License Plate Recognition
at Close Distances

Report for BTech 451

by

Muhammad Saad Malik

Supervisor: Professor Reinhard Klette

Tamaki Campus
Department of Computer Science
The University of Auckland
New Zealand
October 2014

I dedicate all my hard work and success to my beautiful mum and little sister.

Abstract

This is a report for my final year BTech project. The project given to me is to
do with developing a license plate recognition system. This report covers the re-
search, methods, implementation and design of a license plate recognition system.
It discusses 3 algorithms that were implemented during this project. The algorithms
achieve respectable success rates and run times. The report also presents experi-
mentational results. Lastly, the report proposes a different approach to solving the
license plate recognition problem.

Keywords: License plate, number plate, localisation, detection, segmentation,
character recognition, recognition system.

Acknowledgments

I will firstly thank my supervisor Professor Reinhard Klette. I could not have
done this project without his help. I thank Terry Sun, my industry mentor for giv-
ing me this project. I thank Dr. Mano for his support throughout this project and
throughout my BTech degree. I also thank my beautiful partner Shagoofa Tahir for
her help and support throughout this year. Last but never least I will thank almighty
God, as without him none of this would be possible.

Muhammad Saad Malik
Auckland
October 28, 2014

Introduction

1.1 Motivationand Goal
12 ChosenTestData
1.3 Structure of Report

Localisation Basics

2.1 Image Processing Basics
2.2 Methods for License Plate Detection . .
2.3 Methods for Segmenting License Plates
24 Selected Approach

Localisation and Segmentation Experiments
31 Experiments

Reading of Plates

4.1 Optical Character Recognition
42 ChosenMethod
43 Experiments
44 Alternative Approach.

Limitations
51 System Limitations

Android Application Design
6.1 Application Design

Conclusions

Contents

W W =

19
19

29
29
31
35
36

39
39

41
41

43

10

Bibliography

“

45

Chapter 1

Introduction

This introductory chapter informs about the motivation and goal of this project. This chapter
will also inform about the test data to be used for the working prototype. The last section of
this chapter will give an overview on the structure of this report.

1.1 Motivation and Goal

This report covers the year long project given to me by SnapInspect. Snaplnspect is
a business based in Auckland, New Zealand. SnapInspect focus on mobile applica-
tion development and are well known for their property inspection app.

Project Description. Automatically identify vehicles by reading their number
plates. This is a useful application for the automotive and transport industry. The
goal of this project is to produce an application which is able to recognize license
plates at a close distance.

Problem. The company has a small parking lot where the parking spaces have
been allocated for staff and visitors. The current problem is that some visitors park
their cars for more than the time allowed. These parking violations are reported to
visitors by staff. The staff currently monitors the parked cars manually without fol-
lowing any fixed procedure. This method however, does not always work correctly
and requires unnecessary time and effort.

Solution. To address this problem the company has proposed a solution of an
automatic license plate recognition system. The system is aimed at reducing the time
and effort required to inform a visitor about their parking violation. The system will
handle and make decisions on whether a car has been parked for too long or not. I
have been given the task of designing and implementing such a system to solve the
company’s problem.

Requirements. SnapInspect’s main concern for this project is the budget. Due
to this fact Snaplnspect is not making use of any of the other available license plate

2 1. Introduction

Figure 1.1: Sample from project scenario, provided by SnapInspect.

recognition systems. The company has requested the system to be developed for
an android based device. An android device is much cheaper in comparison to the
other license plate recognition systems. There are also some technical requirements
such as the system’s performance and success rate. The performance of the system
is concerned with the runtime of the algorithm and the success rate is based on the
percentage of correctly recognized license plates. Snaplnspect has not given any
strict guidelines for both these requirements but they are expecting a system that
will work smoothly.

How it Works. The system will work based on a given scenario. For this project,
the scenario is the parking lot (See Fig. 1.1). The system will simply recognize license
plates in the parking lot and store the results into a database. Initially, the plan is to
place or mount an android device in the parking lot where it can recieve a good view
of the parked cars. The camera of the android device will provide live footage from
which license plates will be recognized. It is suggested that the algorithm runs at
least every 5 minutes in order to keep track of the activity in the parking lot. Results
in the database will be compared to previous results every time the algorithm is
executed. The comparison allows to check how long a car has been parked for. If
a license plate is recognized (i.e. in every execution of the algorithm) for a period
longer than the permitted parking time, the system will know the car has exceeded

1.2. Chosen Test Data 3

the parking time limit. The next step will be to notify the staff about the parking
violation. This may be done by sending a simple message to the staff or through
some other similar method. Once the notification phase is complete the system will
return to executing the recognition algorithm.

Technical Details. The most important part of this project is the license plate
recognition algorithms. Other parts such as android application development are
not as vital for the success of this project (i.e. the android application can always
be completed later in the near future). Therefore, this report will heavily consist
of technical material concerning license plate recognition methods. A license plate
recognition system is made up of several different parts. Hence, before heading into
the research and design of a license plate recognition system, in the following I will
outline the primary steps which are required to be taken for the overall system to
work.

Step 1. Capture a frame (image) from the live video feed of the android device.
Step 2. Pre-process image.

Step 3. Apply license plate localisation algorithm.

Step 4. Apply license plate tilt correction and segmentation algorithm.

Step 5. Apply optical character recognition algorithm.

Step 6. Save results into database.

Step 7. Repeat process.

1.2 Chosen Test Data

The test data to be used in this project will be provided by SnapInspect. Apart from
that test data I will personally be taking photos of parked cars in similar situations
to get a start on the project.

1.3 Structure of Report

The report is structured in order of the steps described in section 1.1. Chapter 2
discusses license plate detection and segmentation algorithms. Chapter 3 goes over
the experimentations and results. Chapter 4 discusses optical character recognition
and its implementation and results. Chapter 5 discusses the identified limitations
and the last chapter, chapter 6 talks about the android application design.

Chapter 2

Localisation Basics

This chapter briefly recalls some basics of image processing and analysis as used in this
report, it reviews the license plate detection and segmentation (i.e. into characters) subjects,
and outlines the approach followed in this project.

2.1 Image Processing Basics

In this section I will briefly recall basics of image processing as of relevance for my
project.

Histogram. A histogram of an image shows tabulated frequencies of image pixel
values. See Fig. 2.1 for an example. A histogram gives useful information about the
tonal distribution in an image. This information can be used to adjust an image
accordingly. Contrast and exposure adjustment are some examples of using a his-
togram. In computer vision a histogram is a compelling tool for image analysis.
The tabulated frequencies can be studied in several ways to help with certain prob-
lems. For example, a histogram can be studied for pattern recognition and image
segmentation. For pattern recognition a histogram helps because patterns can be
easily identified in the tabulated frequencies. For image segmentation an image can
be segmented by finding high or low areas of contrast through the image histogram.
A histogram has several other applications and in section 2.2 we will see a few of
them in use.

Horizontal and Vertical Projection Histograms. The horizontal and vertical pro-
jections are simple histograms concerned with calculating the number of pixels (of
some intensity) in each row and column of an image.This technique is useful for im-
age segmentation. Please note that horizontal and vertical projections are different
to normal image histograms.

Connected Component Analysis (CCA). CCA also known as blob extraction is a
very useful and an essential technique used to find objects in an image. The method

6 2. Localisation Basics

More Pixels

Less Pixels

Black tonal accle White tonal

gray tonal +——»

value
value

value

Figure 2.1: Example of an image histogram [2].

simply scans an image looking for regions of pixels that have similar intensities [1].
The detected regions are known as connected components or blobs. The blobs have
several useful properties such as area, shape and location. Due to these properties
the blobs can be processed and recognised as a certain object and then be easily
extracted out of the image. However, the downside of CCA is that it can not detect
specific objects on its own. This is because CCA is only able to detect objects that
have some form of pixel connectivity (such as similar pixel intensities). Therefore,
using the CCA method requires major pre-processing as well as post-processing to
be able to recognise and extract objects. In the case of license plate detection, CCA
is a popular technique. This is because a license plate forms into a simple rectilinear
shape which CCA can detect easily if pre-processing is done correctly. In the next
section we will see examples of CCA in use.

Kernel. A kernel is typically a small matrix of numbers. It is used in image con-
volutions [3]. An image convolution is a simple process of multiplying two matrices
and producing an output matrix. The two matrices are the input image and the ker-
nel. The kernel can be used to have different set of values to produce different effects
for the input image. Kernels are fundemental in image processing and several filters
and operators make use of them[3]. See Fig. 2.3 for an example of a kernel.

Basic Edge Detection. Edges are important features in an image, which are used
for image analysis purposes. Edge detection applies mathematical methods to iden-
tify pixels at brightness discontinuities. Such pixels define edges. Edge detection
is an example of feature detection. There are a number of edge detectors in image
processing but I will only briefly explain the Sobel operator and the Canny edge

2.1. Image Processing Basics 7

Figure 2.2: Left: Grey-level input image. Right: Result after applying the Sobel oper-
ator.

detector.

Sobel Operator. The Sobel operator is a discrete differentiation operator [4]. It de-
tects edges by finding the approximate absolute gradient magnitude at each point
of an input grayscale image. The sobel operator is applied by using the two kernels
shown in Fig. 2.3. The two kernels are applied seperately at each pixel and their re-
sults are combined to compute the approximate absolute gradient magnitude. Ap-
plying the kernels seperately also means that seperate gradient measurements for
vertical and horizontal edges can also be produced [5].

The value of the Sobel operator at pixel location (x,y) is simply a first-order
partial derivative calculation, and therefore equals [6]:

S(x,y) = |Sz(2,y)| + |Sy(z,y)] 2.1)

Canny Operator. The Canny operator detects edges and produces thin edge seg-
ments as the final output. The thin edge segments only have a width of one pixel [7].
The operator goes through multiple stages to process an image. An image is firstly
converted into grayscale, then it is smoothed by Gaussian smoothing. An operator
such as Roberts Cross or Sobel is then applied to the image to provide estimates of the
edges. The next step known as non-maxima suppression tracks along the ridges of the
estimated edges and thins them by setting pixels that are not part of the ridge to 0.
The tracking process makes use of two thresholds 7} and 7> where T is greater than
T3. The tracking begins on a ridge at a pixel with a value greater than 7). Tracking
stops when a pixel with a value less than T is found.This process applies hysteresis
with the use of the two thresholds. This means the outcome of a pixel is not only de-

8 2. Localisation Basics

-110 |1 -1{-2|-1
=21 0 [2|/1 00 0]/
-1 0 |1 If2]1

Figure 2.3: Kernels of the Sobel operator [6]. Left: S . Right: S,,.

cided by the previous tracked pixel value, but pixels before that are also considered
[7][8].

Hough Line Transform. Hough line transform is a technique which is used to
detect straight lines. The standard Hough line transform expresses lines in the polar
system. These lines are given by equation 2.2.

r=wxcosf + ysinb (2.2)

In the equation 2.2 r is the length (distance to origin) of the line in the interval [0,
T'maz] With 7,45 as given in 2.3 [9]. The 6 is the angle of the line with respect to the
x-axis, in the interval [0, 27). Using some point from an image with the equation 2.2
produces sinusoid curves. Lines can be detected when the curves for all points in an
image are produced and analyzed for intersections. This is because the intersections
between the curves suggest the points of the possible lines. Therefore, in general
standard Hough line transform detects lines by counting the number of intersections
in the curves produced by each point in the image[9] [10] [11].

Tmaw = A/ N2, + N2

cols rows

(2.3)

Spatial Domain. The spatial domain is the normal image space. If an image is
projected to some scene and changes are made to the image, the changes will di-
rectly project to the scene. This means that distances in the image correspond to real
distances in the scene [12].

Discrete Fourier Transform. A Fourier transform decomposes an image into sine
and cosine components. It is used to convert images in the spatial domain into the
Fourier domain. Hence, the Fourier domain consists of the output transformed im-
age. Points in the Fourier domain image represent certain frequencies in the spatial
domain image. A discrete Fourier transform is a sampled Fourier transform. There-
fore, not all frequencies from the spatial domain image are taken for the transforma-

2.1. Image Processing Basics 9

tion. The sample taken is just large enough to represent the entire spatial domain
image. This type of transform has several applications in image processing. One
main reason for using this transform is to be able to study the geometric character-
istics of a spatial domain image [13].

Discrete Wavelet Transform. A discrete wavelet transform is an alternative to the
Fourier transform.

Gaussian Smoothing Operator. Gaussian smoothing operator is an essential and
widely used operator in image processing. It is used to blur images. The purpose
of blurring is to reduce extra details and noise. The Gaussian smoothing operator
works by applying a special kernel filter. This kernel is defined by the samples of
the 2D Gauss function which is the product of two 1D Gauss functions. The Gauss
function is defined as in equation 2.4.

1 @—pa)®+(y—py)*

X e 202 (2.4)

Gy (@9) = 5
Where ¢ is the standard deviation and 1, and g, are the expected values for =
and y [14].

Structuring Element. A structuring element is very similar to a kernel. It is
basically a matrix of binary values. The difference between a structuring element
and a kernel is that structuring elements are used for morphological operations, not
for image convolution. The structuring element has the properties of size, shape and
origin. The size of the structuring element is given by the dimension of the matrix,
the shape is given by the pattern of ones and zeros in the matrix and the origin is
usually a pixel within the matrix such as the center pixel [15]. When the structuring
element is applied to an image it compares its pixel values with the corresponding
pixel values of the image. The result depends on the type of operation being applied.
A structuring element is said to be fitting when all its values are exactly the same as
the underlying image pixels. It is said to be hitting if at least one of its values are the
same [15].

Morphological Operations. Morphological operations are used to process an
image based on its shapes or morphology of its features. The operations are espe-
cially suited to work with binary images. All morphological operations are applied
by using a structuring element. Following will be an overview of some of the types
of morphological operations.

Erosion. Erosion is a very basic morphological operation that erodes away the
foreground pixels. The effect of erosion shrinks or reduces the regions (i.e. objects)
in the foreground. This means the background grows, holes and gaps between re-

10 2. Localisation Basics

gions become larger. Small details and noise is also eliminated. In erosion, for a
pixel to be eroded the structuring element must fit the underlying image pixels.

Dilation. Dilation is another very basic morphological operation which works
completely opposite to erosion. Dilation increases the foreground pixels. Hence, the
effect of dilation grows or expands the regions (i.e. objects) in the foreground. The
background reduces, holes and gaps between regions become smaller. In dilation
for a pixel to be dilated the structuring element only has to hit the underlying image
pixels [15].

Opening. The opening operation is a composite function. It is simply an erosion
operation followed by a dilation operation. It helps open up gaps between regions
by eliminating thin pixel connections [15].

Closing. Similar to the opening operation, the closing operation is also a com-
posite function. Closing however is a dilation operation followed by an erosion
operation. It helps close up gaps between regions by adding pixels in small gaps
[15].

Thinning. Thinning in image processing is a morphological operation that sim-
plifies images by producing very thin curves of the input image. The operation
works on binary images and produces binary images as output. The thinning oper-
ation is also applied to an image by using a structuring element.

Thresholding. In image processing the simplest method of image segmentation
is thresholding. Thresholding on grayscale images produces binary images. There
are several methods to thresholding an image, here I will only give an overview
of basic binary thresholding and also Otsu’s thresholding performed on grayscale
images.

Binary thresholding. Sets the pixels to zero if the value of the current pixel is less
than a given threshold. If the value of the current pixel is greater than the selected
threshold the pixel’s value is set to a maximum value such as 255.

Otsu’s Binarization. Otsu binarization assumes the image consists of two classes
of pixels, the foreground (object) and the background. Otsu’s method calculates
the optimal threshold of the image by separating the two classes of pixels. The
selected threshold maximizes the intra-class variance [16]. The method works by
the formula shown in equation 2.5, where o7 is the intra-class variance, P; and P,
are class probabilities and p; and o are the means of the object and background
classes respectively [16]. See Fig. 2.4.

oy = P1* Pa(p1 — pia)? (2.5)

2.2. Methods for License Plate Detection 11

| PJZ 221 SuREE P)7 2218

E—— ==y ¢ oy

Figure 2.4: Example of Otsu binarization. Left: Original image [25]. Right: Result of
Otsu’s binarization.

2.2 Methods for License Plate Detection

The first step in the license plate reading system is license plate detection. In this
section I will give an overview of different methods of license plate detection.

Method 1. [17] employs two different methods using CCA to detect license
plates. The first method works by using prior knowledge of license plates. De-
tecting of a white frame is carried out by using CCA and some candidate frames are
collected. Then a few steps are taken to validate if a certain region is a license plate.
The second method is used when the first method is not able to detect a license plate.
The second method works by searching for large numerals or characters in the im-
age seqeunce. This search is also carried out by using CCA. Candidate regions are
collected and are classified as characters based on prior knowledge. This includes
the properties of the characters such as their average area and average distance be-
tween each character on a license plate. The success rate of this algorithm reported
in [17] is 97.16%.

Method 2. The approach taken by [18] to detect license plates involves thresh-
olding and analysis of black to white pixel transitions. [18]’s method firstly applies
a threshold of 170 to the input image. This threshold value is predetermined from
experimentations with their particular scenario. Then some additional thresholding
is again performed to remove further unwanted data. This additional thresholding
is done through an analysis of black to white pixel transitions. The focus is to count
the number of transitions in each row of the remaining data. If the count is less than
14 for any row, the pixels in the row are all set to 0 (i.e. black). The count of 14

12 2. Localisation Basics

transitions is calculated through the assumption that each license plate has at least 7
characters. The additional thresholding results in the license plate being somewhere
in between completely black rows. To complete the localisation the remaining data
is searched for the longest vertical line of white pixels. This means that when search-
ing the image from left to right, the first longest vertical line of white pixels is the
left edge of the license plate. Similarly the last longest vertical line of white pixels is
the right edge of the license plate. By finding the vertical lines there is enough infor-
mation gathered to extract out the license plate. Some checks regarding the aspect
ratio are also performed for more accuracy.

Method 3. [19] detects license plates by studying the variance of the input im-
age. A few pre-processing steps are taken to reduce noise and increase contrast
before localisation. Sobel edge detection is performed on the image and the image
is split into 25 blocks each of the same size. The size ofcourse is large enough to fit
a license plate. Variance in each block is calculated and a threshold variance value
is obtained by the simple formula V;;, = (Vines + Vinin)/2, where V' is variance.
Each block is then compared with the obtained threshold variance value. Any block
below the threshold variance is removed. Hough line transform is performed on
the remaining blocks to remove any unnesscary long lines. The last step consists of
some morphological operations and CCA to extract out the license plate from the
remaining blocks.

Method 4. In [20] the approach to detecting license plates is mainly concerned
with the sobel filter and CCA. After some pre-processing of the input image a ver-
tical sobel filter is applied to the image. The gradient of the filtered image is ob-
tained for the purpose of validating the possible license plate regions. The fil-
tered image is then thresholded using Otsu’s binarization and analyzed using CCA.
Hence the candidate regions are extracted and validated through the formula S¢ =
w1 X S@rad + W2 X SRatio +W3 X Sshape +Wa X SGTrack. Where S¢ is the sum of priors
including the gradient, aspect ratio, shape and tracking criterion for the candidate.
The candidate which has the best value of S¢ is processed and the rest are stored
for future considerations.

Method 5. [21] uses discrete wavelet transform with a sliding window to de-
tect license plates. Firstly, a grayscale image is transformed by using a 1-level 5/3
discrete wavelet transform (DWT). The HL and LH subbands are used to locate the
license plate as they provide vertical and horizontal information about the image.
Using the HL subband a histogram of heights of all vertical lines is calculated. This
is followed by calculating the average of the heights. Then noise in the HL subband
is reduced by removing any vertical lines that are too long or below the average line
height. The next step reduces noise in the LH subband. This is done by calculating

2.3. Methods for Segmenting License Plates 13

the average of the coefficients in the LH subband and then removing all coefficients
below this average. Then a transition analysis is carried out in the HL subband to
give an approximate location of the license plate. Along with this step the LH sub-
band is also scanned for horizontal lines to provide a more accurate approximation.
These steps result in a detected candidate region. Since the candidate region is only
an approximation further processing is required. A block around the candidate re-
gion is created to be sure that the entire license plate is inside this area (i.e. the
block’s area). Then to finalize the detection a sliding window is applied within the
block. The sliding window is created to have an average size of a license plate. The
last step of this process is to convert the HL frequency domain back to the spatial
domain. [21] has reported this method to have a success rate of 97.33%. The success
rate is obtained from testing the algorithm on 292 images.

2.3 Methods for Segmenting License Plates

After a license plate has been successfully detected, the next step is segmentation.
Segmentation is performed to seperate and extract each character out from the li-
cense plate. This step is crucial because character recognition algorithms depend on
the quality of license plate segmentation. The segmentation process can be challeng-
ing in most cases. This is because most real world situations result in license plate
images that are either tilted or out of perspective. The different types of illumination
and noise also needs to be considered. Therefore, for license plates to be segmented
correctly the process must first deal with these problems. Following are different
proposed methods of license plate segmentation.

Method 1. [17]'s segmentation process starts by resizing all detected plates to
100 x 200 pixels. The next steps are taken to correct the horizontal tilt. They use
CCA to find large numerals in the license plate and find the center point of each
detected numeral. Then calculating of the tilt angle between two central points is
done and the average tilt angle is obtained. Using the average tilt angle a 2d rotation
method is applied to horizontally correct the license plate. To fix the vertical slant
of the license plate the area of the large numerals is extracted. The width of the
horizontal projection is calculated from the extraction. Then the extracted area is
rotated from —45° to 45° while the projection value and rotation angle is recorded.
The projection minimum is found from the projection data and it is used to correct
the vertical slant. The correction method used is the horizontal pixel movement
method. This method basically shifts pixels horizontally according to the formula
in equation 2.6. Where d is the distance each pixel moves horizontally, = and y are
the pixel coordinates, H is the height of the image and (is the vertical slant angle.

14 2. Localisation Basics

de = (y — 3 H)/ tan(0) 2.6)

After the license plate has been put into correct perspective, it is processed to
enhance its contrast. To do this [17] uses a modified version of the gray statistical
approach (GSA). Details of this GSA are omitted here. Once the enhancement has
been complete, the plate is binarized using an improved bersen binarization algo-
rithm. Lastly, the simple projection technique is used to segment the license plate
into seperate characters.

Method 2. [20]'s approach to segmentation is CCA. CCA is applied to the license
plate and prior knowledge is used to extract the character. The main priors include
linearity, parallelism and the distance between characters. The tilt of the license
plate is corrected by using metric rectification. The details of the algorithm are not
provided in [20] but the basic idea provides sufficient information on how it works.

Method 3. [22] uses vertical and horizontal projections to segment the license
plate. The difference in their approach from other papers that use projections, is in
the pre-processing of the license plate. They use an object enhancement algorithm to
enhance the license plate characters. The effect of the object enhancement algorithm
weakens background pixels while strenghening the foreground pixels. [22] estimate
that 20% of the license plate image are character pixels. The goal is to enhance these
pixels which in their object enhancement algorithm takes two steps. The first step is
to scale the gray level of all pixels into the range of 0 to 100. Then second step sorts
all the pixels by their gray level in a descending order and multiplies the top 20%
of the pixels by 2.55. This way the object pixels are enhanced whereas background
pixels remain weak. From this enhancement the characters can be more accurately
segmented using the projection method.

Other Methods. Other popular methods include using hough line transform for
tilt correction and connected component analysis to extract out the characters.

24 Selected Approach

In this section I will discuss my selected method of license plate detection and how
it works.

License Plate Localisation. My approach to license plate detection is somewhat
similar to the approach in [20]. My approach however involves mathematical mor-
phology. In the following I will go over the steps taken in my approach to detect
license plates.

2.4. Selected Approach 15

Step 1. My algorithm starts off with an input image which is firstly converted to
grayscale. Since all images consist of some form of noise, the focus of this step is to
reduce noise and smoothen the image. This is necessary as it improves the results of
further processing on the image. Therefore, to reduce noise I apply a 5 x 5 gaussian
blur to the image.

Step 2. In this step I process the image to detect edges. To do this I use the So-
bel operator. License plate characters have more dominant and meaningful vertical
edges in comparsion to horizontal edges. Hence, I apply the Sobel operator in the
vertical direction. This means d, is set to 1 whereas d, is set to 0 (i.e. kept as a con-
stant). The kernel size I used is 3 x 3. Note that the gaussian blur applied in step 1
also helps this step of edge detection.

Step 3. After edge detection I apply a closing morphological operation to the
image. The closing operation helps dilate white regions as well as erode away small
unwanted details. The structuring element used to apply this operation is given a
similar aspect ratio to a license plate. This is so the resulting image produces recti-
linear shapes (i.e. like the shape of a license plate). Once this is done one can realise
grayscale information is no longer required. Therefore to simplify the image I pro-
cess it using Otsu’s binarization. When the binary image is obtained I apply two
more morphological operations. These are an erosion operation followed by a dila-
tion operation. One could simply apply an opening operation but the structuring
element will then have to be the same for both operations. For my approach I re-
quire two different structuring elements so the opening operation on its own would
not work. For erosion I use a structuring element of a size slightly larger than the
one used for the closing operation. Using erosion again further helps in removing
shapes that are too small to be a license plate. It also helps break apart large shapes
which may contain the license plate (i.e. due to the application of these morpho-
logical operations the license plate may sometimes join into other objects). Then for
dilation I use a larger and more square shaped structuring element. There are two
reasons I applied dilation after the erosion operation. First reason is to simply bring
back important removed information. For example, a license plate may already be
in perfect shape but by applying erosion it may lose its shape. This is where dila-
tion can be used to recover the shape. The second reason is because I needed the
remaining shapes to gain more area around them. This is because if some shape is
eventually a license plate it should cover as much of the license plate as possible.
This reason also explains why I used a larger structuring element for dilation.

Step 4. By the end of step 3 an image of several regions which may consist of a
license plate is produced. The focus in this step is to extract out regions which are
most likely to be license plates. To do this I have used connected component analysis

16 2. Localisation Basics

(CCA). Firstly I calculate the minimum rectangular area for each region from which
I obtain rectangles that represent each region. Then I compare the properties of the
rectangles to the properties of a license plate. Based on the comparison I eliminate
regions which are unlikely to be a license plate. The properties I use to determine if
aregion is a license plate or not include the area, the angle and the aspect ratio of an
average license plate. If the area of a rectangle is either too big or too small the cor-
responding region is ignored. If the angle of a rectangle suggests the corresponding
region is tilted too much (e.g. 75°), then that region is also ignored. Lastly, if the
aspect ratio of a rectangle is quite different from a license plate’s aspect ratio then
that region is also ignored. In the end regions that correctly meet the properties of a
license plate are extracted from the original grayscale image using CCA.

License Plate Validation. License plate validation is a process of validating im-
ages as a license plate. In this case these images are the candidate regions extracted
in the localisation process. My approach to validate a region as a license plate in-
volves running a simple test. The candidate region must pass this test in order to be
classified as a license plate. This test is derived from [17].

Validation Test. A candidate region must contain at least two same or similar
sized rectangles. I use this condition for validation because all characters on a license
plate have the same width and height. If two similar sized rectangles are found then
they are most likely to be license plate characters. On average license plates have at
least five characters which means two characters should be detected if the candidate
region is a license plate. Once such rectangles are detected, I calculate the center
points of the rectangles. I then check if the center points lie in sensible positions to
be considered as license plate characters. In the end the test has two conditions that
must pass. The first [have already mentioned, and the second condition is that the
candidate region must have a character sized rectangle somewhere near the center.
To check this I again make use of the calculated center points.

On-going Validation. Apart from the validation test, the candidate regions are
tested throughout the segmentation process to ensure they are in fact license plates.
The segmentation algorithm is discussed in the next subsection.

License Plate Tilt Correction. The next step after validation is to correct any un-
desired tilt that the license plates may have. This is part of the segmentation algo-
rithm (the segmenetation algorithm actually starts here). Once again I was inspired
by [17]. Therefore, my approach is very similar but not exactly the same. To fix the
tilt I simply gather all the calculated center points from the validation process and
sort them in an ascending order according to their = coordinates. After sorting the
center points I calculate the tilt angle of the license plate using the function available

2.4. Selected Approach 17

in OpenCV. See equation 2.7, where cvFastArctan is a function that takes in a « and
y value and calculates the associated angle. The provided z value is the absolute
difference between the = coordinates of the lowest and highest center points (with
respect to z). Similarly, the provided y value is the absolute difference between the
y coordinates of the lowest and highest center points (with respect to y). Once the
angle is found, I use a 2d rotation matrix to rotate the license plate accordingly.

angle = cvFastArctan(||yaifr|ls |1xaisrl); (2.7)

License Plate Pre-processing. Pre-processing the license plates is required to get
better results during character segmentation. License plates not pre-processed will
have noise and other undesired conditions that may produce incorrect segmented
characters. The main focus of this pre-processing is to cleanly convert the license
plates into a binary image. The first step is to reduce noise. For this I apply a 3 x 3
gaussian blur to the license plate image. Then I use a simple contrast enhancement
method to give more dominance to the darker pixels in the region. I do this to make
the characters more dominant. This approach is similar to the object enhancement
algorithm described in [22]. The contrast enhancement I apply is given by the for-
mula in equation 2.8.

Yy = [(2,y) + P (2.8)

Where g is the output and f is the input. « and § are the gain and bias which
are known to control the contrast and brightness. I have predefined « as 2 and /3
as —100. I obtained these values through experimentations with different license
plates. Finally to convert the candidate regions into a binary image I use Otsu’s
binarization as I did in the localisation process.

Character Extraction. This is the last stage of the segmentation algorithm. This
step simply involves using connected component analysis to extract the characters
out of the license plate. This is so that they can be processed individually dur-
ing the character recognition algorithm. Due to the way I designed the character
recognition algorithm, this step is not carried out in the segmentation algorithm.
The characters are extracted, processed and recognized one by one in the character
recognition algorithm itself.

Chapter 3
Localisation and Segmentation Experiments

This chapter goes through the license plate detection and segmentation experiments.

3.1 Experiments

In this section I will discuss and present results from the experiments done using
the license plate detection and segmentation algorithms. All images used for these
experiments are personally taken by me (except one which was provided to me
by Snaplnspect). All images have a high resolution of 3264x2448. All figures are
displayed below the following subsections.

Discussion of Detection Experiments. The outcome from the detection experi-
ments suggests that the detection success rate is high. Figure 3.1 is a sample from
the actual project scenario. Figures 3.2, 3.3, 3.4, 3.7, 3.8 and 3.9 are images taken in a
similar scenario to the actual project scenario. The other images are taken in differ-
ent scenarios to test the detection algorithm in various situations. I will first discuss
the experiments done on frontal views of cars. In Fig. 3.1 it can be seen that all 3
license plates have been detected. Other detected regions in the image are false pos-
itives. The false positives are dealt with during the license plate validation process.
Similarly, in figures 3.2, 3.3 and 3.4 all license plates are detected correctly. Even sit-
uations where there is high exposure to sunlight the detections are still successful.
See Fig. 3.4. However, problems do occur when distance of license plates from the
camera is changed. From the experiments I found that license plates closer to the
camera fail to be detected correctly. The experiments suggest that the detection al-
gorithm has a limitation of only optimally working on a certain range of distances.
See chapter 5 for more details on the limitations. In figures 3.5 and 3.6 the detec-
tions fail if no alteration to the algorithm is done. Detection is only successful if the
algorithm is adjusted to support the new distances. See figures 3.5 and 3.6.

The system is mainly focused for frontal views of parked cars. This is due to
the nature of the given project scenario. However, a few tests were also considered

20 3. Localisation and Segmentation Experiments

using tilted views of parked cars. Figures 3.7, 3.8 and 3.9 show successful detec-
tions of license plates from a tilted view of the camera. Just as in frontal views, the
detections begin to misbehave when the distance of the camera is changed. The al-
gorithm once again has to be adjusted to support the new distances. In figures 3.10
and 3.11 it can be seen that the detections are successful after the algorithm has been
altered. One important aspect to notice is that the detections are still not completely
as accurate as for images further away from the camera. The detections consist of
extra information that is not associated with the plates (i.e. noise). The reason for
this may be due to the various angles that are present in the images. See figures 3.10
and 3.11.

Discussion of Segmentation Experiments. Segmentation experiments also pro-
duced good results. I tested the segmentation algorithm on several license plates
that were detected using the detection algorithm. The experiments were firstly car-
ried out on frontal view license plates as they have a higher priority. Plates with a
range of tilt angles were used in the experiments. Plates with no or very minimal
tilt were also considered to ensure the algorithm only fixes tilt on plates that require
it. The sample of plates also included plates in different lighting conditions. Some
plates were under ideal lighting, whereas others were under poor lighting condi-
tions (e.g. very bright or dark). Different plate sizes were also used, some of which
were detections closer to the camera. See Fig. 3.12 which shows a collection of such
frontal view license plates before the segmentation algorithm is applied. Figure 3.13
shows the results of applying the segmentation algorithm on the plates in Fig. 3.12.
As it can be seen the tilt of all plates in Fig. 3.12 was corrected successfully. From
the experiments I understood that the segmentation algorithm would only fail if the
detected license plate was dirty or there was some other form of noise around the
license plate characters.

I also carried out some experiments on the detections from tilted views. The
segmentation algorithm again produced good results. However, a limitation in the
algorithm was identified. Even though the tilt of the plates was corrected, the per-
spective of the characters was not. See Fig. 3.14. This limitation increases the chance
of poor character extraction and character recognition. Details of this limitation are
discussed in chapter 5. The last two license plates in Fig. 3.14 illustrate an example
of characters out of perspective.

Results and Overall Performance. Overall the detection and segmentation al-
gorithms performed well, especially in conditions that matched the given project
scenario. The major advantage of the detection algorithm was that it was able to
detect several plates in one execution. This makes the algorithm very efficient in
comparison to other methods. The detection algorithm was also robust to different

3.1. Experiments 21

lighting conditions. Similarly, the segmentation algorithm was robust to different
lighting conditions as well as various tilt angles and plate sizes.

However, there were a couple of identified limitations which need to be ad-
dressed. From the experimentations it was evident that the detection algorithm
works best only for a certain range of distances and the segmentation algorithm
lacks the perspective correction feature.

To evaluate the performance of the algorithms I only considered images that
matched the given project scenario. The detection algorithm was tested on 13 im-
ages, which consisted of in total 45 license plates (from 45 parked cars). Please note
that the license plates were not all different in each image. For the purpose of testing
it was not important for the license plates to be different in every sample. What was
important however was the different conditions and situations the images are taken
in. The sample of 13 images covers different conditions (i.e. such as lighting) and
situations (i.e. such as number of cars parked and how they are parked). The seg-
mentation algorithm was tested on 11 license plates images. In both tests the sample
size was rather low. This was due to the lack of test data. I was only able to take a
few images on my own and SnapInspect could also not supply test data as it was
planned. Either way the results were obtained using the samples mentioned earlier.
See table 3.1 which shows the results of the experiments.

Algorithm Sample Size || Success Rate
Detection 45 100%
Segmentation 11 100%
Overall 56 100%

Table 3.1: Experimental Results.

The experimental results in table 3.1 show that algorithms have an overall suc-
cess rate of 100%. This is obviously very optimistic and unreal. The clear reason for
this is the low sample size. Apart from that, by looking at the results I can conclude
the algorithms will produce high success rates in real life situations.

Run times. The average run time for the detection algorithm was 2.6 seconds.
This was regardless of how many plates were detected. The average run time for
the segmentation algorithm was 0.31 seconds. This run time was for segmenting a
single license plate. These run times are very good especially considering the project
scenario, where the algorithms will only run once every 5 minutes.

22 3. Localisation and Segmentation Experiments

Figure 3.1: Successful detections from actual project scenario.

Figure 3.2: Succesful multiple plate detections.

3.1. Experiments 23

Figure 3.3: More successful detections.

Figure 3.4: Successful detections with high exposure to sunlight.

24 3. Localisation and Segmentation Experiments

Figure 3.5: Detection of plate closer to the camera once algorithm is altered.

Figure 3.6: Another detection of plate closer to the camera.

3.1. Experiments 25

Figure 3.7: Tilted view detection.

Figure 3.8: Tilted view detection.

26 3. Localisation and Segmentation Experiments

Figure 3.9: Tilted view detection.

Figure 3.10: Tilted view detection.

3.1. Experiments

27

Figure 3.12: Frontal view plates before tilt correction.

28 3. Localisation and Segmentation Experiments

IDSE957111GLT61611
ECL46
E GPH44 [TFJFS21

ITKWZ‘?IITJNII

Figure 3.13: Plates tilt corrected and ready for char

[ECC4E: | ECL4E
ESE |EH 309!

FWEBDA

FHEBS4

Figure 3.14: Left: Tilted view plates. Right: Tilt corrected, ready for extraction

Chapter 4

Reading of Plates

This chapter informs about different methods of character recognition as well as my approach
to character recognition. The last section of this chapter discusses an alternative to character
recognition.

4.1 Optical Character Recognition

Character recognition is the final stage of the license plate recognition system. In this
stage the license plate characters are read and are used according to the purpose of
the system. For this project, results of character recognition are just stored so they
can be used for future reference. Before discussing my approach, in this section I
will overview methods of character recognition from which I was inspired.

Method 1. [19] uses the very common method for character recognition; tem-
plate matching. [19] first creates templates using prior knowlegde of license plate
characters. They give each template a size of 42x24 pixels for uniformity. Then they
put the templates into categories according to the number of holes in the charac-
ters. To recognize how many holes a certain character (whether it is a template or
a segmented character region) has, [19] makes use of Euler numbers. Connected
component analysis is used to obtain the Euler numbers. Characters without holes
are given Euler number F, = 1 and all since odd indexed Euler numbers are zero,
characters with one hole are given Euler number E; = 0. The last set of characters
with two holes are given Euler number E; = —1. Before carrying out the match-
ing [19] binarizes all the templates and all the segmented character regions. Then all
segmented character regions are resized to 42x24 pixels and matched with templates
that have the same number of holes. The method of template matching used by [19]
is calculating of the correlation coefficient between the template and the segmented
character region. The template which gives best correlation results is selected as the
recognized character.

30 4. Reading of Plates

Group 1:
4,6,9,AP

l

third 1 < third 3

4,94 6,A,P

Figure 4.1: Decision making based on pixel concentration analysis [18].

Method 2. [22] also uses template matching but not in the same way as [19].
[22] uses 10 samples of each character to create templates. The process of creating
the templates starts with an empty template (i.e. a matrix with all values set to zero).
Then using each sample of a certain character, addition of white pixels is done into
empty template. So wherever there is a white pixel in the sample, a value of 1 is
added to the corresponding position of the empty template. This way a template
is created with the weight (sum) of all white pixels from the samples of a certain
character. The matching process is similar to the creating of the templates. Each
segmented character region is matched pixelwise with the templates. A score is cal-
culated according to the number of matched pixels. The score is incremented by 1
for every match and decremented by 1 for every mismatch. The template which
produces the highest score is selected as the recognized character.

Method 3. [18] recognizes characters by testing the segmented character re-
gions with several conditions. The first condition is based on how many end points
a region as. Before finding the end points [18] makes use of a thinning algorithm to
thin the regions to only 1 pixel thin. Thinning is important as it makes the process
of finding the end points much simpler. The end points are then found by doing a
pixelwise search. The algorithm moves on to the next condition only considering
results that have the same number of end points as found for the region. The other
conditions are based on how the pixels are distributed in the region. Such condi-
tions are tested repeatedly until only one outcome is possible. Pixel distribution in

4.2. Chosen Method 31

Vector-contour (VC)
1

start point 1-i
1-i

£ S

elementary vector \7 -1
(EV) S s
4 -1+i
contour pixels i
1+

Figure 4.2: Vector-contour from thinned templates [23].

the regions is analyzed by dividing the regions into parts (i.e. into thirds or ninths).
Pixel concentration in each part is calculated and decisions are made concerning the
next condition. Prior knowlegde of the characters is used along with the pixel con-
centration calculations to determine the outcome of a condition. Once all relevant
conditions are evaluated only one outcome remains and that outcome is selected as
the recognized character. See Fig. 4.1.

Method 4. [23] uses a unique method of template matching and pixelwise con-
tour analysis to recognize characters. [23] starts with templates based on prior
knowledge. Then the templates are thinned to 1 pixel thin similar to [18]'s ap-
proach. For every pixel in the thinned templates, positions of neighbouring pixels
are recorded into a vector-contour. See Fig. 4.2. The segmented character regions are
then matched with every recorded vector-contour. If a segmented character region
results to be a scalar multiple of a certain vector-contour, the template associated
with the vector-contour is selected as the recognized character.

4.2 Chosen Method

In this section I will discuss my selected method of reading the license plate charac-
ters and how it works.

32 4. Reading of Plates

Optical Character Recognition (OCR). My approach to character recognition is
very simple but effective. The process involves template matching with the use of
a bitwise operation. This is a method I am proposing myself with inspiration and
ideas from the research I did. In the following I will go over the steps taken in my
approach to recognize license plate characters.

Step 1. This step is actually carried out when the application first starts. In this
step all the necessary templates are loaded into the application and are also pre-
processed so they are ready to be used. I load the templates into the application in
the start so unnecessary file reading does not occur. All templates are obtained from
[24]. Each template has a size of 23x48. The pre-processing of the templates involves
some simple binary thresholding and inverting. To all the template characters I
apply a binary threshold with values 127 and 255 as the minimum and maximum
respectively. The template characters are then inverted as it is required for the later
steps. For better results and simplification I arranged the templates into 3 categories
as done by [19]. These categories are no holes, one hole and two holes. The no holes
category contains all the characters that have no holes such as the letters C, E, F, G,
H and so on. Similarly, the one hole and two holes categories include characters such
as O, P, B and other characters containing holes. Dividing the characters into these
categories helps simplify the process of template matching and it also improves the
efficiency of the algorithm. This is because it will reduce the number of times a
segmented character region (SCR) is matched to a template. In other words, it will
not be required to compare the SCRs to every template during the matching phase
(i.e.SCRs will only be matched with templates that have the same number of holes).

Step 2. The character recognition algorithm starts with applying an Otsu thresh-
old to the cropped license plate obtained from the previous tilt correction algorithm.
The license plate is also inverted (i.e. from black on white to white on black) during
the Otsu thresholding. The inversion is required so that in the next step only the
characters are detected as contours and not the background.

Step 3. In this step I start segmenting the cropped license plate into charac-
ters and putting the characters into categories that I mentioned in step 1. Only one
character is processed at one time. To segment the license plate and categorize the
characters I find contours and then process each contour individually. Only con-
tours that have certain properties (e.g. area or position) are considered as there can
still be some regions in the license plate which are not characters. Whenever a cor-
rect contour is found the algorithm proceeds by counting the number of holes and
switching to the right category to perform template matching.

4.2. Chosen Method 33

AND

Figure 4.3: Left: Segmented character region “T”. Center: Template for letter “E”.
Right: Result of AND operation.

Step 4. Before a SCR is matched with a template I resize it to a size of 23x48. This
is so both the template and the SCR have the same size. As mentioned earlier, the
method I use to perform template matching is something I am proposing myself.
This method I propose uses a logical AND bitwise operation between the SCR and
the template. Before stating the purpose of this bitwise operation I will recall how
the logical AND works.

100111 AND 111010 = 100010 (4.1)

The logical AND bitwise operator is applied to binary values. The operator re-
turns true (or a one in binary terms) wherever it finds two ones in the same position
of the two input binary values as shown in equation 4.1. This function will work
well for template matching because essentially the SCRs and the templates are just
binary values. This is due to the thresholding that is applied to them beforehand.
Therefore, using this operator I can count how many of the pixels match between a
SCR and a certain template. Then the template which matches the best can be con-
cluded as the recognized character. So to recognize the characters I apply the AND
operator using the SCRs and the templates as the two input binary values. The out-
put produced is a matrix of binary values containing the value one at pixel locations
that matched and containing the value zero at pixel locations that did not match (See
Fig. 4.3). Let this matrix equal AM.

Step 5. In this step I select the best match from the template matching for the
SCRs. 1 first calculate the number of non-zeros in the template, in the SCR and in

34 4. Reading of Plates

AND =

Figure 4.4: Example of problem faced using AND operator. Letter ‘L’ detected as an
‘E.

the matrix produced by the AND operator. Let these values equal to zt, zc and za
respectively. Then I calculate the differences as shown in equations 4.2 and 4.3. To
explain the purpose and use of the two differences I will demonstrate how the letter
‘L’ would be recognized using my algorithm.

dif fOne = ||zc — zal| (4.2)

dif fTwo = ||zt — za| (4.3)

The letter ‘L’ would fall in the category of 1o holes and then will be matched with
all the templates in that category using the AND operator. At times it would turn
out that the letter ‘E’ is the best match for ‘L’ because ‘L’ can be created using the
pixels in the template for ‘E’. See Fig. 4.4. Since the letter ‘E’ can cover all of ‘L” a
cross check must be done on the match using the matrix AM for both the template
and the SCR. This is where the calculation of the two differences shown in 4.2 and
4.3 are used. The difference diffOne estimates how well the match is between the
SCR and matrix AM. The difference diffTwo estimates how well the match is between
the template and matrix AM. In this example diffTwo would be greater than diffOne
because the template does not match matrix AM very well. If the template was letter
‘L then diffOne and diffTwo would be quite similar. Therefore, to recognize the SCR
the lowest sum of the two differences is found and the template associated with that
sum is concluded as the recognized character. This works because even though ‘L’
can be created using ‘E’, ‘E’ cannot be created using ‘L’. The two differences help in
ensuring that the template matches the SCR and the SCR also matches the template
(i.e. the match is not only one way but both ways). Please note that these checks are
only necessary in my approach of template matching.

4.3. Experiments 35

IFHEGSS

Figure 4.5: Slanted license plate characters.

4.3 Experiments

In this section I will discuss and present the results of character recognition experi-
ments.

Character Recognition Results Discussion. The character recognition algorithm
was tested on 11 license plates. Plates from frontal and tilted views were considered.
In total there was 61 characters to be recognized. The end result was that 54 out of
the 61 characters were detected correctly. This gave a success rate of 89%. A suc-
cess rate of 90% and above would have been more favourable. The success rate was
affected due to a few different reasons. One area the algorithm performed poorly
was on the titled view license plates. This is an expected behaviour because the
characters in the tilted view plates are slanted and out of perspective. See Fig. 4.5.
Pixelwise template matching in that case is not very robust. Incorrect recognitions
included slanted letter “F” being detected as an “E” and slanted number 9 being de-
tected as a 6. Another area the algorithm lacked success was in detecting characters
which were quite similar in shape to other characters. This was commonly the case
with characters such as the letter “B”, the number 0 (zero) and also the number 8.

Another experiment was also conducted. This time no tilted view license plates
were considered. The license plates also had only one appearance of the following
three characters “B”, 0 (zero), and 8. The results were far better than the initial
experiment. Out of 38 characters 37 were detected correctly, giving a respectable
success rate of 97%. It is important to note here that the sample size is not very
large.

From the experiments I learnt that my character recognition algorithm has cer-
tain limitations. It is clear that my algorithm is not completely robust to out of
perspective license plates as well as characters that are similar in shape. To achieve
a higher success rate correction of the perspective is essential and a more detailed
analysis of the characters is also important. A positive outcome however is the fact
that my algorithm promises substantial results when tested on plates that do not

36 4. Reading of Plates

trigger the limitations.

Run time. The average run time of the character recognition algorithm was 0.19
seconds. This time was calculated when using the algorithm on a single license
plate. Just like the other two algorithms this run time is really good.

4.4 Alternative Approach

In this section I will talk about another approach that I came up with to recognize
license plates. Please note that this approach may not work in every scenario but it
works for the given project scenario.

Project Scenario Recall. Snaplnspect has a parking lot where visitors sometimes
exceed the time limit allowed to park. The purpose of the license plate recognition
system is to monitor cars in the parking lot and report any cars to staff that violate
the time limit. The initial approach is to read the license plates of cars over cer-
tain time periods. If a license plate is repeatedly recognized for a time longer than
allowed, the system reports it to the staff.

Alternative Approach. In the scenario described above, I discovered that read-
ing of the license plates is not really necessary. Therefore, I propose that rather than
reading the license plates, just match the detected plates with previous detections.
In the following I will go over an example with a few steps to further explain this
approach.

Step 1. We can take an example of three parked cars and their detected license
plates. See Fig. 4.6.

Step 2. When plates are detected the following are saved into the application:
time of detection, locations of plates and a binary version of the detected plate.
Saving the plate in binary form is important because binarization eliminates small
changes that can occur to the plates (e.g. lighting). If coloured plates are stored and
different lighting conditions occur (i.e. sunshine), then matching the plates would
suggest they are different plates. However, after binarization this is not the case.

Step 3. Whenever the algorithm runs again, all saved data in the application
is updated. If a detected plate is already in the saved data then only the time is
updated (i.e. the new time will be the difference between the current time and the
time of previous detection). If plates in the saved data are not detected again, the
plates are deleted from the saved data (this means the car has left).

4.4. Alternative Approach 37

G Ry

Figure 4.7: Using AND operator to match detected license plates.

Step 4. To identify cars that have been parked for too long, the system can simply
refer to the times recorded for the plates that are being detected repeatedly.

Step 5. Last step is to report the staff about the cars recognized to be violating
the parking time limit.

Matching Binary Plates. To match the detected plates to previous detections, I
simply make use of the method I used for character recognition. See Fig. 4.7.

Efficiency and Success Rate. Using this alternative approach gives a positive
significant change to both the system’s efficiency and success rate. The efficiency

38 4. Reading of Plates

of the system is improved due to reduced processing. Using this alternative ap-
proach means that the only major algorithm executed is the license plate detection
algorithm. License plate tilt correction, license plate segmentation and license plate
character recognition algorithms are all skipped. The success rate is also improved
because of only doing simple comparsions between binarized license plates rather
than complex segmentation and reading of characters. Since license plate segmenta-
tion and character recognition can give erroneous results if conditions are not good
to a certain degree, this approach is a useful alternative. By using this approach the
success rate is also not affected by license plate tilt or translation.

Chapter 5

Limitations

This chapter informs about the identified limitations of the license plate recognition system
developed for this project.

5.1 System Limitations

Here I will discuss the limitations that my license plate recognition system is sub-
jected to.

License Plate Detection Limitations. The license plate detection algorithm is
limited to a certain range of distances. The range is not very small so running the al-
gorithm with variable distances will still produce good results. However, distances
outside this range can produce erroneous results. Therefore, the range of distances
must be known before using the system. Usually license plates that are too close
or too far from the camera are known to be not detected correctly. Apart from the
range of distances, another limitation is that the algorithm only works on a given
image resolution. Therefore, the image resolution must be known as well before us-
ing the system. Knowing the resolution is important because the algorithm works
pixelwise on the input image. Which means different resolutions produce different
results. A positive however is that the variables in the algorithm can be easily ad-
justed to suit different types of image resolutions so the system is able to work on
most devices.

Another limitation occurs due to custom license plates in the real world. Cus-
tom license plates often consist of wide gaps between the characters. My license
plate detection algorithm uses mathematical morphology to morph together all the
characters on the plate. Since custom plates have gaps the morphing of the charac-
ters sometimes fails (depending on how wide the gaps are). This results in parital
detections of plates and at times the plates are not detected at all.

40 5. Limitations

License Plate Segmentation Limitations. The license plate segmentation algo-
rithm has a limitation of only performing well on detected license plates with good
perspective. License plates that are out of perspective are likely to have a lower
success rate of being segmented correctly. This limitation exists because my algo-
rithm only considers and fixes the tilt of the detected license plates. The correc-
tion of the perspective is not developed in this algorithm. This limitation can also
affect the results of character recognition. Character recognition is done through
template matching and slanted segmented character regions increase the rate of in-
correct recognitions. A step to solving this problem is to make use of the method
proposed in [17], where the issue of slanted characters is addressed and solved.

Optical Character Recognition Limitations. The one major limitation of the
character recognition algorithm is that it is heavily dependant on the success rate
of the license plate segmentation algorithm. This is a common limitation when it
comes to automatic license plate recognition systems. This limitation comes into
effect in my algorithm because it works by performing pixelwise template matching
to recognize characters. The explanation for this is quite clear; poorly segmented
regions result in poor recognition.

Other Limitations. Another limitation worth mentioning is my license plate
recognition system is only suitable for use during the daytime. There have been no
experiments or tests conducted using my system at night time. Snaplnspect was
not interested in the system working at night time because the work hours at their
company are only throughout the day.

There may be many other unidentified limitations of the system. The reason for
this is mainly because the system has not been tested sufficiently. This is due to
the lack of test data. Further limitations and flaws can only be discovered once the
system is tested against plenty more of test data.

Chapter 6

Android Application Design

This chapter goes over the android application design of the license plate recognition system.

6.1 Application Design

Due to a unforeseen event which lead to unmanageable time constraints I was un-
able to complete an android application out of my license plate recognition system.
However, in this chapter I will briefly go over the application design which is likely
to be used in the near future.

Design Overview. The application’s design is very straightforward and basic.
The application’s primary source of data comes from the camera of the android
device. Other data sources come from data stored locally on the device and also in
some cases data stored remotely. The application will require some form of network
connection to allow communication with the end user (e.g. SnapInspect staff). Apart
from one way messages being sent to the company staff the application will have no
other interaction with its end users.

User Interface. There will be no real user interface of the application. This is
because the application is supposed to work automatically. When the application
starts a camera view will be opened and the algorithms will start executing in the
background. Algorithms will be executed every 5 minutes to have information con-
stantly updated.

Data Storage. Results from running the algorithms will most likely be stored
locally on the device. The results will only take a few megabytes of storage space.
The storage space will also be recycled quite frequently, so data storage will not be
a concern if stored locally. If some reason is discovered to store results remotely the
runtimes of the algorithms may be affected.

Android Development Specifications. Currently no specifications are given to
me regarding the Android application. However, the application is most likely to

42 6. Android Application Design

be developed for devices with Android version 4.0 and above. The application will
be written in C++ and will use the OpenCV library for Android.

Chapter 7

Conclusions

This project was given to me by Snaplnspect and my task was to design and im-
plement a license plate recognition system. This report covered the entire year long
project. Research, approaches, implementation and design were all discussed exten-
sively in this report.

The positives of this project came mainly from the technical side. The project
went quite well with all major algorithms implemented. Several experiments and
tests were also conducted throughtout the year. There were on going discoveries of
limitations and new developments had to take place every now and then. Various
methods were also researched and implemented to test which approach works best.
In this report only the final decided approaches were discussed. The results showed
promising success rates and run times as well as certain areas that have room for
improvement.

There were also a few negatives that affected the quality of this project. One
of them was an unfortunate event that took place which really slowed down the
progress of this project. This was the reason for which certain areas of the project
were not given enough attention and the quality was discouraged due to time con-
straints. One example of this is the fact that I was unable to develop an Android
application out of my license plate recognition system. Another negative was the
lack of communication with my industry mentor. Throughout the project there were
only two formal meetings with my industry mentor. So the project could not take
into account their feedback and opinions. Another major negative was the absence
of test data. My industry mentor was supposed to supply me with test data. How-
ever, they were unable to arrange this in time. I had to resort to using my own
images, which was not enough to make solid conclusions about my algorithms.

The project had many other ups and downs but overall it can be concluded as
a successful project. Personally, I learnt a whole lot of new things and also gained
good experience in managing and completing a real life project.

(1]

(2]

(3]

(4]

(5]

(6]
[7]
(8]

9]
[10]

(1]

Bibliography

HIPR2. homepages.inf.ed.ac.uk/rbf/HIPR2/label.htm, last visit: 11 August
2014

Go Digital. godigitalslr.com/wp-content/uploads/2012/02/
HistogramDiagram. jpg, last visit: 7 August 2014.

HIPR2. homepages.inf.ed.ac.uk/rbf/HIPR2/kernel.htm, last visit: 11 August
2014

Open CV 2.4.9.0 Documentation. docs.opencv.org/doc/tutorials/imgproc/
imgtrans/sobel_derivatives/sobel_derivatives.html, last visit: 11 August
2014

HIPR2. homepages.inf.ed.ac.uk/rbf/HIPR2/sobel.htm, last visit: 11 August
2014

Klette, R.: Concise Computer Vision. Page 63, Springer, 2014
Klette, R.: Concise Computer Vision. Page 64, Springer, 2014

HIPR2. homepages.inf.ed.ac.uk/rbf/HIPR2/canny.htm, last visit: 11 August
2014

Klette, R.: Concise Computer Vision. Page 123, Springer, 2014

HIPR2. homepages.inf.ed.ac.uk/rbf/HIPR2/hough.htm, last visit: 11 August
2014

Open CV 2.49.0 Documentation. docs.opencv.org/doc/tutorials/imgproc/
imgtrans/hough_lines/hough_lines.html, last visit: 11 August 2014

HIPR2. homepages.inf.ed.ac.uk/rbf/HIPR2/spatdom.htm, last visit: 11 Au-
gust 2014

HIPR2. homepages.inf.ed.ac.uk/rbf/HIPR2/fourier.htm, last visit: 11 Au-
gust 2014

Klette, R.: Concise Computer Vision. Page 57, Springer, 2014

46 BIBLIOGRAPHY

[15] COMPSCI 373 Computer Graphics and Image Processing. cs.auckland.ac.nz/
courses/compsci373slc/PatricesLectures/2013/CS373-1IP-02.pdf, last
visit: 11 August 2014

[16] Klette, R.: Concise Computer Vision. Page 170, Springer, 2014

[17] Wen, Y., Lu, Y, Yan, J., Zhou, Z., Deneen, K., Shi, P.:An Algorithm for License Plate
Recognition Applied to Intelligent Transportation System. IEEE Transactions, 2011

[18] Romic, K., Galic, I., Baumgartner, A.: Character Recognition Based On Region Pixel
Concentration For License Plate Identification. 2012

[19] Kodwani, L., Meher, S.: Automatic License Plate Recognition in Real Time Videos using
Visual Surveillance Techniques.

[20] Thome, N., Vacavant, A., Robinault, L., Miguet, S.: A Cognitive and Video-based Ap-
proach for Multinational License Plate Recognition. Machine Vision and Applications,
2011

[21] Wang, Y., Lin, W., Horng, S.:A Sliding Window Technique for Efficient License Plate
Localization Based on Discrete Wavelet Transform. Expert Systems with Applications,
2011

[22] Kranthi, S., Pranathi, K., Srisaila, A.: Automatic Number Plate Recognition. Interna-
tional Journal of Advancements in Technology, 2011

[23] Kumary,S., Angel, B, Laya, T.: License Plate Detection and Character Recognition Using
Contour Analysis. International Journal of Advanced Trends in Computer Science and
Engineering, 2014

[24] Personalised Plates. http://www.plates.co.nz, last visit: 17 October 2014

[25] Image Library: 1126.photobucket.com/albums/pl05/Dozzal/P1010414. jpg,
last visit: last visit: 11 August 2014

