been deprecated and replaced by the camera2 interface from Android 5.0 onwards,

meaning that development of the camera class has been discontinued, and usage of the class

will slowly be phased out. Camera2 has been introduced to add additional features and sim-

plify the process of setting up the older camera as will soon be discussed. However due to it’s

maturity, the positive of using the now deprecated camera class comes from the vast number of

online resources available to aid development compared to that of the newer camera2 class.

Firstly, as with any hardware feature, permissions and uses-feature tags must be supplied to the

manifest file to gain access to the hardware:

A basic camera application can be broken down into two main components; the camera, and

the ‘surface’ in which that camera’s contents will be displayed:

Because ASIST at this stage only needs to provide a preview of the camera perspective, rather

than taking pictures and recording video, development can be simplified by reducing the num-

ber of camera related methods required.

 <uses-permission android:name="android.permission.CAMERA" />

 <uses-feature android:name="android.hardware.camera" />

 <uses-feature android:name="android.hardware.camera.autofocus" />

 public class CameraPreview extends SurfaceView implements SurfaceHolder.Callback {

 private SurfaceHolder mHolder;

 private Camera mCamera;

 …

 }

 public CameraPreview(Context context, Camera camera) {

 super(context);

 mCamera = camera;

 mHolder = getHolder();

 mHolder.addCallback(this);

 mHolder.setType(SurfaceHolder.SURFACE_TYPE_PUSH_BUFFERS);

 }

Fig 21. Hardware Permissions

Fig 22. Camera Preview Class Definition

Fig 23. Camera Preview Constructor Method

 36

This is then accompanied by creation of the aforementioned surface which involves linking the

camera object to a surface for display of this preview, and implementing the following required

methods of this surface interface:

These were the initial methods used to create a working camera. However as can been seen in

the surface changed method, no information from the input parameters is being used to change

the surface. The next step was to add the capability of camera rotation based on the screen’s

orientation, which is done in the surface changed method. This was the first main road block in

development, requiring different rotation strategies to be trialled before finding one which

worked correctly:

 public void surfaceCreated(SurfaceHolder holder) {

 try {

 // create the surface and start camera preview

 if (mCamera == null) {

 mCamera.setPreviewDisplay(holder);

 mCamera.startPreview();

 }

 } catch (IOException e) {

 Log.d(VIEW_LOG_TAG, "Error setting camera preview: " + e.getMessage());

 }

 }

 public void surfaceChanged(SurfaceHolder holder, int format, int width, int height) {

 refreshCamera(mCamera);

 }

 public void surfaceDestroyed(SurfaceHolder holder) {

 mCamera.stopPreview();

 mCamera.release();

 }

Fig 24. surfaceCreated, surfaceChanged, surfaceDestroyed methods

Fig 25. Camera working correctly while landscape

 37

Fig 26. Camera working incorrectly when rotated

 38

The only problem with the above technique was while upside down in landscape mode, the

image continued to rotate incorrectly (upside down). However only a single landscape and por-

trait mode were required, so this problem was ignored and left to be fixed at a later date if the

time was available to allow for more important tasks to be completed. Incorrect margins

around the camera view were then remedied before moving on to the next component of the

application.

3.3 GPS Tracking

To display information relative to the user’s location, tracking of the device’s GPS is required.

There are two main ways of achieving this, either through Android’s built in location API, or

through Google Play’s services API, each with their own positives and negatives. It is recom-

mended by Android to use the Google Play services location API over the alternative, but with

little explanation for this suggestion. If pursuing the Google Play services path, an extended

setup of the service must be undergone to leverage the API, compared to simply importing the

location package if using Android’s built in methods. The main difference with respect to

ASIST between these two methods however is the fact that Google Play services requires a

network connection to make location requests, while the built in package does not. As previ-

ously mentioned, since this application is to be used out in the field, there is the requirement

for ASIST to be able to work without a network connection while in sheltered, distant areas

without a reliable, or any available wireless network. For primarily this reason, the decision to

use Android’s location package was chosen.

 public void surfaceChanged(SurfaceHolder holder, int format, int w, int h) {

 mCamera.stopPreview();

 LiveView.setCameraDisplayOrientation(LiveView.class ,1, mCamera);

 Camera.Parameters parameters = mCamera.getParameters();

 Display display = ((WindowManager)getContext().getSystemService

 (Context.WINDOW_SERVICE)).getDefaultDisplay();

 if(display.getRotation() == Surface.ROTATION_0){

 parameters.setPreviewSize(h, w);

 mCamera.setDisplayOrientation(90);

 }

 if(display.getRotation() == Surface.ROTATION_90){

 parameters.setPreviewSize(w, h);

 }

 if(display.getRotation() == Surface.ROTATION_180){

 parameters.setPreviewSize(h, w);

 }

 if(display.getRotation() == Surface.ROTATION_270){

 parameters.setPreviewSize(w, h);

 mCamera.setDisplayOrientation(180);

 }

 mCamera.setParameters(parameters);

 refreshCamera(mCamera);

 mCamera.startPreview();

 }

Fig 27. surfaceChanged method to rotate camera display correctly

 39

The minimum location information required for this application to function is the user’s lati-

tude and longitude, with other details such as altitude and movement speed being required de-

pending on implementation. The first step to gaining this information is to initialise the loca-

tion manager:

The criteria settings specify fine accuracy and no power requirement rather than coarse accu-

racy and a higher power requirement to ensure that the information received from the GPS is

as accurate as possible. Location updates are then requested with this criteria, with the two ze-

roes referring to a minimum time passed and distance moved of zero to trigger near instantane-

ous updates of location to be used by the application. This coupled with the required

‘onLocationChanged()’ method allows the latitude and longitude to be accessed and used as

follows. Due to updates occurring near instantaneously, ‘lastLocation’ is equivalent to the

user’s current location, therefore negating any observable latency between the device’s loca-

tion readings and real time coordinates.

Of the device sensors used, location tracking is the most straight forward. However as will be

discussed, problems occur when integrating this information with additional sensors and across

multiple files in an application.

3.4 Accelerometer & Compass Tracking

The final sensors required for a location based augmented reality application to work involve

tracking what angle the device is being held on. This information is found using the acceler-

ometer, compass, and gyroscope from the sensor manager:

 private LocationManager locationManager = null;

 ...

 //Location:

 locationManager = (LocationManager) getSystemService(LOCATION_SERVICE);

 Criteria criteria = new Criteria();

 criteria.setAccuracy(Criteria.ACCURACY_FINE);

 criteria.setPowerRequirement(Criteria.NO_REQUIREMENT);

 locationManager.requestLocationUpdates(locationManager.getBestProvider(criteria,

 true), 0, 0, this);

 @Override

 public void onLocationChanged(Location location) {

 lastLocation = location;

 }

 lastLocation.getLatitude();

 lastLocation.getLongitude();

 sensors = (SensorManager) context.getSystemService(Context.SENSOR_SERVICE);

 Sensor gyroSensor = sensors.getDefaultSensor(Sensor.TYPE_ORIENTATION);

 Sensor accelSensor = sensors.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);

 Sensor compassSensor = sensors.getDefaultSensor(Sensor.TYPE_MAGNETIC_FIELD);

Fig 28. Location manager initialisation

Fig 29. onLocationChanged() method and accessing current latitude and longitude

Fig 30. Sensor initialisation

 40

To begin recording this information, the following initialisation was used:

Like the location listener, sensor methods regarding ongoing information retrieval are required

to be implemented for these sensors:

As can be seen above, gyroscope data has been discarded due to the fact that the tablet being

tested on doesn’t support this functionality, but primarily due to the fact that the combination

of the accelerometer and compass provides enough data to make the gyroscope redundant for

this application. As with location tracking, gaining access to this sensor information is well

documented and relatively straight forward, with issues mainly arising due to incomplete inter-

face overloading or incorrect project setup with respect to granting the application access to

use these sensors. The real challenge came from leveraging all of this information simultane-

ously to create the on screen data layer.

 private void startSensors() {

 isAccelAvailable = sensors.registerListener(this, accelSensor,

 SensorManager.SENSOR_DELAY_NORMAL);

 isCompassAvailable = sensors.registerListener(this, compassSensor,

 SensorManager.SENSOR_DELAY_NORMAL);

 isGyroAvailable = sensors.registerListener(this, gyroSensor,

 SensorManager.SENSOR_DELAY_NORMAL);

 }

 @Override

 public void onSensorChanged(SensorEvent sensorEvent) {

 switch(sensorEvent.sensor.getType()){

 case Sensor.TYPE_GYROSCOPE:

 break;

 case Sensor.TYPE_ACCELEROMETER:

 lastAccelerometer = sensorEvent.values.clone();

 break;

 case Sensor.TYPE_MAGNETIC_FIELD:

 lastCompass = sensorEvent.values.clone();

 break;

 }

 this.invalidate();

 }

Fig 31. startSensors() method

Fig 32. onSensorChanged() method

 41

 public class OverlayView extends View implements SensorEventListener, LocationListener {

 private LocationManager locationManager = null;

 private SensorManager sensors = null;

 …

 }

3.5 Data Layer

Planned to take 20 hours to complete, development of the data layer drastically reduced the

pace of development that was up until this point, ahead of schedule. After unsuccessful at-

tempts at applying projection and model view matrices to transform the real world three di-

mensional space into a two dimensional coordinate system on the tablet’s screen, various tuto-

rials were followed to achieve augmentation. Before this began however, a new layer for dis-

playing information over the camera view was required to be created. Until this point, all func-

tionality of the above sensors had been contained within a single file. However it is this data

layer that requires all of this sensor and location information, while the lower layer camera

doesn’t transmit or consume any of this information. For this reason, the above sensor infor-

mation was moved to this new data layer:

The first attempt after this refactoring involved creating a bearing to other fixed locations only

taking into account left-to-right rotational information. Coordinates of the north and south

poles, and west and east ‘poles’ were recorded, and bearings created as follows:

The next step was to then take into account the vertical rotation of the tablet as well. Various

options on how to achieve this were explored. First the decision to include altitude data was

considered. Like latitude and longitude data, this can be extracted easily, and the altitude of

target locations can be set in a similar manner. To draw this, a more elaborate technique than

used above involving rotation matrix calculations and remapping of the coordinate system

were used as follows:

 protected static double bearing(double lat1, double lon1, double lat2, double lon2) {

 double longDiff = Math.toRadians(lon2 - lon1);

 double la1 = Math.toRadians(lat1);

 double la2 = Math.toRadians(lat2);

 double y = Math.sin(longDiff) * Math.cos(la2);

 double x = Math.cos(la1) * Math.sin(la2) - Math.sin(la1) * Math.cos(la2) * Math.cos

 (longDiff);

 double result = Math.toDegrees(Math.atan2(y, x));

 return (result+360.0d)%360.0d;

 }

 double angle = bearing(device.latitude, device.longitude, target.latitude, target.longitude);

 double xPos, yPos;

 if(angle < 0)

 angle = (angle+360)%360;

 xPos = Math.sin(Math.toRadians(angle)) * distanceApart;

Fig 33. OverlayView data layer definition

Fig 34. Bearing calculations

 42

 // compute rotation matrix

 float rotation[] = new float[9];

 float identity[] = new float[9];

 if (lastAccelerometer != null && lastCompass != null) {

 boolean gotRotation = SensorManager.getRotationMatrix(rotation,

 identity, lastAccelerometer, lastCompass);

 SensorManager.getOrientation(rotation, orientation);

 canvas.save();

 canvas.rotate((float) (0.0f - Math.toDegrees(orientation[2])));

 // Translate, but normalize for the FOV of the camera

 float dx = (float) ((canvas.getWidth() / horizontalFOV) * ((Math.toDegrees(orientation

 [0])) - curBearingToTargetLocation));

 float dy = (float) ((canvas.getHeight() / verticalFOV) * Math.toDegrees(orientation[1]));

 // wait to translate the dx so the horizon doesn't get pushed off

 canvas.translate(0.0f, 0.0f - dy);

 // make the line big enough to draw regardless of rotation and translation

 canvas.drawLine(0f - canvas.getHeight(), canvas.getHeight() / 2, canvas.getWidth() +

 canvas.getHeight(), canvas.getHeight() / 2, targetPaint);

 // now translate the dx

 canvas.translate(0.0f - dx, 0.0f);

 // draw the point. It’s rotated and translated this to the right spot already

 canvas.drawCircle(canvas.getWidth() / 2, canvas.getHeight() / 2, 8.0f, targetPaint);

 canvas.restore();

 }

If correct, this should draw the horizon line as well a

point on that horizon representing the target location.

Unfortunately, this was not the case. Initially, testing

of the application saw the horizon and point drawn

correctly relative to each other, but incorrectly to the

real world. Specifically, this horizon line (green line

through the middle of the screen) would be drawn only

when the device was tilted towards the ground:

Fig 35. Horizon line drawing

Fig 36. Horizon line drawing

 43

To diagnose this problem, the rotational information was displayed on the overlay of the

screen, along with other relevant metrics. Inspecting this, all information being used to con-

struct the overlay appeared correct - rotations and movements along all axes changed as ex-

pected when the device was rotated and moved, yet the projection still only appeared while

facing the ground. To dig further into this problem, third party applications which display

these values were downloaded and tested to ensure correct values were being fed through the

data layer of ASIST.

This uncovered that all values excluding a single rotational axis were correct, with this incor-

rect axis being skewed by a certain offset due the dx and dy values from the previous code

snippet returning negative infinity (not shown here). Various attempts were made to correct

this, but even directly correcting this offset with a fixed value had no impact on this rotational

axis. Due to being on the verge of completion, a significant amount of time was spent attempt-

ing to remedy this problem, with secondary problems being introduced along the way as a re-

sult of different fixes being trialled. Permissions parsing information between classes became

an issue during this process, resulting in a large scale refactoring of the LiveView and Camera-

Preview classes to parse an activity to the constructor of the CameraPreview, rather than a

camera object, to grant access to frame of view (FOV) information to correct the above dx and

dy calculations. Amongst other methods, the constructor of the CameraPreview was changed

as so:

To:

Parsing of the camera object as was previously done prevented gaining this FOV information

due to only one instance of a camera being able to access the hardware at a time, causing the

system to crash whenever a secondary call was made. Although now with a more correct im-

plementation and dx and dy values, the same problem regarding the incorrect rotational axis

continued. After further analysis of the methods used, the cause of this problem was still un-

clear.

 public CameraPreview(Context context, Camera camera) {

 super(context);

 mCamera = camera;

 mHolder = getHolder();

 mHolder.setType(SurfaceHolder.SURFACE_TYPE_PUSH_BUFFERS);

 mHolder.addCallback(this);

 }

 public CameraPreview(Context context, Activity activity){

 super(context);

 mHolder = getHolder();

 mActivity = activity;

 mHolder.setType(SurfaceHolder.SURFACE_TYPE_PUSH_BUFFERS);

 mHolder.addCallback(this);

 }

Fig 37. Comparing orientation data between third party application (left) and ASIST (right)

Fig 38. Old CameraPreview constructor

Fig 39. New CameraPreview constructor

 44

To move the project forward, a reassessment of the application’s capability requirements was

conducted to provide insight on possible alternative methods to solve this problem. Due to all

usage of this application being conducted by user’s in the field, it can be assumed that the de-

vice will be in use while standing at the road side with the tablet being held out in front of the

user at a typical constant viewing height. This static parameter can be used to synthesise alti-

tude based on the relative height between the tablet and the road. This meant that altitude in-

formation regarding both the road and the device was unneeded and the difference between

these two values could be replaced by this fixed height of approximately one metre. Hence

development then shifted back towards the earlier solution involving only latitude and longi-

tude.

The next big challenge involving these pseudo altitude values was surrounding how to visual-

ise depth on a two dimensional screen without being able to leverage the rotational matrix as

we would like. An alternative way of using the same rotation matrix operations in the

‘onSensorChanged()’ event was trialled to leverage the required information, resulting in a

positive outcome:

Again, the Y position of locations on the screen aren’t taking into account any type of altitude

data, but they are taking into account the pitch of the device correctly (tilting the tablet towards

the sky/ground), resulting in real world points now being displayed in front of the user as ex-

pected, rather than only when tilted to face the ground as was the case with the previous imple-

mentation.

 SensorManager.getRotationMatrix(RTmp, I, gravSensorVals, magSensorVals);

 int rotation = Compatibility.getRotation(this);

 if (rotation == 1) {

 SensorManager.remapCoordinateSystem(RTmp, SensorManager.AXIS_X, SensorMan-

 ager.AXIS_MINUS_Z, Rot);

 } else {

 SensorManager.remapCoordinateSystem(RTmp, SensorManager.AXIS_Y, SensorMan-

 ager.AXIS_MINUS_Z, Rot);

 }

 SensorManager.getOrientation(Rot, results);

 ARView.yaw = (float)(((results[0]*180)/Math.PI)+180);

 ARView.pitch = (float)(((results[1]*180/Math.PI))+90);

 ARView.roll = (float)(((results[2]*180/Math.PI)));

Fig 40. Orientation calculations

Fig 41. Skytower estimation (using default Android location marker)

 45

In addition to using the estimated one metre difference in height between the user and the

ground, other information regarding relative differences between the user and the road can be

leveraged to display the road correctly. The main value being the difference in horizontal dis-

tance between the user and the road. However before this distance can be used, an understand-

ing of how the road location data is recorded should be explored.

As illustrated in the previously given RAMM data (table 1), location information is given by a

road name e.g. “01S-0933”, a road ID e.g. “797”, and a displacement relative to that road

name and ID e.g. “0-100m” which signifies that row of road information correlates to the first

100 metres of that road, while a displacement of “210-510m” refers to the piece of road be-

tween the 210 and 510 metre mark, from the beginning of that road. The given road names

then correspond to a real English name under the start name attribute, which can be used to

find a GPS coordinate - which is required by the application to represent the road’s position.

Knowing this information then allows for the distance between the user and the start of the

road, as well as the end of the road be calculated:

The idea here is that assuming a flat surface, the further the road is from the tablet, the higher

on the screen the road should appear. Additionally, the road grows narrower in the distance:

 float [] dist = new float[1];

 Location.distanceBetween(currentLocation.getLatitude(), currentLocation.getLongitude(),

 targetLocation.getLatitude(), targetLocation.getLongitude(), dist);

Fig 42. Distance between two points calculation

Fig 43. Road dimensions

 46

Having access to all of this information then poses the design question of how to best use the

information to represent the data. The first option considered followed the same principle as

the previously trialled horizon line visualisation where the line drawn will be bounded by the

two coordinate points representing the start and end of a road. Given the user is standing on the

road, a line should be drawn underfoot, extending both in front of, and behind the user when

the device is tilted in these directions. However the more reliance that is put upon using GPS

coordinate points, the more susceptible to accuracy issues the application becomes. Given the

application uses a single coordinate to track a road, there are only two places for error; the dif-

ference between the true coordinate of that road and the coordinate estimation of that position

given by the satellites used, and the same difference regarding tracking of the device itself.

When additional coordinates are used to construct a road representation, the number of those

errors increases. Furthermore, it is unfortunately not the case that these multiple errors will

correct each other, nor highlight the offset required to correct the errors as testing has shown

that they are inconsistently different, varying in direction and magnitude depending on satellite

position and weather conditions. This results in a coordinate displaying correctly one day, to

the east by three metres the next, and to the west by five metres the following day. If all coor-

dinate data were correct, this would be a highly valid solution, granting usability of the appli-

cation from any viewing angle, however this is not the case.

To solve the issue, simplifications of the proposed method were trialled. Using the knowledge

that a road appears higher and narrower as the distance apart increases, as well as assuming a

fixed viewing elevation above the road, the visualisation can become increasingly static, while

still conveying the required information. Constructions of lines were trialled before choosing

to represent a road as a trapezium which fulfils the requirements of becoming narrower and

taller in the distance:

However this also introduces the largest usability limitation of the application. If this technique

is used, then viewing of road condition information can only be completed correctly when

looking straight down a road as above, rather than standing on the side of the road and looking

at it like so:

Fig 44. Trapezium road estimation

 47

This restricts the usability of the system, disallowing any other viewing angle from displaying

information correctly. However as illustrated in images taken from the operational functions

report (fig 1, 6), all concept work of the application displays this limitation, and the overall

effectiveness of the application isn’t hindered dramatically due to the ease of moving to stand

in this required position at the end of the road. Additionally, the difference in angle between

looking straight down a road from standing in the centre, compared to doing the same from the

side of the road will be minimal, so little that this solution may be viable from this viewing

angle as well. Later images will show the validity of this approach when standing on the side

of the road, but looking down it to display a trapezium that still corresponds to the road shape.

Using this trapezium method, the final question at this stage is where on the road should the

GPS coordinate keep track of? Since the starting position and length of the road is given, that

starting position was first trialled as the GPS coordinate to be used for the trapezium. Unfortu-

nately due to the accuracy issues mentioned, if standing in close proximity to this GPS coordi-

nate while using ASIST, the placement of the coordinate relative to the tablet was inconsistent.

This resulted in the trapezium only being drawn correctly approximately a quarter of the time,

while it was being drawn off screen the other three quarters of the time due to the satellites

estimating the given position to be behind or beside the user, rather than in front.

To negate this issue, the GPS coordinate was changed to track the centre point, half way down

the road. This alleviated the above problem, but introduced others concerning the positioning

of the trapezium on the screen due to the distance from user value changing. After strenuous

testing, the following was produced to position road representations on the screen:

Fig 45. Limitation of trapezium from road side

 48

 void drawRoad(PaintUtils dw) {

 currentLocation.setLatitude(ARView.lastLocation.getLatitude());

 currentLocation.setLongitude(ARView.lastLocation.getLongitude());

 for(int i = 0; i <latitudes.length;i++){

 destinedLocation.setLatitude(latitudes[i]);

 destinedLocation.setLongitude(longitudes[i]);

 bearing = currentLocation.bearingTo(destinedLocation);

 if(bearing < 0){

 bearing = 360 + bearing;

 }

 bearings[i] = bearing;

 }

 for(int i = 0; i<bearings.length;i++){

 float [] dist = new float[1];

 Location.distanceBetween(currentLocation.getLatitude(), currentLoca-

 tion.getLongitude(), latitudes[i], longitudes[i], dist);

 if(bearings[i]<0){

 yPosition = (this.pitch - 90) * this.degreetopixelHeight+400+dist[0];

 bearings[i] = 360 - bearings[i];

 angleToShift = (float)bearings[i] - this.yaw;

 nextXofText[i] = (int)(angleToShift*degreetopixelWidth);

 yawPrevious = this.yaw;

 isDrawing = true;

 roadRenderer(dw, places[i], nextXofText[i], yPosition, true, true, i);

 coordinateArray[i][0] = nextXofText[i];

 coordinateArray[i][1] = (int)yPosition;

 }else{

 angleToShift = (float)bearings[i] - this.yaw;

 yPosition = (this.pitch - 90) * this.degreetopixelHeight+400 +dist[0];

 nextXofText[i] = (int)((displayMetrics.widthPixels/2)+

 (angleToShift*degreetopixelWidth));

 if(Math.abs(coordinateArray[i][0] - nextXofText[i]) > 50){

 roadRenderer(dw, places[i], (nextXofText[i]), yPosition, true,

 true, i);

 coordinateArray[i][0] = (int)((displayMetrics.widthPixels/2)+

 (angleToShift*degreetopixelWidth));

 coordinateArray[i][1] = (int)yPosition;

 isDrawing = true;

 }else{

 roadRenderer(dw, places[i],coordinateArray[i][0],yPosition, true,

 true, i);

 isDrawing = false;

 }

 }

 }

 }

Fig 46. Road drawing positioning

 49

Where ‘roadRenderer()’ deals with resizing the trapezium. This sizing first used fixed values

to estimate the graphic required to cover the road surface:

However the testing environment used wasn’t representative of all roads due to the decreasing

elevation, and so the final step with respect to controlling the size of the trapezium came from

leveraging the information recorded about roads, specifically the road length and road width

values. Again, varying values were trialled to find the most accurate and robust solution, re-

sulting in the following values and performance:

 void roadRenderer(PaintUtils dw, String txt, float x, float y, boolean test, boolean isRoad, int

 count) {

 float padw = 4, padh = 2;

 float w = dw.getTextWidth(txt) + padw * 2;

 float h;

 if(isRoad){

 h = dw.getTextAsc() + dw.getTextDesc() + padh * 2+10;

 }else{

 h = dw.getTextAsc() + dw.getTextDesc() + padh * 2;

 }

 if (test) {

 if(isRoad){

 layoutParams[count].setMargins((int)(x - w / 2 - 10), (int)(y - h / 2 - 10),

 0, 0);

 //Road Height:

 layoutParams[count].height = 500;

 //Road Width:

 layoutParams[count].width = 120;

 locationMarkerView[count].setLayoutParams(layoutParams[count]);

 //Puts the street name in the middle (vertically) of the road graphic:

 subjectTextViewParams[count].topMargin = 2*(int)roadLengths

 [count];

 subjectTextViewParams[count].leftMargin = 10*(int)roadWidths

 [count];

 locationTextView[count].setLayoutParams(subjectTextViewParams

 [count]);

 }

 }

 }

 //Change height based on length of road:

 layoutParams[count].height = 4*(int)roadLengths[count];

 //Change width of graphic based on width of road:

 layoutParams[count].width = 40*(int)roadWidths[count];

Fig 47. Road drawing sizing

Fig 48. Variable road sizing

 50

The road in the above images widens dramatically when moving towards where the images

were taken, hence why a wider base for the trapezium hasn’t been used as this road is unrep-

resentative of a normal, fixed width road.

Due to the unforeseen complications throughout the development of this data layer and the

time restrictions of this project, this concludes the development of the road representation,

excluding minor details such as displaying the correct condition type which has been simpli-

fied by the use of local test data to change the colour of the road:

 if(conditions[i].equals("Good")){

 locationMarkerView[i].setBackgroundResource(R.drawable.trapgreen5);

 }

 else if(conditions[i].equals("Bad")){

 locationMarkerView[i].setBackgroundResource(R.drawable.trapred5);

 }

Fig 49. Road drawing trials with varying parameters

Fig 50. Road drawing condition

 51

3.6 Additional Features

The goal for ASIST once representation of roads was complete was to incorporate the asset

management features discussed previously. However with little time remaining to complete the

project, and the increased likelihood of running into time consuming problems when creating

new files like this, it was decided that this remaining time would be spent adding extra func-

tionality to the live view feature to allow for future work of this function to be continued with

less effort. Additionally, the creation of the asset management function again poses further

design questions on the best way to achieve results, further increasing the time required to de-

liver tangible results. Due to the majority of features requiring a network connection to com-

municate with central servers, an array of methods could be trialled, including a web portal

within the application itself.

To facilitate future work of the live view feature, user interaction has been enabled by the addi-

tion of touch controls. For the time being, the information displayed is placeholder data which

can be built on at a later date where more elaborate touch events can be created. Two main

touch events have been created. The first displays the surface material of the road when a tra-

pezium is touched. While the second displays coordinate information of the user when the re-

maining area of the screen is touched:

Insert picture of touch road event and touch background event.

 subjectImageView[i].setOnClickListener(new OnClickListener() {

 @Override

 public void onClick(View v) {

 if (v.getId() != -1) {

 RelativeLayout.LayoutParams params = (RelativeLayout.LayoutParams)

 locationMarkerView[v.getId()].getLayoutParams();

 Rect rect = new Rect(params.leftMargin, params.topMargin,

 params.leftMargin + params.width, params.topMargin + params.height);

 ArrayList<Integer> matchIDs = new ArrayList<Integer>();

 Rect compRect = new Rect();

 int index = 0;

 for (RelativeLayout.LayoutParams layoutparams : layoutParams) {

 compRect.set(layoutparams.leftMargin, layoutparams.topMargin,

 layoutparams.leftMargin + layoutparams.width, layoutpar-

 ams.topMargin + layoutparams.height);

 if (compRect.intersect(rect)) {

 matchIDs.add(index);

 }

 index++;

 }

 Toast.makeText(_context, "Surface material: " + surfaceMaterial[j],

 Toast.LENGTH_SHORT).show();

 }

 }

 });

Fig 50. Touch event - road touched

 52

Fig 51. Touch events

 53

3.7 Summary of Features

As discussed in section 1.8 Conceptual ASIST, it was planned for this project to entail not only

the rendering of roads in real time, but to include the capability of displaying varying pieces of

information such as overall road condition, skid resistance, and age of surface. In addition to

this, asset history was to be encoded, allowing users to control the date of information they

wish to view via an on screen time slider. Furthermore, non-road assets such as culverts and

buildings were to be represented as well, with similar history information options as available

for roads. Lastly, the back end asset management features were planned to be included, auto-

matically extracting information from the live view and using it to auto-complete required

fields of site inspection reports.

As discussed throughout the development process, challenges were faced which restricted the

number of features delivered by this project. This lead to the scope of the project being re-

duced to delivering only the fundamental features required to represent a road surface. The

final project delivers the following capabilities:

 Local databases of information store a road’s: GPS coordinates, length, width, and over-

all condition

 These attributes are then used to: position, size, and colour a road on the augmented data

layer, corresponding to that road’s real world position

 The road name is also displayed on the road surface

 When the user looks straight down a road from either end, the graphic overlay will be

displayed correctly:



Fig 52. Looking down a long, good condition road (top) & looking up a short, poor condition road (bottom)

 54

 When looking at the road in the same direction, but standing from the side, the accuracy

of the graphic overlay will be less than that of above, but still satisfactory to display the

required information:

 On screen touch events allow users to inspect the road surface material and current GPS

coordinates by touching the road and surrounding area, respectively:

Fig 53. Side of road viewing

Fig 54. Touch events for surface material (top) and current location coordinates (bottom)

 55

IV. CONCLUSIONS

4.1 Evaluation

A. Performance

Due to the difficulties faced and limitations of use imposed throughout development, ASIST

has moved from the intended Augview-like design towards an application more reminiscent of

a POI application, as well as an overall reduction in scope to entail only the core roading func-

tionality. The capabilities of POI applications vary from very simplistic and only taking into

account the yaw of the device, to the most elaborate incorporating all three axes of rotation, as

well as depth/distance, and application specific parameters. ASIST sits at the more elaborate

end of the POI spectrum and grows on the alternatives surveyed by rendering the points of in-

terest in what appears three dimensions over the camera perspective.

The viewing angle associated with regular POI applications is not a factor as it is with ASIST

due to the location markers in these applications representing a single point, rather than a piece

of road in the real world space. This is one area where ASIST will continue to fall short as

long as this implementation is used. However the limitation only affects looking across a road,

while the constraint of looking down a road from one end is loosened to include looking down

a road from most sides with an acceptable level of alignment error:

The performance of the application when these restrictions are imposed is satisfactory. Correct

visualisation of a road in real time has been the major design challenge throughout this project,

and although simplified, the solution provided conveys the required information. In most cases

the accuracy of the visualisation is adequate, covering the road as expected. However as will

be covered in the following usability and future work sections, the information conveyed is

simplistic, and the performance of the application can be improved by the inclusion of addi-

tional data layers with varying categories of information regarding the use case at hand.

As mentioned in section 3.5, satellite coordinate information can be inconsistent and vary from

day to day, as well as be affected by the weather conditions. Although the proposed solution

has sought to minimise this variation, it is at times unavoidable. The following shows a worst

case scenario in which all factors regarding the data have been held constant, with the only

difference being that the two images have been taken 24 hours apart:

Fig 55. Roadside alignment

 56

B. Usability

Implementation specifics aside, the overall usability of the live view function has been evalu-

ated against Nielsen’s 10 usability heuristics where appropriate [45]:

1. Visibility of system status

2. Match between system and real world

3. User control and freedom

4. Consistency and standards

5. Error prevention

This has been conducted to highlight not only strengths in ASIST’s design, but where future

improvements can be made:

6. Recognition rather than recall

7. Flexibility and efficiency of use

8. Aesthetic and minimalist design

9. Error recognition, diagnosis, and recovery

10. Help and documentation

Fig 56. Differing GPS coordinate estimations

 57

ASIST has been developed to maintain a minimalistic design while conveying information.

The aesthetics and colours used are consistent, intuitive, and their meaning easily understood.

Colours such as green for good, and red for poor condition promote recognition rather than

recall when it comes to assessing road condition. However only limited information about the

road surface is given - the overall condition of the road. Progressive disclosure has been used

to display further information when touched in an attempt to remedy this lack of information,

but different road textures for example could be added to provide additional, constantly view-

able information.

Due to the minimalistic design, the visibility of system status is limited and could be improved

to increase the user’s awareness of the system. The main area of concern in this respect is

knowing the status of the satellite connection. Without any interaction with the screen, users

cannot determine whether location services are working correctly. This is quickly accessed by

pulling down the system tool bar, but additional on screen cues could be added to eliminate

this process.

The overall control of the application is instinctive, with rotations of the device resulting in

expected responses from the system in terms of road visualisation movement. Of course the

limitation of looking down a road doesn’t fulfil this property, and without explanation of this

shortcoming, users will become impatient with the application. Therefore flexibility of the sys-

tem is limited, and should be an area of focus for future work.

The main error that can occur is a result of poor satellite accuracy, causing a road to be esti-

mated in the wrong location as previously mentioned. Again an explanation of the applica-

tion’s capabilities in terms of where a road can be best viewed from will minimise the chance

of this problem occurring. However in the event that a road is plotted incorrectly behind the

user, no options for re-syncing coordinate information is available. This is another feature that

could be added in the future.

Security

The main security concern with ASIST is the transmission and storage of sensitive information

between tablet and server, as well as any malicious software on the device extracting locally

stored information from the application. Due to this project primarily taking the form of a

proof of concept, concerned with the validity of an augmented reality solution, this particular

is outside the main scope of the project and so has not been an area of focus. The majority of

data used throughout testing has been location data generated specifically for the illustrated

testing environments, and is therefore all publically accessible via Google Maps. The remain-

ing information has again been generated for the testing environments used and is thus insensi-

tive data. The only valuable information used within this project is the structure of road data

which defines what information is stored about New Zealand roads. However the majority of

these attributes are very typical and what would be expected, for example “road width” and

“surface material.” If the ASIST application is developed further to the point where caching of

remote information is implemented, then security and encryption measures should be put in

place, but at this stage they are an unnecessary cost.

4.2 Future work

Various paths for future work can be taken. These can be split into two distinct categories: fur-

ther development of the live view function, and development of complimentary features.

 58

Future Live View Development

Firstly, the fundamental structure of the live view function should be assessed. If the current

limitations of the application are at an acceptable level, then development can continue as

usual. Alternatively, user options can be used to control this representation. In the simplest

implementation, a button can be used to notify the system whether the user is looking down, or

across a road. This will in turn rotate the road augmentation as required to eliminate the limita-

tion of needing to look down the road. However if this is found unsuitable, then more time

should be spent on the more comprehensive, less restrictive solution trialled earlier on in de-

velopment. In either case, the next step is to then convey more information to the user on

screen. This will be done in two ways: providing information that is always visible, and adding

additional touch options for further information. On top of this, various preset options for con-

stant display of different information should be made available. An example of these ideas in-

clude:

As shown in figure 54, the additional information includes that displayed on the road itself, as

well as using the remaining screen real estate to display various information. In addition to a

road colour representing the overall condition of the road, various textures representing the

surface material can be displayed. Variations of this can then be used to indicate the age and

other variables related to that road. Depending on the complexity of these graphics, a key or

legend may need to be displayed to describe the texture. Other off-road information to be dis-

played includes that concerned with the road in question, as well as information based on the

user’s surroundings. For example, the average age of nearby roads (average time since last re-

surface) which can aid the decision of whether or not the road in question should be repaired.

Signal Strength: 84%

Road Age: 4.5 Years

Area Age: 3.2 Years

Estimated Reseal Cost:

$4600

Menu

Fig 57. Information overlays

Elevation

Variation:

1.8metres

 59

Development of Complimentary Features

As previously discussed, it was intended for the asset management features to follow the devel-

opment of the live view function. Unfortunately due to time restraints and difficulties faced, this

did not occur. Once any necessary additions have been made to the live view function, these be-

hind the scenes processes which make the application a business viable product must be devel-

oped. Due to the majority of functions having a straight forward layout consisting of a range of

text entry fields, the design of these sections shouldn’t be time consuming. The challenge will

come from correctly connecting these managerial functions with the live view. To make ASIST a

viable solution, maximal automation between these functions is necessary. This will include auto-

completion of text entry fields such as road name and location based on the perspective of the

live view when requesting a road upgrade:

Once the local connections between functions are made, distributed connections between device

and server will need to be implemented. This is where the security measures as mentioned previ-

ously must be administered.

Asset Information

Location -37.00.., 174.57..

Type Road

Function

Dimension 250 x 4m

Age 5

Material 1CHIP

Fig 58. Live view - asset management connection

 60

4.3 Lessons Learned

From accepting this project to the time of writing, this entire endeavour has been an ongoing

learning process. The usual early steps of the project design process were bypassed due to in-

heriting an already complete design from the given documentation, meaning evaluation of de-

sign and alternative data representations were unnecessary to explore. However this introduced

other challenges in the form of project understanding and negotiation. Learning to interpret

design ideas and transform these into manageable development tasks was the first main chal-

lenge to overcome. Parallel to this, and what became the biggest lesson learned overall was the

general communication skills, both written and oral, required throughout the project. Ongoing

communications were made with industry mentor Kodie in which technical details could be

discussed frequently at a low level. However members from other parts of the firm were also

involved, requiring information to be disseminated at a higher level. Ensuring all individuals

involved regardless of their background and experience were kept on the same page through-

out development was an important part of this project, and a valuable skill to take away. Docu-

ments were written with this in mind, only going into low level detail when required, and en-

suring that this was explained clearly for all to understand. The second half of this communica-

tion aspect is in regard to exaggerating transparency in thought processes and reasoning. Be-

cause this is a real project, with real people involved, decisions on implementation cannot be

made in secrecy. Again it was vital to keep everyone involved on the same page, and this ex-

tends to the reasoning behind decisions made throughout the project. In the scoping and design

phase of the project, effort was made emphasising the elaboration regarding the research sur-

rounding different mobile platforms and hardware, resulting in multiple reports being deliv-

ered to, and meetings being held with Opus.

Second to the communication and business skills learned throughout the project, software de-

velopment knowledge was grown week upon week during the second phase of this project.

The small amount of web development for mobile was a new experience, requiring Cordova

scripts and new user interface frameworks to be used. However the main area of self-growth

came from the ongoing Android development. Being new to Android development, initialising

the project and it’s respective files correctly was a learning experience in itself. Throughout

development, many Android specific requirements were learned:

Use of hardware

To gain access to hardware features such as the camera or GPS, multiple requirements must be

met. First the application must be made aware that this function is wanted by granting it access

in the manifest file. Then due to the access being made through an interface, classes must be

made to implement the interface, along with all methods defined by that interface. Finally any

hardware specific restrictions must be abided to, such as only a single instance of the camera

being requested at a time.

Location

Location tracking is becoming one of the most commonly used features in mobile develop-

ment, and although straightforward to leverage in comparison to the other hardware used, be-

ing able to harness this information is very applicable when developing for an array of applica-

tion types.

 61

Rotation

As discussed, leveraging the rotation of the device correctly became part of the most difficult

and time consuming endeavour throughout this project. This is a commonly used feature and a

main input technique for smart devices however, so like location is a fundamental technique

that can be transferred to a variety of applications.

General development skills were also grown as a result of completing this project. By working

in a distributed environment where the industry supervisor was not physically available, source

control was required. From the importance of correct commit messages, to setting up and

working with repositories from directly within the IDE, this knowledge will undoubtedly be

useful for future projects in the workplace.

 62

REFERENCES

[1] The World Bank Group. (2014). Mobile cellular subscriptions. Retrieved from http://data.worldbank.org/

indicator/IT.CEL.SETS.P2/countries?display=graph. Last visited 14.04.2015.

[2] Darcey, L. & Conder, S. Android Wireless Application Development: Introducing Android. ISBN-13: 978-

0321627094. Addison-Wesley Professional Publishing. 2009.

[3] Statista: The Statistics Portal. (2014). Number of apps available in leading app stores as of July 2014. Re-

trieved from http://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/.

Last visited 15.04.2015.

[4] Statista: The Statistics Portal. (2015). Most popular Apple App Store categories in March 2015, by share of

available apps. Retrieved from http://www.statista.com/statistics/270291/popular-categories-in-the-app-

store/. Last visited 15.04.2015.

[5] Dr. Dobb’s: The World of Software Development. (2014). Developing Cross-Platform Mobile Apps with

HTML5 and Intel XDK. Retrieved from http://www.drdobbs.com/mobile/developing-cross-platform-mobile

-app. Last visited 18.06.2015.

[6] Laurila, J. K et al. The Mobile Data Challenge: Big Data for Mobile Computing Research. Pervasive Com-

puting. No. EPFL-CONF-192489. 2012.

[7] GSM Arena. (2015). Samsung Galaxy S6. Retrieved from http://www.gsmarena.com/samsung_galaxy_s6-

6849.php. Last visited 15.04.2015.

[8] Lindstrom, L. & Jeffries, R. Extreme Programming and Agile Software Methodologies. Information Sys-

tems Management. Volume 21, issue 3, pages 41-52, 2004.

[9] Chow, T. & Cao, Dac-Buu. A survey study of critical success factors in agile software projects. Journal of

Systems and Software. Volume 81, issue 6, pages 961-971, 2008.

[10] Wasserman, A. Software Engineering Issues for Mobile Application Development. FoSER ‘10 Proceedings

of the FSE/SDP workshop on Future of software engineering research. Pages 397-400, 2010.

[11] Fling, B. Mobile Design and Development. ISBN-13: 978-0596155445. O’Reilly Media Publishing. 2009.

[12] Wu, H. et al. Current status, opportunities and challenges of augmented reality in education. Computers &

Education. Volume 62, pages 41-49, 2013.

[13] Drascic, D. & Milgram, P. Perceptual issues in augmented reality. Electronic Imaging: Science & Technol-

ogy. Pages 123-134, 1996.

[14] Kurt, S. (2013). Meet your child’s new teacher: the iPhone. Retrieved from http://www.http://

appletoolbox.com/2013/08/meet-ms-siri-johnnys-new-teacher/. Last visited 27.10.2015.

[15] Young, O. (2013). Augmented Reality Technology Shapes the Future of Retail Commerce. Retrieved from

http://www.augmentedrealitytrends.com/augmented-reality-retail/future-of-retail-and-commerce.html. Last

visited 24.10.2015.

[16] Tobi. (2015). Augmented Reality Dressing Room. Retrieved from http://modular4kc.com/2009/12/16/tobi-

coms-augmented-reality-dressing-room/. Last visited 24.10.2015.

[17] Kishino, F. & Milgram, P. A taxonomy of mixed reality visual displays. IEICE TRANSACTIONS on Infor-

mation and Systems. Volume 77, issue 12, pages 1321-1329, 1994.

[18] Azuma, R. Tracking requirements for augmented reality. Communications of the ACM - Special issue on

computer augmented environments: back to the real world. Volume 36, issue 7, pages 50-51, 1993.

[19] Wada, T. (2014). Trident International Graphics Workshop. Retrieved from http://www.slideshare.net/

TakaoWada/graphics-workshop2014-2. Last visited 25.10.2015.

[20] Kutulakos, K. & Vallino, J. Affine Object Representation for Calibration-Free Augmented Reality. Virtual

Reality Annual International Symposium,1996., Proceedings of the IEEE 1996. Pages 25-36.

[21] Satyanarayanan, M. Pervasive computing: Vision and challenges. Personal Communications, IEEE. Vol-

ume 8, issue 4, pages 10-17, 2001.

[22] Schmidt, A. Ubiquitous computing - Computing in context. Ph.D. thesis, Lancaster University. 2002.

[23] Olsson, T. et al. User evaluation of mobile augmented reality scenarios. Journal of Ambient Intelligence and

Smart Environments. Volume 4, issue 1, pages 29-47, 2012.

[24] Chen, Hsinchun, Roger HL Chiang, and Veda C. Storey. Business Intelligence and Analytics: From Big

Data to Big Impact. MIS quarterly 36.4. Pages 1165-1188. 2012.

[25] Heim, S. The Resonant Interface: HCI Foundations for Interaction Design. ISBN-13: 978-0321375964.

Addison-Wesley Publishing. 2008.

[26] Bruce, A. Big Ideas 2014 - ASIST. Functional Requirements Report. 2014.

[27] Miller, C. & Doering, A. The New Landscape of Mobile Learning: Redesigning Education in an App-Based

World. First Edition. ISBN-13: 978-0415539241. Routledge Publishing. 2014.

[28] Madden, L. Professional augmented reality browsers for smartphones: programming for junaio, layar and

wikitude. John Wiley & Sons, 2011.

 63

[29] Analytical Graphics, Inc. (2011). Satellite AR. Retrieved from https://play.google.com/store/apps/details?

 id=com.agi.android.augmentedreality&hl=en. Last visited 22.08.2015.

[30] ESET. (2014). ESET Augmented Reality BETA. Retrieved from: https://play.google.com/store/apps/

 details?id=com.eset.ar&hl=en. Last visited 22.08.2015.

[31] Goodchild, M. Geographic information system. Encyclopedia of Database Systems. Springer US. 1231-

 1236. 2009.

[32] Augview. Retrieved from http://www.augview.net/. Last visited 09.07.2015..

[33] Fernandez, Wilkins, and Stephan Alber. Introduction. Beginning App Development with Parse and

 Phonegap. Apress. Pages 1-13. 2015.

[34] Karadimce, Aleksandar, and Dijana Capeska Bogatinoska. Using hybrid mobile applications for adaptive

 multimedia content delivery. Information and Communication Technology, Electronics and Microelectron-

 ics (MIPRO), 2014 37th International Convention on. IEEE, 2014.

[35] Hou, Lei, et al. Combining photogrammetry and augmented reality towards an integrated facility manage-

 ment system for the oil industry. Proceedings of the IEEE 102.2 (2014): 204-220.

[36] Niculescu, Dragos, and Badri Nath. Ad hoc positioning system (APS). Global Telecommunications Confer-

 ence, 2001. GLOBECOM'01. IEEE. Vol. 5. IEEE, 2001.

[37] Hofmann-Wellenhof, Bernhard, Herbert Lichtenegger, and Elmar Wasle. GNSS–global navigation satellite

 systems: GPS, GLONASS, Galileo, and more. Springer Science & Business Media, 2007.

[38] Padre, J. (2012). GLONASS support in our latest Xperia phones. Retrieved from Retrieved from: http://

 developer.sonymobile.com/2012/01/19/glonass-support-in-our-latest-xperia-phones/. Last visited

 13.08.2015.

[39] Qualcomm. (2015). Retrieved from https://www.qualcomm.com. Last visited 27.10.2015.

[40] iPad Pilot News. (2013). Do I really need an external GPS? Retrieved from: http://

 ipadpilotnews.com/2013/02/do-i-really-need-an-external-gps-2/. Last visited 10.08.2015.

[41] Burkert, C. (2013). iPad Air - GPS / GLONASS. Retrieved from: https://discussions.apple.com/

 thread/5550207. Last visited 10.08.2015.

[42] Steele, J. & To, N. The Android Developer’s Cookbook: Building Applications with the Android SDK.

 Second edition, ISBN-13: 978-0321741233. Addison-Wesley Publishing. 2013.

[43] Android. (2015). Android Application Fundamentals. Retrieved from http://developer.android.com/guide/

 components/fundamentals.html. Last visited 24.10.2015.

[44] Social Compare. (2015). Android versions comparison. Retrieved from http://socialcompare.com/en/

 comparison/android-versions-comparison. Last visited 27.10.2015.

[45] Nielsen, J. 10 Usability Heuristics for User Interface Design. 1995.

