BTech Mid-Year Report
Dasarsh Vadugu

Abstract

This project requires the creation of a mobile device application which can serve as an
intermediary between users working in a nursery and the information that they gather while
doing so. The application will be useful because it will replace the current, paper-based system
of collecting information and will therefore consequently save time and effort. Written for the
Android platform, the application will merge the current, paper-based system of collecting
information with a tablet interface. This will result in a change in the way that information is
entered and will also introduce elements which can help to keep the information consistent and
structured.

Project Outline

For the sake of quick and efficient recording of data in an outdoor nursery, an android
application is to be made. This is to reduce the amount of time taken for the current, paper-
based system to be processed and converted into an electronic form. The objective is to create
an application which will act as an intermediary between the user who is recording information
and the system where the recorded information is to be stored. Such a resultant application will
cause a seamless transition from data being recorded to data being stored. Implementing such
an application allows for the advantages of a mobile device to be considered. A mobile device’s
camera allows for the attaching of photos to documents, which can further be edited with
freehand notes drawn onto photos as a result of the touchscreen interface. Wireless
connectivity can allow for the synchronisation of files between device and server to ensure the
consistency and simple transfer of media.

Scion is a New Zealand Crown Research Institute (CRI) that specialises in research, science
and technology development for the forestry, wood product and wood-derived materials and
other biomaterial sectors (About Scion, 2009). There are large grounds where plants and trees
are grown and kept track of for their research purposes. In these grounds and in the nursery,
several different things are observed and must be measured and recorded; these can vary from
the root structures, rates of growth or colouration of plants and more.

One of the more common processes which require recording information from the nursery is
mapping. Mapping is essentially a stocktake of the plants, resulting in a table which shows
where plants are located, how many there are, which client has ordered them, and so on. The
process of mapping can further be broken down into two categories; static mapping and
dynamic mapping.

Static mapping refers to the mapping of plants which are directly planted in soil in the ground.
These plants are not moved until the end of their research term or until they are ready to be sent
to the clients which have ordered them.

Static mapping requires the following information to be recorded:

Field Type
Compartment Text
Bed Numeric
Start of the bed Numeric
End of the bed Numeric
Bed length Numeric
Number of plants Numeric
Plant density Numeric
Client Text
Species Text
Details 1 (if any) Text
Details 2 (if any) Text
Photo details (if any) Text

Table 1, the fields and respective types of the data required for Static mapping form

Dynamic mapping refers to plants which are in small pots. These plants are moved from
location to location within the nursery depending on their health and stages of growth. An
example of this would be a sapling which has been growing inside a shed and receiving care
during its early growth being moved outside once it is ready to receive direct sunlight or a plant
which has taken too much harsh sunlight being moved back inside to receive careful watering to

counteract its negative growth.

Dynamic mapping requires the following information to be recorded:

Field Type
Environment Text
Location Text
Number of plants Numeric
Plant density Numeric
Client Text
Species Text
Details 1 (if any) Text
Details 2 (if any) Text
Photo details (if any) Text

Table 2, the fields and respective types of the data required for Dynamic mapping form

As can be seen, both types of mapping require similar information to be recorded, with the
exception of physical location which is fixed for static mapping and variable for dynamic
mapping and are referred to as different (compartments as opposed to environments). Also the
omission of the data relating to the bed in the dynamic form reflects the fact that the plants in

guestion are not planted in the ground.

The information regarding the client and species featuring in both types of mapping and that of
the location which is only featured in dynamic mapping are not to be entered freely by the user.
Users will be required to choose from a list of clients, species and locations. This list will need to
be accessible by the application, from which it will read and display the options to the user. The
ability to edit the information regarding client, species and location should also be one of the
functionalities of the application. This is to accommodate any additions of new clients, species

or locations.

Related Work

Google Sheets is a mobile application which enables the creation, editing and collaboration on
spreadsheets. Utilising Google Sheets, a user may create any form they wish and then populate
it with data. There is also functionality to generate graphs and charts as a form of analysis on
the data stored in the spreadsheet. Cell formatting and formulae are also supported.

The missing functionality is the form. There is no way to enter information based on a
predefined form, which will then add the entered information into the appropriate spreadsheet.

The specification for the Scion application requires a form which will enable users to easily type
data into fields, which will then be added to the appropriate spreadsheet.

Design

There are five sheets in total which will take the form of the underlying information behind the
functionality of the application; two sheets for the static and dynamic mapping, and three sheets
for the information regarding the clients, species and locations. Each of these sheets will need
to be added to and this will be possible by the means of an individual form for each sheet. The
form will contain all the different fields which are required to complete a row which can then be
added to the corresponding sheet.

The forms for the client, species and location sheets will be simple in that they will not be doing
more than appending rows onto the end of their corresponding sheets. The design for these
three supplementary sheets will be near identical.

Field Type
Company name Text
Contact name Text
Work phone Phone number
Mobile phone Phone number
Address Text

Table 3, the fields and respective types of the data required for the Client form

Field Type
Name Text
Code Text
Genus Text
Variety Text
Common name Text

Table 4, the fields and respective types of the data required for the Species form

Field

Type

Location

Text

Description

Text

Table 5, the fields and respective types of the data required for the Location form

Added camera-based functionality will be added to the mapping forms. While completing any of
the two mapping forms, users will be able to take a photo which can then be attached to the
sheet. This attachment is reflected by the value for ‘photo details’ being populated with the
filename of the photo that was taken. Additionally, if the user wishes to, they may draw on top of
a photo which they have just taken in case they feel the need to draw attention to some part of
the photo. This edited photo is attached to the sheet in the same way.

The sheets for clients, species and locations will be read by the application. This allows for the
addition of dropdown boxes in the mapping forms so that users may choose one of the existing
clients, species, and locations to populate the corresponding fields. This imposes a multiple
choice scenario on the user where they are to choose the correct entry from a range of existing
choices. As the application will be reading the aforementioned three sheets, any new rows
added to the sheets using the application will be reflected in the dropdown boxes instantly.

Forgiveness is an aspect which needs to be implemented to cater for situations when the user
has added an erroneous row to a sheet. In such a scenario, a user should be able to select the
erroneous row from the sheet preview, which will load that row’s values into the form, allowing
for the user to edit any field which is incorrect. Once this has been done, the user pressing the
button to confirm the row will replace the erroneous row with the corrected one, as opposed to
adding onto the end. This aspect of forgiveness is also something which needs to be present in
the photo editing process. Any drawn lines should be able to be undone as would be possible in
any standard image editing application.

There must be clarity in the design of the forms such that users will be able to easily tell what
information is to be filled in which field (Principles of User Interface Design). This serves as a
form of assistance to the user in that they can be reminded what to observe and record by the
application if they have forgotten or are new to the process.

Validation can be enforced by the application on the values entered into fields. This prevents
erroneous entries in the context of format and ensures a kind of structure in the resulting sheet.
Ensuring that a user only enters what they are meant to is an element which can easily be
achieved on a tablet device. As the only means of entering data is by the soft keyboard, the
forms can be configured in such a way that a standard QWERTY keyboard is only shown for
field which require text entries and a numerical keyboard being shown for fields which require
numerical entries.

Consistency between the designs of the forms is important for the user as this confirms for them
that similar things act in the same way (Android Design Principles). For this reason, the layouts
of the five forms have been kept the same in that fields which are the same or similar are in the
same positions across all forms. This results in interfaces with elements that looks similar which
can inherently be assumed of having similar behaviour, and makes it easier for users to
understand what is required of them (Principles of User Interface Design).

The fields in the form must follow a logical order. This is for the ease of use for the user. A form
with a logical flow will mean that users will not need to be jumping from field to field all across
the screen. The piece of information which naturally comes first will be featured first and will be
followed by that which naturally follows afterwards (Android Design Principles). The application
will begin to require information from a large-picture perspective, and then begin to focus on the
details of the information being collected.

Android Developer Tools and Software Development Kit

To develop this application, the Android Developer Tools (ADT) and the Android Software
Development Kit (SDK) will be used. This allows for the application to be built in Java using
Eclipse Integrated Development Environment (IDE). The IDE can emulate Android devices of
varying screen size and specifications, allowing for testing to be done on these virtual devices
while still retaining functioning features such as the camera, sensors, multitouch and telephony
(Developer Tools).

The ADT also allows for a running application to be installed onto a physical Android device,
which was what was done for development. The application was run on a tablet which directly
reflects its specification to be used on a tablet device. Debugging the application on a real,
physical tablet was also advantageous due to the low speed issues and lack of responsiveness
of the emulator.

The Android SDK version that was being developed for was 8 so every device running an
Android version from 2.2 onwards can run the application.

Data Model

The Entity-Relationship Diagram (ERD) represents the data and the flow of information within
the application. As mentioned before, the two mapping forms require information from two (or
three in the case of the dynamic mapping) sheets to complete a row which can then be added to
the sheet. This is evident in the ERD where the relationship between the two main forms and
the three remaining forms is represented as a one-to-many relationship. This means that for any
given static mapping entry, there can only be one client, or one species assigned. The same
can be said for the dynamic mapping entries with the addition of the one-to-many relationship
with locations.

Static Entry

Time
Date
Compartment
Bed Number
Start of bed
End of bed
Length of bed
Plant Density
Number of Plants
MonthiYear Planted
Client
Species
Details 1
Details 2
Photo Details

Location

Dynamic Entry

Location
Description

Client

Company
Contact
Work Phone
Maobile Phone
Address

Time
Date
Environment
Location
Plant Density
Number of Plants
Month/Year Planted
Client
Species
Details 1
Details 2
Phato Details

Species

Name
Code
Genus
Variety
Common Name

6

Figure 1, ERD showing the relationship between the data in the different forms

Implementation

Android Manifest

The Android Manifest xml file is mandatory for every application. It is an accumulation of all the
information regarding the application which is to be sent to the Android system before the actual
running of the application’s code (App Manifest). The information that it handles includes the
package name, the minimum SDK requirements, all the activities which will be used within the
application and the permissions which outline which protected parts of the Android API are to be
used, such as activating the camera or writing to the memory card.

For the application at this point, the manifest contains the following:

A package name of com.dasarsh.scion.

A minimum SDK of 8 which correlates to an Android version of 2.2.

A target SDK of 18 which correlates to an Android version of 4.3.

The permissions “android.permission.READ_EXTERNAL_STORAGE” and
“android.permission. WRITE_EXTERNAL_STORAGE" for the sake of reading and writing from
the memory card.

An activity for each of the following:

EntryPoint
StaticForm
DynamicForm
ClientForm
SpeciesForm
LocationForm
EditPhotoSurface

Static and Dynamic Mapping Forms

Both types of mapping require one activity each and both activities require two files for each of
them; a java file and an xml file. The xml file contains all the information regarding the layout of
the activity such as the layouts and their elements on the screen. The java file contains all the
code which enables what is seen on the screen to have their respective functionalities and also
handles any errors.

The XML Layouts

The layouts of the forms are near identical. They all have half of the screen dedicated to the
sheet preview while the other half is dedicated to the actual form. At the bottom of the half which
contains the form, there is a panel of buttons. The whole view is contained in a LinearLayout,
which was divided in two for the HorizontalScrollView to contain the preview and another
LinearLayout to contain the form and the buttons.

<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"”
android:layout_height="match_parent"”

android:orientation="vertical"”
android:weightSum="100" >

<HorizontalScrollView
android:id="@+1d/STATIChsvPreview"
android:layout_width="fill_parent"”
android:layout_height="wrap_content”
android:layout_weight="50" >

</HorizontalScrollView>

<LinearLayout
android:layout_width="f1ill_parent"”
android:layout_height="wrap_content”
android:orientation="vertical"”
android:weightSum="50" >
</LinearlLayout>

</LinearlLayout>

L .
&s® Scion

Time Date Compartment number Bed number Startof bed End of bed Bed length Plantdensity Number of plants
12:56 06/07/2014 A 1 25 36 1 66 55
12:58 06/07/2014 C 6 65 78 13 25 36
12:59 06/07/2014 F 9 58 69 1 a5 54
13:00 06/07/2014 D 4 14 36 22 ar 58
13:01 06/07/2014 G 2 45 78 33 60 50
13:01 06/07/2014 D 2 45 70 25 68 51
13:02 06/07/2014 B 5 25 50 35 65 52
13:02 06/07/2014 H 9 65 a7 22 58 66
13:03 06/07/2014 D 8 45 90 45 58 45
13:03 06/07/2014 E 5 78 105 27 68 90
13:04 06/07/2014 B 5 25 70 45 68 55
13:04 06/07/2014 A 5 55 98 43 70 100
13:05 06/07/2014 C 5 140 190 50 55 68
13:09 06/07/2014 B 6 570 680 110 58 66
13:10 06/07/2014 C 5 555 666 m 87 95
13:10 06/07/2014 H 1 50 90 40 70 20
13:12 06/07/2014 B 5 58 70 12 40 66
13:13 06/07/2014 B 14 55 100 45 a8 98
13:14 06/07/2014 B 2 50 150 100 a5 66
13:31 06/07/2014 C 4 45 78 33 70 70
13:32 06/07/2014 E 4 50 90 40 55 68
13:33 06/07/2014 B 5 50 90 40 88 88
13:34 06/07/2014 D 7 54 98 44 55 47
13:35 06/07/2014 C 4 50 90 40 7 a8
13:36 06/07/2014 B 4 450 500 50 60 48
13:37 06/07/2014 B 2 40 60 20 80 90

11:11 11/07/2014

Compartment eg 'A’ Bed number

Start of bed End of bed Length of bed

Plant density Number of plants

Month/Year planted eqg '04/2014'

Details 1

Details 2

Client Company 4 Species Name 4

Attach photo Edit photo Make a sheet Clear

Figure 2, the division of the screen in two for the preview and the form

The sheet preview's design dictates that it should look and act like a spreadsheet editor similar
to Microsoft Excel. This means that should the sheet become large in terms of both rows and
columns, there should be no issues with both horizontal and vertical scrolling in order to be able
to view any cell at any position. To accomplish this requirement, nesting layouts within layouts
was necessary.

The HorizontalScrollView further contains a ScrollView which contains a TableLayout. The
TableLayout within a ScrollView gives the preview the functionality of vertical scrolling as the
TableLayout grows vertically. The ScrollView within a HorizontalScrollView gives the
functionality of horizontal scrolling as the TableLayout (and the ScrollView encasing it) grows
horizontally.

<HorizontalScrollView
android:id="@+1d/STATIChsvPreview"
android:layout_width="filL_parent”
android:layout_height="wrap_content”
android:layout_weight="50" >

<ScrollView
android:layout_width="match_parent"”
android:layout_height="match_parent"”
android:orientation="horizontal" >

<TablelLayout
android:id="@+1d/STATICtablelLayoutPreview"
android:layout_width="fill_parent"”
android:layout_height="fill_parent"” >

</TablelLayout>
</ScrollView>
</HorizontalScrollView>

The lower half of the screen is dedicated to the LinearLayout of the form with which users are to
record information to add rows to the sheet. This was implemented in a straightforward way
such that every field which requires the whole width of the screen is simply added to the
LinearLayout, whereas fields which are related and are to be grouped together on the same line
are added into a nested LinearLayout. An example of this is the two fields regarding the
beginning and ending of a bed, and the field regarding the length of the bed. All three fields are
added to a LinearLayout which is nested within the LinearLayout dedicated for the bottom half of
the screen.

<LinearLayout
android:layout_width="filL_parent”
android:layout_height="wrap_content"”
android:orientation="vertical"”
android:weightSum="50" >

<LinearLayout

android:layout_width="filLl_parent"”
android:layout_height="wrap_content"”
android:orientation="horizontal"”
android:weightSum="99" >

<EditText

android:
android:
android:

android

<EditText

android:
android:
android:
android:
android:
chint="@string/EndOfBed"
android:

android

<EditText
android

id="@+1d/STATICetBedStart"”
layout_width="fill_parent”
layout_height="wrap_content”

:layout_weight="33"
android:
android:
android:

ems="10"
hint="@string/StartOfBed"
inputType="number" />

id="@+1d/STATICetBedEnd"
layout_width="fill_parent"”
layout_height="wrap_content"”
layout_weight="33"

ems="10"

inputType="number” />

:id="@+1d/STATICetBedLength"
android:
android:
android:
android:
android:
android:

layout_width="fill_parent"”
layout_height="wrap_content"”
layout_weight="33"

ems="10"
hint="@string/LengthOfBed"
inputType="number" />

</LinearlLayout>

</LinearLayout>

Start of bed

Figure 3, the grouping of the bed-related fields on one line

The form layout features fields in which users are to enter the data which they record. These
fields are EditText elements and text can be entered into them. EditText elements can give
users hints to serve as reminders on what to enter. These hints are useful to provide clarity and
also functions to remind the users of what is to be entered. An EditText element can be
configured to only accept a type of input, which serves as validation in the following case where

End of bed

10

Length of bed

only a number will be accepted, which prompts the user with a numberpad as opposed to a
QWERTY keyboard to type with.

<EditText
android:id="@+1d/STATICetBed"
android:layout_width="f1ilLl_parent"”
android:layout_height="wrap_content"”
android:layout_weight="50"
android:ems="10"
android:hint="@string/BedNumber"
android:inputType="number" />

) .
85® Scion

13:02 06/07/2014 H 9 65 87 22 58 66
13:03 06/07/2014 D 8 45 90 45 58 45
13:03 06/07/2014 E 5 78 105 27 68 90
13:04 06/07/2014 B 5 25 T0 45 68 55
13:04 06/07/2014 A 5 55 98 43 70 100
13:05 06/07/2014 C 5 140 190 50 55 68
13:09 06/07/2014 B 6 570 680 110 58 66
13:10 06/07/2014 C 5 555 666 m ar 55
13:10 06/07/2014 H 1 50 90 40 70 80
13:12 06/07/2014 B 5 58 70 12 40 66
13:13 06/07/2014 B 14 55 100 45 a8 98
13:14 06/07/2014 B 2 50 150 100 45 66
13:31 06/07/2014 C 4 45 78 33 70 70
13:32 06/07/2014 E 4 50 90 40 55 68
13:33 06/07/2014 B 5 50 90 40 88 88
13:34 06/07/2014 D 7 54 98 44 55 47
13:35 06/07/2014 C 4 50 90 40 T 88
13:36 06/07/2014 B 4 450 500 50 50 48
13:37 06/07/2014 B 2 40 60 20 80 90
19:50 06/07/2014
10:42 07/07/2014 Ad 7 97 98 1 75 68
11:11 11/07/2014

A Bed number

Start of bed End of bed Length of bed
Plant density Number of plants

Month/Year planted eg '04/2014'

Figure 4, a numberpad is shown for input which should strictly be numeric

Spinner elements feature in the form layout. These elements are for giving the user a multiple
choice scenario where they are to choose a single option which is most appropriate. For this
application, the Spinner elements are used to provide a dropdown box where users are to select
the appropriate Client, Species and Location.

11

<Spinner
android:id="@+1d/STATICspCompany"
android:layout_width="match_parent"
android:layout_height="wrap_content"”
android:layout_weight="50" />

Button elements conclude the form layout. These elements are used to trigger events when they
are pressed and are listened to within the form’s accompanying java class. The two main
mapping forms contain four buttons which are nested within a LinearLayout which groups them
together.

<LinearLayout
android:layout_width="fill_parent"”
android:layout_height="wrap_content"”
android:orientation="horizontal"
android:weightSum="100" >

<Button
android:id="@+1d/STATICbAttachPhoto"
android:layout_width="wrap_content™”
android:layout_height="wrap_content™”
android:layout_weight="25"
android:text="@string/AttachPhoto"” />

<Button
android:id="@+1d/STATICbEditPhoto"
android:layout_width="wrap_content"”
android:layout_height="wrap_content"”
android:layout_weight="25"
android:text="@string/EditPhoto"” />

<Button
android:id="@+1d/STATICbSubmit"
android:layout_width="wrap_content”
android:layout_height="wrap_content™”
android:layout_weight="25"
android:text="@string/MakeASheet" />

<Button
android:id="@+1d/STATICbClear"
android:layout_width="wrap_content"”
android:layout_height="wrap_content"”
android:layout_weight="25"
android:text="@string/Clear” />
</LinearLayout>

Attach photo Edit photo Make a sheet Clear

Figure 5, the layout of buttons featured in both Static and Dynamic mapping forms

12

Make a sheet Clear

Figure 6, the layout of buttons featured in the Client, Species and Location forms
The three forms for Client, Species and Location which do not require camera and photo editing

functionalities have only the buttons required to add rows and clear fields. They are near
identical.

13

phane Client Ad
31 Cliem Ad
37 Client Rd
33 Client R
34 Clie
35 Client Rd

(09)1234579
(09)173 0

ent R Spec E: 2 5 3 16 & % COMMAN

ent Rd Spet 16 1 i prcies 16 W
et Ad 1
‘.

o
(09)1234587 41 7 ent Ad

Make a sheet Clear Make a sheet Clear

Make a sheet Clear

Figure 7, the three forms for Client, Species and Location are near identical aesthetically and
functionally

14

Imported APIs

The Java Excel API of version 2.6.12 was imported for this application. Its purpose is to read,
write and modify Excel spreadsheets (Khan, Java Excel API - A Java API to read, write and
modify Excel spreadsheets). This API allows for Java code to access the means to create
spreadsheets dynamically as well as read spreadsheets and access the cell data.

The Java Classes

Java classes which accompany their respective xml classes instantiate the xml file’s elements
and handle events which are either triggered by those elements or require updating the values
of those elements.

All the java classes created extends the Activity class which allows the java class to be
launched as an activity from within other java classes. Having the Activity class as a super class
allows for the java class to have access to many of the methods within said Activity class, such
as the onCreate method which allows for the java class to be linked to its respective xml layout.

All of the java classes implement the OnClickListener to be able to better handle events where
buttons have been pressed. The two mapping forms implement the OnltemSelectedListener for
the case of when an item in a Spinner element has been selected. Due to the fact that these two
listeners are interfaces, the methods within them must be implemented within the java class,
even if empty.

What must be done first in the java class is the linking of the java class with its respective xml
layout class. This is done by setting the content of the screen to be the xml view.

setContentView(R.layout.static_form);

Only after this can the instantiation of the xml elements be done. Certain EditText elements
have been programmatically configured in the java class such that they are not able to be
edited. These are the time and date EditText elements which are to be automatically generated
by the Android API. This was done by passing null to an EditText element’s keyListener method.

EditText date, time;
time = (EditText) findViewById(R.id.STATICetTime);
time.setKeyListener(null);

The purpose of using this method to nullify any changes made to the EditText as opposed to
using a simple label which cannot be changed by default is to retain the look and feel of a form
which is going to be used to populate a row which will be added to a sheet.

The time and date values which are displayed in the time and date EditText elements are

derived from the Date class. The java class instantiates a Date which matches the system time
of the device and deduces the hours and minutes to use for the time and the day, month and

15

year to use for the date. String operations are done to prepend ‘0’ to the minutes and seconds
values to prevent the time being shown as 12:9 instead of 12:09. The date and time are also
lastly combined together to create a String which will be used as the filenames of photos taken
using the application.

The two EditText elements for the starting and ending lengths of the beds, which are then used
to calculate the length of the bed itself, are set to update the value of the EditText element
dedicated to the length of the bed once the focus has changed from either the start or end
EditText. This was done using the EditText element’s setOnFocusChangeListener method and
passing a custom OnFocusChangeListener into it.

bedStart.setOnFocusChangeListener(new OnFocusChangelListener() {
public void onFocusChange(View v, boolean hasFocus) {
if ('hasFocus) {
updateBedLength();

}
1)

Spinner elements are instantiated by means of population with the data which is being read
from the corresponding xlIs sheet. The Client Spinner element will be reading the column of
clients from the client.xls sheet and then displaying those clients as Spinner items.

ArraylList<String> list = new ArraylList<String>();

// add the names of the companies stored in the client.xsl file into
// the ArraylList for the spinner
for (int i = ©; i < numRows; i++) {
list.add(sheet.getCell(@, i).getContents());
}
ArrayAdapter<String> adapter = new ArrayAdapter<String>(this,
android.R.layout.simple_spinner_item, list);

adapter.setDropDownViewResource(android.R.layout.simple_spinner_dropdown_item)

spinner.setAdapter(adapter);
spinner.setOnItemSelectedListener(this);

The Spinner is populated with items which correlate to columns of the sheet which is being
read, inclusive of the column heading such as “Client Company” or “Species Name”. The
headings are included due to the fact that there is no direct way to programmatically configure a
hint for the user in the same way that can be done with an EditText element.

16

_ colvnlay

1
1 GeaTech

one Client Addres 1 5
b ! Major Plants 69 1 15 st
1 T4 22 a7 58
1 [33 B0 50
1 Android 25 63 51
1 D 35 B85 52z
! Nintendo £ 5: o]
1 L 5 58 45
1 105 27 68 50
1 Vodafone 70 45 68 55
1 98 43 70 100
| ' 190 &0 55 (:
AL l 680 1o 58 66
1 666 1 7 05
| Nascar 90 40 i 80
1 1 40 66
1 100 45 48 98
1 Disney 150 100 a5 66
1 T8 33 70 70
! Monsters Inc. 0 10 55
Skinny Mobite 1 a0 2
Grean 1 44 55
1 HP 40l 77
1 &0 60 &
1 0 4
| Les Mills " 8 0
1 98 1 75 56
University of Auckland 11/07/2014
WWF 6
10

Nork phone National Basketball Association
Unicef

Skinny Mobile

Make a sheet Clear
Orcon

Client Company Species Name

4

Attach photo Edit photo Make a sheet Clear

Figure 8, the entries from the Client Company column from the Client sheet are shown as items in
the Spinner element in the Static form

The onltemSelected method of the OnltemSelectedListener interface which was mandatorily
implemented includes a switch case which deduces which Spinner element has had an item
selected from, and then proceeds to check the position of the item which was selected. If the
item is in position 0, then that means the first element has been selected, which is the column
heading. The column heading is not valid data which can be entered into the sheet, and so if it
has been selected, the data added in its stead is simply an empty String.

@Override
public void onItemSelected(AdapterView<?> parent, View view, int position,
long id) {

// for handling when a Spinner item is selected

switch (parent.getId()) {
case R.id.STATICspCompany:
// if the column header is not the one which is selected
if (position != @) {
company.setSelection(position);
companyData = (String) company.getSelectedItem();
} else {
companybata = "";

}

17

break;
case R.id.STATICspSpecies:

// if the column header is not the one which is selected
if (position != @) {

species.setSelection(position);

speciesData = (String) species.getSelectedItem();
} else {

speciesData =

}
break;

// cases are set such that if there is not change to the spinner
// values and they display the column headers, they do not appear on
// the sheet once added

}

In the xml layout, the sheet preview consists of a HorizontalScrollView encasing a ScrollView
encasing a TableLayout. The TableLayout is the real sheet preview being displayed, and the
HorizontalScrollView and ScrollView which it is nested in serves as a means of navigation within
the sheet. A TableLayout is to be populated with TableRow elements, which can contain any
element within it. The sheet that is to be previewed is being read from one row at a time, and
each cell in that row is being used to create a TextView element which is then added to a
TableRow element and finally added to the TableLayout element. The TextView is being made
with some padding on both left and right sides of the cell information and a simple resource
defining a border is being drawn do differentiate the cells from one another and separate the
data.

HorizontalScrollView hsc;
TableLayout tl1;

hsc = (HorizontalScrollView) findViewById(R.id.STATIChsvPreview);
tl = (TableLayout) findViewById(R.id.STATICtablelLayoutPreview);

// starting at rowsDisplayed to add only new rows
for (int i = rowsDisplayed; i < numRows; i++) {
// create a new TableRow
TableRow tr = new TableRow(this);
// width FILL_PARENT height WRAP_CONTENT
tr.setlLayoutParams(new TableRow.LayoutParams(
TableRow.LayoutParams.FELEPARENT,
TableRow.LayoutParams.WRAP_CONTENT));
for (int j = @; j < numCols; j++) {
// create a new TextView
TextView b = new TextView(this);
// because jxl1 works like (columns, rows)
b.setText(" " + sheet.getCell(j, i).getContents() + " ");
// width FILL_PARENT height WRAP_CONTENT

18

b.setLayoutParams(new TableRow.LayoutParams(
TableRow.LayoutParams.FELL—PARENT,
TableRow.LayoutParams.WRAP_CONTENT));

// draw the border around each TextView for grid look

b.setBackgroundResource(R.drawable.border);

// add the TextView to the TableRow

tr.addvView(b);

}
// Add the TableRow to the TableLayout which is width

// FILL_PARENT and height WRAP_CONTENT

tl.addView(tr, new TablelLayout.LlLayoutParams(
TablelLayout.LayoutParams.FELE_PARENT,
TablelLayout.LayoutParams.WRAP_CONTENT));

For the static form, which features the starting and ending bed EditText elements and the bed
length EditText element, there is a method which calculates the length from the starting and
ending values. This method is called whenever there is a shift in focus from either of the two
EditText elements. The first check being made is one which ensures that the lengths of the data
in the two elements are greater than 0, which means that there is a non-null value in the
EditText element. The values are then parsed from their default type of String to integer. This is
a safe operation and there is no case where data which is not a number is attempted to be
parsed into an integer format. This is due to the validation occurring on the xml layout side
where the input type is assigned to being numeric, which only allows users to enter numbers.
On successfully parsing the values, there is a check to see whether the end value is greater
than the start value. If this is true, the length is calculated by subtraction. If that is not the case,
the user will be alerted to it by means of an AlertDialog which then prompts the user back to the
EditText element for the end of the bed by requesting the focus to that element.

@SuppressWarnings("deprecation™)
public void updateBedLength() {
// if both bedStart and bedEnd have values
if (bedStart.getText().length() > @ && bedEnd.getText().length() > 0) {
// get these values
int start = Integer.parseInt(bedStart.getText().toString());
int end = Integer.parseInt(bedEnd.getText().toString());
// compute the length
int length = end - start;
// if end is greater than start (as it should always be)
if (end > start) {
// set the text to bedLength
bedLength.setText(length + "");
} else {
// otherwise alert the user
AlertDialog alertDialog = new AlertDialog.Builder(context)
.create();
alertDialog.setTitle("Invalid argument");
alertDialog.setMessage("The value for 'bed end' must be
greater than the value for 'bed start'");
alertDialog.setButten("Okay",

19

new DialogInterface.OnClickListener() {
public void onClick(DialogInterface
dialog, int which) {
bedEnd.requestFocus();

})s
alertDialog.show();

The value for 'bed end’ must be greater than the value for ‘bed start’

Okay

Figure 9, the value for the end of the bed (25) is less than that of the start of the bed (50), and so
the user is prompted with an alert

The onClick method which must be implemented due to the class implementing the
OnClickListener interface contains the code which handles what is to happen if any of the
buttons are pressed. The method is passed a view, from which a switch case is required to
determine which of the buttons has been pressed.

@SuppressWarnings("deprecation")
@Override
public void onClick(View v) {

// what to do when buttons are pressed

switch (v.getId()) {

20

// submit button is pressed
case R.id.STATICbSubmit:

break;
// attach photo button is pressed
case R.id.STATICbAttachPhoto:

break;
// edit photo button is pressed
case R.id.STATICbEditPhoto:

break;
// clear button is pressed

case R.id.STATICbClear:

break;

In the case of the “Submit” button being pressed, all the information from the respective fields
will be collected, and then there will be a check to determine whether the sheet for the mapping

collect();

File path = new File("sdcard/scion/static_mapping.x1s");

If the path exists, the collected data will be appended to the existing file as a new row. If the
path does not exist, that means there is no previously existing spreadsheet to append onto and
a new sheet is required to be made. A Toast message is displayed afterwards to confirm to the

user that the required operation has completed.

if (path.exists()) {

// if so, add to the sheet
excelAdder();

Toast toast = Toast.makeText(this, "Row added to sheet”,

Toast.LENGTH_SHORT);
toast.show();

} else {
// if not, make a new sheet and add to it

excelTesterStatic();

Toast toast = Toast.makeText(this, "Sheet created",

Toast.LENGTH_SHORT);
toast.show();

Once the new row has been added, the preview is required to show the changes made to either
the existing sheet, or display the new sheet. This is done by essentially reloading the whole
activity again and finishing the running activity so as not to waste resources.

21

// restart the activity so that the form can be used again to add
// more rows

startActivity(starterIntent);

// finish this activity so as not to waste resources more
finish();

The variable starterintent is required to restart the same activity. It is an Intent type and is a
global variable which was instantiated in the onCreate method as such:

starterIntent = getIntent();

In the case of the “Attach photo” button being pressed, an intent for starting the camera
application will be started. The user will be prompted to take a photo using the device’s default
camera application and once they have done so, the camera activity will complete and the code
from the onActivityResult method will be run. This is due to the fact that the
startActivityForResult method is used, which means that there is an opportunity to do something
once an activity finishes, as opposed to letting them finish and moving on which is what would
happen if the startActivity method was used instead.

// create an intent for starting the camera

i = new Intent(android.provider.MediaStore.ACTION_IMAGE CAPTURE);
// activity for result returns to the onActivityResult() method
startActivityForResult(i, cameraData);

On completion of the camera activity, there is a switch case which determines that the camera
activity has finished and has results which are to be handled. These results are the data
regarding the photo taken. With this data, the application saves the photo in the jpg format,
using the date and time string mentioned earlier as the filename. Lastly, a boolean used to store
whether a photo has been taken or not is set to true.

switch (requestCode) {
case cameraData:
Bundle extras = data.getExtras();
Bitmap bmp = (Bitmap) extras.get("data");
OutputStream stream;
try {

File scionDir = new File("/sdcard/scion/photos/");
// If /sdcard/scion/photos/ is not a directory, then make it
if (!scionDir.isDirectory()) {
scionDir.mkdirs();
}
// save the photo using the timestamp (dateTimeString) as
// its filename
stream = new FileOutputStream("/sdcard/scion/photos/"
+ dateTimeString + ".jpg");
bmp.compress(CompressFormat.JPEG, 100, stream);
photoData = dateTimeString + ".jpg";
} catch (FileNotFoundException e) {
e.printStackTrace();

22

}

Toast toast = Toast.makeText(this, "Photo saved and attached",
Toast.LENGTH_SHORT);
toast.show();

// set isPhotoAttached boolean to true so editing can take place
isPhotoAttached = true;
break;

case editPhotoData:

break;

In the case of the “Edit photo” button being pressed, the boolean for deducing whether a photo
has been taken will be checked. If the boolean is true and a photo has been taken, then an
activity in which the taken photo can be edited is started. A Bundle object is used to send
information from between activities. In this case, the Bundle object is carrying the path of the
previously taken photo as this will be used as the path for the edited photo once editing has
been completed. If a photo has not been taken, then the user is prompted to do so by means of
an AlertDialog before trying to edit a photo.

// if a photo has been attached
if (isPhotoAttached == true) {
// create a new bundle for sending to the next activity
Bundle basket = new Bundle();
// attach the path to the attached photo
basket.putString("photoPath", "/sdcard/scion/photos/"
+ dateTimeString + ".jpg");
// create an intent for the editing activity
Intent a = new Intent(this, EditPhotoSurface.class);
// send the bundle
a.putExtras(basket);
// start the editing activity
startActivityForResult(a, editPhotoData);
} else {
// if a photo has not been attached, alert and prompt the user
// to do so with a dialog
AlertDialog alertDialog = new AlertDialog.Builder(context)
.create();
alertDialog.setTitle("No photo to edit");
alertDialog
.setMessage("Take a photo first in order to edit it.");
alertDialog.setButton("Okay",
new DialogInterface.OnClickListener() {
public void onClick(DialogInterface dialog,
int which) {
// nothing happens

1)
alertDialog.show();

23

In the case that the “Clear” button is pressed, the initialise and clearEditTexts methods are
called. Calling the initialise method ensures that the Spinner elements are reset to their default
values and calling the clearEditTexts method programmatically sets the values for all the
EditText elements to be that of an empty String.

// initialise() resets the spinners
initialise();

// clearkEditTexts() resets the EditTexts
clearEditTexts();

private void clearEditTexts() {

// clears the values for the EditTexts

plantDensity.setText("");
whenPlanted.setText("");
numPlants.setText("");

There are two methods in which spreadsheets are written to; the method used to create a
spreadsheet if there is not one already existing, and the method used to add a row to an
existing spreadsheet. Both methods make use of the Java Excel API to do so. Writing to a
spreadsheet requires creating a WritableWorkbook object using the Workbook’s factory method
(Khan, Java Excel API Tutorial). Then the WritableWorkbook object is used to create a
WritableSheet object which Label objects are added to. Label objects dictate the cell position of
the information that is to be entered into the sheet. Once all the changes have been made, the
WritableWorkbook object must be written to and then closed in that order, otherwise an empty
file will be created. The resultant file is an xls file which can be read by Excel.

In both methods, the data collected from the fields are added to an ArrayList. This ArrayList is
cycled through and each item is added to the sheet. The difference between the two methods is
that the excelAdder method creates a copy of the existing sheet, counts the number of rows,
appends the new row, and then overwrites the existing sheet. The excelCreate method adds
column headers first, then proceeds to add the data and then saves the sheet.

The java classes for the three supplementary forms (Client, Species and Location) are near
identical to one another. They do not contain any of the functionality with regards to the camera,
or editing photos. They are simply for adding rows to their respective sheets and contain many
of the same methods, with the exceptions being those which are necessary to have as a
consequence of implementing the OnltemSelectedListener interface.

24

EditPhotoSurface.java

The EditPhotoSurface.java class is used to enable photo editing functionality. Its purpose is to
receive photos which have been taken by the user, and then give them the capability of drawing
on top of that photo to bring attention to any area which requires it.

The EditPhotoSurface class extends the Activity class, and contains a nested class; the
DrawingView which extends the View class. The DrawingView class is what allows the user to
draw on top of the photo.

An instance of a DrawingView object is created, and then the Bundle object which is passed to
the EditPhotoSurface activity is opened. This Bundle object contains the path to the image that
was taken. With this, the image can be loaded as a Bitmap object from local memory and drawn
as the background of the DrawingView. Once this has been done, the DrawingView is passed
as an argument to the setContentView method.

DrawingView dv;
String photoPath;

dv = new DrawingView(this);

Bundle gotBasket = getIntent().getExtras();
photoPath = gotBasket.getString("photoPath");

Bitmap source = BitmapFactory.decodeFile(photoPath, options);
Drawable bg = new Bitmapbrawable(source);
dv.setBackgroundbrawable(bg);

setContentView(dv);

The nested DrawingView class handles all the drawing events. By means of a switch case on a
MotionEvent object, the onTouchEvent method determines whether the user has touched the
screen, is moving their finger while touching the screen or lifted their finger from the screen.

@Override

public boolean onTouchEvent(MotionEvent event) {
float x = event.getX();
float y = event.getY();

switch (event.getAction()) {

case MotionEvent.ACTION_DOWN:
touch_start(x, y);
invalidate();
break;

case MotionEvent.ACTION_MOVE:
touch_move(x, y);
invalidate();
break;

case MotionEvent.ACTION_UP:
touch_up();
invalidate();

25

break;

}

return true;

Once a user has touched the screen, the application will give initial values to an already defined
Path object. As the user moves their finger across the screen, the Path object is given more
coordinates to map to, giving the effect of a line being drawn. Finally once the user lifts their
finger from the screen, the line drawn is set and the Path object is reset and ready to be used
again for any further lines.

private Path mPath;
mPath = new Path();

private float mX, mY;
private static final float TOUCH_TOLERANCE = 4;

private void touch_start(float x, float y) {
mPath.reset();
mPath.moveTo(x, y);
mX = X;
my = y;
}

private void touch_move(float x, float y) {
float dx = Math.abs(x - mX);
float dy = Math.abs(y - mY);
if (dx >= TOUCH_TOLERANCE || dy >= TOUCH_TOLERANCE) {
mPath.quadTo(mX, mY, (x + mX) / 2, (y + mY) / 2);
mxX = X;
my =y;

}

private void touch_up() {
mPath.lineTo(mX, mY);
mCanvas.drawPath(mPath, mPaint);
mPath.reset();

26

Figure 10, an attached photo can be drawn on to bring attention to any particular area

Saving of the image has been handled by making use of the device’s default Android back
button. If this is pressed, the user will be asked whether they want to save the photo with the
changes they have made, or whether to discard them. Both of these choices call the finish
method, causing the activity to end and return to the onActivityResult method from the
respective mapping activity which called it. Control is returned to the onActivityResult method
because the EditPhotoSurface activity was started using the startActivityForResult method.

@SuppressWarnings("deprecation")
@Override
public boolean onKeyDown(int keyCode, KeyEvent event) {
if (keyCode == KeyEvent.KEYCODE BACK && event.getRepeatCount() == 0) {

AlertDialog alertDialog = new
AlertDialog.Builder(context).create();
alertDialog.setTitle("Save image?");
alertDialog.setMessage("Do you want to save this image?");
alertDialog.setButton("Save",
new DialogInterface.OnClickListener() {
public void onClick(DialogInterface dialog, int which) {
dv.setDrawingCacheEnabled(true);
Bitmap b = dv.getDrawingCache();
try {
b.compress(CompressFormat.JPEG, 95,
new FileOutputStream(photoPath));

27

finish();
} catch (FileNotFoundException e) {
e.printStackTrace();

}

}
})s
alertDialog.setButten2("Don't save",
new DialogInterface.OnClickListener() {
public void onClick(DialogInterface dialog, int which) {
finish();
}

3
alertDialog.show();

return true;

}

return super.onKeyDown(keyCode, event);

Save image?

Do you want to save this image?

Don't save

Figure 11, the user is prompted to save or discard the edits that have been made

28

Conclusion

There are a few minor modifications which need to be made to the application. These are
regarding the automatic calculation of the bed length, the date formatting and the image quality
of the photo editing functionality. As these changes are minor, they will not require much time to
make, leaving more time for new additions or removals if it is seen fit.

Considering that the project was delayed due to issues with travel and organising the best time
to do so, there has been significant progress made in a short amount of time. This was partially
due to the fact that the break between semesters provided a time where work was solely
focussed on the project and nothing else like university papers.

Upcoming Stages

There are still some features which have not been implemented as of yet. One of these is the
forgiveness aspect of the design which requires that users be able to effectively undo any
mistakes that they make. Implementing this will mean adding listeners to the preview in such a
way that if a user was to press and of the cells, the data stored in the row which contains that
cell will populate the form, allowing for the user to change any of the information. Another
element which requires the addition of this forgiveness aspect is the photo editing functionality,
as a user may wish to undo whatever they have drawn and try again.

The photo editing functionality needs modification in that the method used to load the photo
from the memory and display it on the screen causes the photo to be displayed in low quality.
This is to do with the fact that the photo is being drawn directly onto a Canvas object, and is not
being used as an element in a view. Subsequent to some research, there seems to be a way
which allows for the photo to be set as the background of an ImageView element which should
produce a photo of better quality.

As of now, the application saves and loads spreadsheets from local memory; the memory card.
The next feature to implement regards the transferring of the sheets from the client-side device
to a server over a wireless network. This may require the use of the Google Drive API. The API
is able to handle offline access and syncing files, allowing for reading from and writing to files as
you would using a local file system (Introduction to the Google Drive Android API). Using this
API, a user will be able to always have access to the latest revision of any of the five sheets
which are used in this application.

Bibliography

About Scion. (2009). Retrieved August 8, 2014, from Scion:
http://www.scionresearch.com/general/about-us

Android Design Principles. (n.d.). Retrieved August 8, 2014, from Android Developers:
http://developer.android.com/design/get-started/principles.html

29

App Manifest. (n.d.). Retrieved August 9, 2014, from Android Developers:
http://developer.android.com/guide/topics/manifest/manifest-intro.html

Developer Tools. (n.d.). Retrieved August 8, 2014, from Android Developers:
http://developer.android.com/tools/index.html

Introduction to the Google Drive Android API. (n.d.). Retrieved August 7, 2014, from Android
Developers: https://developers.google.com/drive/android/intro

Khan, A. (n.d.). Java Excel API - A Java API to read, write and modify Excel spreadsheets.
Retrieved August 7, 2014, from Java Excel API: http://www.andykhan.com/jexcelapi/

Khan, A. (n.d.). Java Excel API Tutorial. Retrieved August 7, 2014, from Java Excel API
Tutorial: http://www.andykhan.com/jexcelapi/tutorial.html#writing

Principles of User Interface Design. (n.d.). Retrieved August 8, 2014, from Bokardo:
http://bokardo.com/principles-of-user-interface-design/

30

	Abstract
	Project Outline
	Related Work
	Design
	Android Developer Tools and Software Development Kit
	Data Model

	Implementation
	Android Manifest
	Static and Dynamic Mapping Forms
	The XML Layouts
	Imported APIs
	The Java Classes
	EditPhotoSurface.java

	Conclusion
	Upcoming Stages
	Bibliography

