
1

BTech Final Report

Dasarsh Vadugu

Abstract

This project requires the creation and development of a mobile application which can be run on

a tablet interface. Its use is centred on acting as an intermediary between users working in a

nursery and the information which they gather while doing so. The application will merge the

current, paper-based system of collecting information with a tablet interface. This will change

the way in which information is gathered while maintaining the same feel and user experience

which is analogous to filling out a questionnaire on paper. The existing paper-based system is

2

prone to several kinds of errors and resultant unstructured data, both of which can be

detrimental to users of the data. Questionnaires will be dynamically created based on

specifications which the application will be able to read, parse and understand. Integration of

cloud services allows for this application to have safe and secure access to the data from

anywhere. As a result of this application, time and effort will be saved with regards to collecting

information from the field.

Project Outline

Figure 1, Scion.

Scion is a New Zealand Crown Research Institute (CRI) that specialises in research, science

and technology development for the forestry, wood product and wood-derived materials and

other biomaterial sectors (About Scion, 2009). There are large grounds where plants and trees

are grown and kept track of for their research purposes. In these grounds and in the nursery,

several different things are observed and must be measured and recorded; these can vary from

the root structures, rates of growth or colouration of plants and more.

At Scion, when information is to be collected from the nursery, it is done so on paper. Whatever

information is being recorded is done so onto paper, and then this is passed on through many

people until it is entered into a digital format represented by an Excel spreadsheet, which is then

3

passed along to someone else who will then finally enter the information into their systems. This

paper-based system is a bottleneck in their operations and deserves to be streamlined.

The main issues with the existing paper-based system are as follows:

1. Illegibility of writing – What’s written on a paper form cannot be guaranteed to be

interpreted correctly by whoever has the task of entering the data into a spreadsheet.

This results in data which can have a high frequency of errors and makes it so that the

data is no longer reliable.

2. Validation of input – Another major contributor to unreliable data is the lack of validation.

Even if the data recorded is perfectly legible, there are no systems in place to ensure

that what has been recorded is appropriate. An example of this is an answer to a

question being valid only if it is a number between certain ranges. This is a constraint

which cannot be tightly enforced on paper. A consequence of such an issue is incorrect

data due to avoidable absentmindedness.

3. Time to get to system – The data collected is passed through the hands of several

employees before being entered into a digital format, which is then passed through the

hands of more employees before reaching its destination in the system. This is a waste

of time and resources, both of which are important to any organisation’s operations.

Such a delay in the storage of information may have consequences to the organisation

especially when dealing with clients who may require some information quickly.

4. Speed of recording information – The speed at which data is collected is something

which is also detrimental to the organisation. The pen is slower than the keyboard and

although this is can be a minor difference in speed for an individual record, this is

something that can add up to become a significant amount of time which is wasted.

5. Unstructured data – Data which is collected correctly, but not in a correct format is a

hindrance to operations. This data cannot be placed into a database easily, if it is

possible at all. This can prove to be a major issue with organisations as the data is

rendered essentially useless.

The substitution of the current paper-based system will eliminate the issues listed above. The

addition of a smart device allows for the problems to be mitigated, by means of this application

which is to be developed.

4

1. Illegibility is no longer an issue because all the data entered into the application will be

done so via a soft keyboard on the touch screen. Due to this, there is no issue with

misinterpretations of what is read.

2. Validation of input becomes possible by polling the fields in which data is to be entered.

These fields can be configured to reject input which does not fall within an accepted

subset of answers.

3. Time to get to system – The connectivity-enabled device will be able to send and receive

data over networks. As a direct result of this, the application will be able to send the data

which it collects to the system as soon as it is able. This transfer of data will only be

possible in the presence of network connectivity, so if there is no network at that time

and place, then the application will wait until there is a network signal which is strong

enough for it to perform the action of transferring data to the system where it is to be

stored.

4. Speed of recording information – The device’s touch screen will display a soft keyboard

which will greatly enhance the speed at which information can be input into the

application. Keyboards are a faster alternative to the pen and paper.

5. Unstructured data – The application will be able to configure fields in which data is to be

entered. This allows for the important pieces of data to be extracted from the user of the

device, which ultimately results in structured data which can be entered into a database,

allowing for the data to become useful information.

For the sake of quick and efficient recording of data in an outdoor nursery, an android

application is to be made. This is to reduce the amount of time taken for the current, paper-

based system to be processed and converted into an electronic form. The objective is to create

an application which will act as an intermediary between the user who is recording information

and the system where the recorded information is to be stored. Such a resultant application will

cause a seamless transition from data being recorded to data being stored.

There was a choice to be made regarding the operating system on which this application

was to run. The two choices were Apple’s iOS and Google’s Android.

The decision was one which was easy to make. iOS applications are written in Xcode which

is an integrated development environment (IDE) developed by Apple for developing

applications for both their mobile and desktop platforms. This requires the use of Objective-

5

C and their respective compilers for development. Android uses Eclipse as its IDE and the

programming language it incorporates to develop is Java.

I have significantly more experience in working with Java, and also have experimented with

building Android applications using the Eclipse IDE. Therefore, the decision to work with

Android programming in Java was natural.

The Android operating system has several properties integrated into their design which offer

some clear advantages for the design of this project. The aim is to reduce and eliminate the

need for paper-based systems. For this reason, these Android operating system properties

can be exploited to achieve this goal.

1. The Activity and the Service - An activity is represented by what’s shown on the

screen. Each activity is delegated the screen once it has been started and therefore

has a user interface. An application may have several activities incorporated in its

functionalities. An example of this is a chatting application which may have one

activity for viewing all the chats, an activity for beginning a new chat with a person,

an activity for adding new people to an existing chat and another activity for the

actual chat thread. Activities have the ability to start other activities. Activities work

together to create the full functionality of an application.

In contrast to activities, services run in the background and have no user interface.

An example of a service is one which uploads and downloads data behind the

scenes without interrupting the user from performing any actions.

2. The Activity Lifecycle - The activity lifecycle is a way of describing the series of

changes that an activity goes through during after its being run. It can be used to

manage the behaviour of the activity via its lifecycle callback methods. For

developers, this means that they have control over what happens whenever a user

enters an activity or leaves an activity and provides methods to cater to events which

should have the ability to pause or stop an activity.

6

Figure 2, The activity lifecycle, with all the different stages of an activity’s life

from its starting to its shutting down.

3. Adaptable Layouts - The Android operating system is able to manage the layouts

that an application has incorporated within it. These layouts are able to scale and

7

grow appropriately to suit the screen size of the device that the application is being

run on. This property is one which is important because of the widespread presence

of the Android operating system. It can be run on all sorts of devices and therefore,

there are no set screen sizes to which developers may adjust or fine-tune their

application to work with as there is with Apple’s iOS. An example of this would be an

xml layout displaying the same elements, but either larger or smaller as a direct

result of the size of the screen. This leads to layouts being universally pleasing to the

eye regardless of the device with which the layout is being viewed with.

4. Media Capabilities - Applications have access to the media capabilities which are

available on the device. Therefore this allows applications to incorporate features

requiring either the camera for images or videos, or the audio recorder for audio-

related functionality. The touch display can also be considered to be a form of media

input and be taken full advantage of when allowing users to draw on top of selected

photos, giving them the ability to attract attention or annotate them if necessary.

5. Inbuilt Sensors - The sensors built into the devices enable applications to use the

operating system to use the information that the sensors gather. Applications can

now be aware of their surroundings, locations, temperatures and movements. This

collection of readily available information can be taken advantage of by using them

to deduce any information which the user would usually be required to do. This

reduces the amount of time and effort the user puts into performing their actions.

6. Connectivity - Nowadays, devices are almost constantly connected to a network.

This is an advantage because web services can be made use of without having to

interrupt the user. This is essential for actions such as syncing, uploading or

downloading files. Here, the situation where the user is forced to wait is avoided.

Android also provides several HTTP clients to allow applications to have the ability to

send or receive data.

7. Validation - Active policing of data is made possible with a smart device. In contrast

to paper questionnaires, a smart device is able to alert the user whenever something

erroneous has been entered into a field or if the user is about to perform an action

which is illegal or can cause issues in the handling of that information. Such data

validation results in data which is structured and cannot be misconstrued. This data

can reliably and consistently be transformed to meaningful information.

8

One of the more common processes which require recording information from the nursery is

mapping. Mapping is essentially a stocktake of the plants, resulting in a table which shows

where plants are located, how many there are, which client has ordered them, and so on. The

process of mapping can further be broken down into two categories; static mapping and

dynamic mapping.

Static mapping refers to the mapping of plants which are directly planted in soil in the ground.

These plants are not moved until the end of their research term or until they are ready to be sent

to the clients which have ordered them.

Static mapping requires the following information to be recorded:

Field Type

Compartment Text

Bed Numeric

Start of the bed Numeric

End of the bed Numeric

Bed length Numeric

Number of plants Numeric

Plant density Numeric

Client Text

Species Text

Details 1 (if any) Text

Details 2 (if any) Text

Photo details (if any) Text

Table 1, the fields and respective types of the data required for Static mapping form

Dynamic mapping refers to plants which are in small pots. These plants are moved from

location to location within the nursery depending on their health and stages of growth. An

example of this would be a sapling which has been growing inside a shed and receiving care

during its early growth being moved outside once it is ready to receive direct sunlight or a plant

which has taken too much harsh sunlight being moved back inside to receive careful watering to

counteract its negative growth.

Dynamic mapping requires the following information to be recorded:

9

Field Type

Environment Text

Location Text

Number of plants Numeric

Plant density Numeric

Client Text

Species Text

Details 1 (if any) Text

Details 2 (if any) Text

Photo details (if any) Text

Table 2, the fields and respective types of the data required for Dynamic mapping form

As can be seen, both types of mapping require similar information to be recorded, with the

exception of physical location which is fixed for static mapping and variable for dynamic

mapping and are referred to as different (compartments as opposed to environments). Also the

omission of the data relating to the bed in the dynamic form reflects the fact that the plants in

question are not planted in the ground.

The information regarding the client and species featuring in both types of mapping and that of

the location which is only featured in dynamic mapping are not to be entered freely by the user.

Users will be required to choose from a list of clients, species and locations. This list will need to

be accessible by the application, from which it will read and display the options to the user. The

ability to edit the information regarding client, species and location should also be one of the

functionalities of the application. This is to accommodate any additions of new clients, species

or locations.

Related Work

Kupzyk and Cohen (KA Kupzyk, 2014) acknowledge that data which is collected must be done

so correctly. Direct consequences of data entry errors are delayed analyses and incorrect

conclusions being reached. Two contributors to data entry errors are users entering the

incorrect values and users unintentionally skipping questions.

Kupzyk and Cohen proposed that these two factors can be resolved using simple strategies

which both require giving suggestions to the user. Incorrect data cannot be entered if users are

10

given a choice of valid answers to choose from, such as in a dropdown box or a multiple choice

scenario. The skipping of items can be prevented by implementing a counter which ensures that

all the questions have been answered, and will not allow the user to progress if there are any

answers which are missing.

Their system, implemented in Microsoft Excel, resulted in improved reporting in a nursing home

facility for reporting incidents of falls.

Kumar et al. (A. M. V. Kumar, 2013) address the fact that most published articles which rely on

data collection are not guaranteed to have data which is of a quality that is ensured by the

definitive gold standard of double entry and validation. The data is incorrect due to data entry

errors which are not accounted for.

The proposed solution to this by Kumar et al. was a system which would allow for those

collecting data to enter this data into fields which would be policed by inbuilt checks, thereby

reducing the frequency of data entry errors. Another feature which was added to this system

was that which used Dropbox to act as a file sharing service with both online and offline

capability. Its functionality extended beyond a file sharing service to a service which provided

near real-time file synchronisation.

The implementation of their system was a success in that it reduced the frequency of data entry

errors, and also positively impacted the time and effort required to work with the system.

Beretta et al. (L. Beretta, 2007) were faced with auditing a database and correcting identified

errors. In doing so, they acknowledge the importance of accurate data recording to prevent such

errors from being stored. They state that such errors can lead to serious information bias which

can be avoided by having consistent data recording.

Upon identifying and correcting erroneous data in their database, Beretta et al. found that data

collection being improved by a computer-assisted system would contribute to a better quality of

data in databases. They acknowledge that a computer-assisted system would be able to limit

errors in data entry by detecting and disallowing data which would not fall within an accepted

range.

Coons et al. (Stephen Joel Coons, 2009) investigated the possibility of electronic forms

performing differently in terms of the quality of the information which they gather when

compared to their paper-based alternatives. Their aim was to deduce and state any clear

advantages and/or disadvantages that electronic forms may have over paper-based forms.

11

Paper-based patient-reported outcome (PRO) measure forms were adapted to an electronic

format (ePRO) and their comparability or measurement equivalence was used to juxtapose the

quality of the information gathered. So as to not be biased towards any one platform of

electronic media, Coons et al. administered the PROs on several screen-based devices. Their

results show that there was no bias, indicating that any screen-based device could be used.

The data collected from an ePRO was determined to be of equal or superior quality when

compared to data collected by its paper-based predecessor. Coons et al. state that

administering the ePRO subsequent to the paper measure bears the same results that one

would get if the paper measure was administered twice.

Allenby et al. (A. ALLENBY, 2002) address the feasibility of touchscreen devices being used in

clinics for the purpose of patients recording information on their own. Their aim was to

determine how effective and useful the touchscreen devices will be as an alternative to a paper-

based alternative.

The comparison between paper-based and touchscreen-based questionnaires can be made by

converting the paper-based and then allowing the questionnaires to be put to use. The results

will indicate the feasibility of touchscreen devices being used in the clinic. Allenby et al. state

that data becomes more structured when collected in a more regulated fashion, as opposed to

systems similar to paper-based ones. It is claimed that making use of electronic media to collect

information also increases the speed of the data collection. This could allow for more

information to be collected and/or less time being spent on the questionnaires and/or both.

The results showed that the accuracy and completeness of the data which was collected by

means of the touchscreen device was excellent. This meant that the method, which eliminated

the need for transcription and secondary data entry, was deemed feasible to be used in the

clinic.

Design

There are five sheets in total which will take the form of the underlying information behind the

functionality of the application; two sheets for the static and dynamic mapping, and three sheets

for the information regarding the clients, species and locations. Each of these sheets will need

to be added to and this will be possible by the means of an individual form for each sheet. The

form will contain all the different fields which are required to complete a row which can then be

added to the corresponding sheet.

12

The forms for the client, species and location sheets will be simple in that they will not be doing

more than appending rows onto the end of their corresponding sheets. The design for these

three supplementary sheets will be near identical.

Field Type

Company name Text

Contact name Text

Work phone Phone number

Mobile phone Phone number

Address Text

Table 3, the fields and respective types of the data required for the Client form

Field Type

Name Text

Code Text

Genus Text

Variety Text

Common name Text

Table 4, the fields and respective types of the data required for the Species form

Field Type

Location Text

Description Text

Table 5, the fields and respective types of the data required for the Location form

Added camera-based functionality will be added to the mapping forms. While completing any of

the two mapping forms, users will be able to take a photo which can then be attached to the

sheet. This attachment is reflected by the value for ‘photo details’ being populated with the

filename of the photo that was taken. Additionally, if the user wishes to, they may draw on top of

a photo which they have just taken in case they feel the need to draw attention to some part of

the photo. This edited photo is attached to the sheet in the same way.

13

The sheets for clients, species and locations will be read by the application. This allows for the

addition of dropdown boxes in the mapping forms so that users may choose one of the existing

clients, species, and locations to populate the corresponding fields. This imposes a multiple

choice scenario on the user where they are to choose the correct entry from a range of existing

choices. As the application will be reading the aforementioned three sheets, any new rows

added to the sheets using the application will be reflected in the dropdown boxes instantly.

Forgiveness is an aspect which needs to be implemented to cater for situations when the user

has added an erroneous row to a sheet. In such a scenario, a user should be able to select the

erroneous row from the sheet preview, which will load that row’s values into the form, allowing

for the user to edit any field which is incorrect. Once this has been done, the user pressing the

button to confirm the row will replace the erroneous row with the corrected one, as opposed to

adding onto the end. This aspect of forgiveness is also something which needs to be present in

the photo editing process. Any drawn lines should be able to be undone as would be possible in

any standard image editing application.

There must be clarity in the design of the forms such that users will be able to easily tell what

information is to be filled in which field (Principles of User Interface Design). This serves as a

form of assistance to the user in that they can be reminded what to observe and record by the

application if they have forgotten or are new to the process.

Validation can be enforced by the application on the values entered into fields. This prevents

erroneous entries in the context of format and ensures a kind of structure in the resulting sheet.

Ensuring that a user only enters what they are meant to is an element which can easily be

achieved on a tablet device. As the only means of entering data is by the soft keyboard, the

forms can be configured in such a way that a standard QWERTY keyboard is only shown for

field which require text entries and a numerical keyboard being shown for fields which require

numerical entries.

Consistency between the designs of the forms is important for the user as this confirms for them

that similar things act in the same way (Android Design Principles). For this reason, the layouts

of the five forms have been kept the same in that fields which are the same or similar are in the

same positions across all forms. This results in interfaces with elements that looks similar which

14

can inherently be assumed of having similar behaviour, and makes it easier for users to

understand what is required of them (Principles of User Interface Design).

The fields in the form must follow a logical order. This is for the ease of use for the user. A form

with a logical flow will mean that users will not need to be jumping from field to field all across

the screen. The piece of information which naturally comes first will be featured first and will be

followed by that which naturally follows afterwards (Android Design Principles). The application

will begin to require information from a large-picture perspective, and then begin to focus on the

details of the information being collected.

Android Developer Tools and Software Development Kit

To develop this application, the Android Developer Tools (ADT) and the Android Software

Development Kit (SDK) will be used. This allows for the application to be built in Java using

Eclipse Integrated Development Environment (IDE). The IDE can emulate Android devices of

varying screen size and specifications, allowing for testing to be done on these virtual devices

while still retaining functioning features such as the camera, sensors, multitouch and telephony

(Developer Tools).

The ADT also allows for a running application to be installed onto a physical Android device,

which was what was done for development. The application was run on a tablet which directly

reflects its specification to be used on a tablet device. Debugging the application on a real,

physical tablet was also advantageous due to the low speed issues and lack of responsiveness

of the emulator.

The Android SDK version that was being developed for was 8 so every device running an

Android version from 2.2 onwards can run the application.

Data Model

The Entity-Relationship Diagram (ERD) represents the data and the flow of information within

the application. As mentioned before, the two mapping forms require information from two (or

three in the case of the dynamic mapping) sheets to complete a row which can then be added to

the sheet. This is evident in the ERD where the relationship between the two main forms and

the three remaining forms is represented as a one-to-many relationship. This means that for any

15

given static mapping entry, there can only be one client, or one species assigned. The same

can be said for the dynamic mapping entries with the addition of the one-to-many relationship

with locations.

Figure 3, ERD showing the relationship between the data in the different forms

Implementation

Android Manifest

The Android Manifest xml file is mandatory for every application. It is an accumulation of all the

information regarding the application which is to be sent to the Android system before the actual

running of the application’s code (App Manifest). The information that it handles includes the

package name, the minimum SDK requirements, all the activities which will be used within the

application and the permissions which outline which protected parts of the Android API are to be

used, such as activating the camera or writing to the memory card.

For the application at this point, the manifest contains the following:

 A package name of com.dasarsh.scion.

 A minimum SDK of 8 which correlates to an Android version of 2.2.

 A target SDK of 18 which correlates to an Android version of 4.3.

16

 The permissions “android.permission.READ_EXTERNAL_STORAGE” and

“android.permission.WRITE_EXTERNAL_STORAGE” for the sake of reading and writing from

the memory card.

 An activity for each of the following:

 EntryPoint

 StaticForm

 DynamicForm

 ClientForm

 SpeciesForm

 LocationForm

 EditPhotoSurface

Static and Dynamic Mapping Forms

Both types of mapping require one activity each and both activities require two files for each of

them; a java file and an xml file. The xml file contains all the information regarding the layout of

the activity such as the layouts and their elements on the screen. The java file contains all the

code which enables what is seen on the screen to have their respective functionalities and also

handles any errors.

The XML Layouts

The layouts of the forms are near identical. They all have half of the screen dedicated to the

sheet preview while the other half is dedicated to the actual form. At the bottom of the half which

contains the form, there is a panel of buttons. The whole view is contained in a LinearLayout,

which was divided in two for the HorizontalScrollView to contain the preview and another

LinearLayout to contain the form and the buttons.

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:orientation="vertical"

 android:weightSum="100" >

 <HorizontalScrollView

17

 android:id="@+id/STATIChsvPreview"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:layout_weight="50" >

 </HorizontalScrollView>

 <LinearLayout

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:orientation="vertical"

 android:weightSum="50" >

 </LinearLayout>

</LinearLayout>

Figure 4, the division of the screen in two for the preview and the form

18

The sheet preview’s design dictates that it should look and act like a spreadsheet editor similar

to Microsoft Excel. This means that should the sheet become large in terms of both rows and

columns, there should be no issues with both horizontal and vertical scrolling in order to be able

to view any cell at any position. To accomplish this requirement, nesting layouts within layouts

was necessary.

The HorizontalScrollView further contains a ScrollView which contains a TableLayout. The

TableLayout within a ScrollView gives the preview the functionality of vertical scrolling as the

TableLayout grows vertically. The ScrollView within a HorizontalScrollView gives the

functionality of horizontal scrolling as the TableLayout (and the ScrollView encasing it) grows

horizontally.

<HorizontalScrollView

 android:id="@+id/STATIChsvPreview"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:layout_weight="50" >

 <ScrollView

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:orientation="horizontal" >

 <TableLayout

 android:id="@+id/STATICtableLayoutPreview"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent" >

 …

 </TableLayout>

 </ScrollView>

</HorizontalScrollView>

19

The lower half of the screen is dedicated to the LinearLayout of the form with which users are to

record information to add rows to the sheet. This was implemented in a straightforward way

such that every field which requires the whole width of the screen is simply added to the

LinearLayout, whereas fields which are related and are to be grouped together on the same line

are added into a nested LinearLayout. An example of this is the two fields regarding the

beginning and ending of a bed, and the field regarding the length of the bed. All three fields are

added to a LinearLayout which is nested within the LinearLayout dedicated for the bottom half

of the screen.

<LinearLayout

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:orientation="vertical"

 android:weightSum="50" >

...

<LinearLayout

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:orientation="horizontal"

 android:weightSum="99" >

 <EditText

 android:id="@+id/STATICetBedStart"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:layout_weight="33"

 android:ems="10"

 android:hint="@string/StartOfBed"

 android:inputType="number" />

 <EditText

 android:id="@+id/STATICetBedEnd"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

20

 android:layout_weight="33"

 android:ems="10"

 android:hint="@string/EndOfBed"

 android:inputType="number" />

 <EditText

 android:id="@+id/STATICetBedLength"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:layout_weight="33"

 android:ems="10"

 android:hint="@string/LengthOfBed"

 android:inputType="number" />

 </LinearLayout>

...

</LinearLayout>

Figure 5, the grouping of the bed-related fields on one line

The form layout features fields in which users are to enter the data which they record. These

fields are EditText elements and text can be entered into them. EditText elements can give

users hints to serve as reminders on what to enter. These hints are useful to provide clarity and

also functions to remind the users of what is to be entered. An EditText element can be

configured to only accept a type of input, which serves as validation in the following case where

only a number will be accepted, which prompts the user with a numberpad as opposed to a

QWERTY keyboard to type with.

 <EditText

 android:id="@+id/STATICetBed"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

21

 android:layout_weight="50"

 android:ems="10"

 android:hint="@string/BedNumber"

 android:inputType="number" />

Figure 6, a numberpad is shown for input which should strictly be numeric

Spinner elements feature in the form layout. These elements are for giving the user a multiple

choice scenario where they are to choose a single option which is most appropriate. For this

application, the Spinner elements are used to provide a dropdown box where users are to select

the appropriate Client, Species and Location.

<Spinner

 android:id="@+id/STATICspCompany"

22

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:layout_weight="50" />

Button elements conclude the form layout. These elements are used to trigger events when

they are pressed and are listened to within the form’s accompanying java class. The two main

mapping forms contain four buttons which are nested within a LinearLayout which groups them

together.

<LinearLayout

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:orientation="horizontal"

 android:weightSum="100" >

 <Button

 android:id="@+id/STATICbAttachPhoto"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_weight="25"

 android:text="@string/AttachPhoto" />

 <Button

 android:id="@+id/STATICbEditPhoto"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_weight="25"

 android:text="@string/EditPhoto" />

 <Button

 android:id="@+id/STATICbSubmit"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_weight="25"

 android:text="@string/MakeASheet" />

23

 <Button

 android:id="@+id/STATICbClear"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_weight="25"

 android:text="@string/Clear" />

 </LinearLayout>

Figure 7, the layout of buttons featured in both Static and Dynamic mapping forms

Figure 8, the layout of buttons featured in the Client, Species and Location forms

The three forms for Client, Species and Location which do not require camera and photo editing

functionalities have only the buttons required to add rows and clear fields. They are near

identical.

24

25

Figure 9, the three forms for Client, Species and Location are near identical aesthetically and

functionally

Imported APIs

The Java Excel API of version 2.6.12 was imported for this application. Its purpose is to read,

write and modify Excel spreadsheets (Khan, Java Excel API - A Java API to read, write and

modify Excel spreadsheets). This API allows for Java code to access the means to create

spreadsheets dynamically as well as read spreadsheets and access the cell data.

The Java Classes

Java classes which accompany their respective xml classes instantiate the xml file’s elements

and handle events which are either triggered by those elements or require updating the values

of those elements.

All the java classes created extends the Activity class which allows the java class to be

launched as an activity from within other java classes. Having the Activity class as a super class

allows for the java class to have access to many of the methods within said Activity class, such

as the onCreate method which allows for the java class to be linked to its respective xml layout.

All of the java classes implement the onClickListener to be able to better handle events

where buttons have been pressed. The two mapping forms implement the

onItemSelectedListener for the case of when an item in a Spinner element has been

selected. Due to the fact that these two listeners are interfaces, the methods within them must

be implemented within the java class, even if empty.

What must be done first in the java class is the linking of the java class with its respective xml

layout class. This is done by setting the content of the screen to be the xml view.

 setContentView(R.layout.static_form);

Only after this can the instantiation of the xml elements be done. Certain EditText elements

have been programmatically configured in the java class such that they are not able to be

edited. These are the time and date EditText elements which are to be automatically generated

26

by the Android API. This was done by passing null to an EditText element’s keyListener

method.

 EditText date, time;

 time = (EditText) findViewById(R.id.STATICetTime);

 time.setKeyListener(null);

The purpose of using this method to nullify any changes made to the EditText as opposed to

using a simple label which cannot be changed by default is to retain the look and feel of a form

which is going to be used to populate a row which will be added to a sheet.

The time and date values which are displayed in the time and date EditText elements are

derived from the Date class. The java class instantiates a Date which matches the system time

of the device and deduces the hours and minutes to use for the time and the day, month and

year to use for the date. String operations are done to prepend ‘0’ to the minutes and seconds

values to prevent the time being shown as 12:9 instead of 12:09. The date and time are also

lastly combined together to create a String which will be used as the filenames of photos taken

using the application.

The two EditText elements for the starting and ending lengths of the beds, which are then used

to calculate the length of the bed itself, are set to update the value of the EditText element

dedicated to the length of the bed once the focus has changed from either the start or end

EditText. This was done using the EditText element’s setOnFocusChangeListener method

and passing a custom OnFocusChangeListener into it.

bedStart.setOnFocusChangeListener(new OnFocusChangeListener() {

 public void onFocusChange(View v, boolean hasFocus) {

 if (!hasFocus) {

 updateBedLength();

 }

 }

 });

27

Spinner elements are instantiated by means of population with the data which is being read

from the corresponding xls sheet. The Client Spinner element will be reading the column of

clients from the client.xls sheet and then displaying those clients as Spinner items.

 ArrayList<String> list = new ArrayList<String>();

 ...

 // add the names of the companies stored in the client.xsl file into

 // the ArrayList for the spinner

 for (int i = 0; i < numRows; i++) {

 list.add(sheet.getCell(0, i).getContents());

 }

 ArrayAdapter<String> adapter = new ArrayAdapter<String>(this,

 android.R.layout.simple_spinner_item, list);

 adapter.setDropDownViewResource(android.R.layout.simple_spinner_dropdown_item)

;

 spinner.setAdapter(adapter);

 spinner.setOnItemSelectedListener(this);

The Spinner is populated with items which correlate to columns of the sheet which is being

read, inclusive of the column heading such as “Client Company” or “Species Name”. The

headings are included due to the fact that there is no direct way to programmatically configure a

hint for the user in the same way that can be done with an EditText element.

28

Figure 10, the entries from the Client Company column from the Client sheet are shown as items

in the Spinner element in the Static form

The onItemSelected method of the onItemSelectedListener interface which was mandatorily

implemented includes a switch case which deduces which Spinner element has had an item

selected from, and then proceeds to check the position of the item which was selected. If the

item is in position 0, then that means the first element has been selected, which is the column

heading. The column heading is not valid data which can be entered into the sheet, and so if it

has been selected, the data added in its stead is simply an empty String.

 @Override

 public void onItemSelected(AdapterView<?> parent, View view, int position,

 long id) {

 // for handling when a Spinner item is selected

 switch (parent.getId()) {

 case R.id.STATICspCompany:

29

 // if the column header is not the one which is selected

 if (position != 0) {

 company.setSelection(position);

 companyData = (String) company.getSelectedItem();

 } else {

 companyData = "";

 }

 break;

 case R.id.STATICspSpecies:

 // if the column header is not the one which is selected

 if (position != 0) {

 species.setSelection(position);

 speciesData = (String) species.getSelectedItem();

 } else {

 speciesData = "";

 }

 break;

 // cases are set such that if there is not change to the spinner

 // values and they display the column headers, they do not appear on

 // the sheet once added

 }

 }

In the xml layout, the sheet preview consists of a HorizontalScrollView encasing a ScrollView

encasing a TableLayout. The TableLayout is the real sheet preview being displayed, and the

HorizontalScrollView and ScrollView which it is nested in serves as a means of navigation

within the sheet. A TableLayout is to be populated with TableRow elements, which can contain

any element within it. The sheet that is to be previewed is being read from one row at a time,

and each cell in that row is being used to create a TextView element which is then added to a

TableRow element and finally added to the TableLayout element. The TextView is being made

with some padding on both left and right sides of the cell information and a simple resource

30

defining a border is being drawn do differentiate the cells from one another and separate the

data.

 HorizontalScrollView hsc;

 TableLayout tl;

 ...

 hsc = (HorizontalScrollView) findViewById(R.id.STATIChsvPreview);

 tl = (TableLayout) findViewById(R.id.STATICtableLayoutPreview);

 ...

 // starting at rowsDisplayed to add only new rows

 for (int i = rowsDisplayed; i < numRows; i++) {

 // create a new TableRow

 TableRow tr = new TableRow(this);

 // width FILL_PARENT height WRAP_CONTENT

 tr.setLayoutParams(new TableRow.LayoutParams(

 TableRow.LayoutParams.FILL_PARENT,

 TableRow.LayoutParams.WRAP_CONTENT));

 for (int j = 0; j < numCols; j++) {

 // create a new TextView

 TextView b = new TextView(this);

 // because jxl works like (columns, rows)

 b.setText(" " + sheet.getCell(j, i).getContents() + " ");

 // width FILL_PARENT height WRAP_CONTENT

 b.setLayoutParams(new TableRow.LayoutParams(

 TableRow.LayoutParams.FILL_PARENT,

 TableRow.LayoutParams.WRAP_CONTENT));

 // draw the border around each TextView for grid look

 b.setBackgroundResource(R.drawable.border);

 // add the TextView to the TableRow

 tr.addView(b);

 }

 // Add the TableRow to the TableLayout which is width

 // FILL_PARENT and height WRAP_CONTENT

 tl.addView(tr, new TableLayout.LayoutParams(

 TableLayout.LayoutParams.FILL_PARENT,

31

 TableLayout.LayoutParams.WRAP_CONTENT));

 }

For the static form, which features the starting and ending bed EditText elements and the bed

length EditText element, there is a method which calculates the length from the starting and

ending values. This method is called whenever there is a shift in focus from either of the two

EditText elements. The first check being made is one which ensures that the lengths of the

data in the two elements are greater than 0, which means that there is a non-null value in the

EditText element. The values are then parsed from their default type of String to integer. This is

a safe operation and there is no case where data which is not a number is attempted to be

parsed into an integer format. This is due to the validation occurring on the xml layout side

where the input type is assigned to being numeric, which only allows users to enter numbers.

On successfully parsing the values, there is a check to see whether the end value is greater

than the start value. If this is true, the length is calculated by subtraction. If that is not the case,

the user will be alerted to it by means of an AlertDialog which then prompts the user back to

the EditText element for the end of the bed by requesting the focus to that element.

 @SuppressWarnings("deprecation")

 public void updateBedLength() {

 // if both bedStart and bedEnd have values

 if (bedStart.getText().length() > 0 && bedEnd.getText().length() > 0) {

 // get these values

 int start = Integer.parseInt(bedStart.getText().toString());

 int end = Integer.parseInt(bedEnd.getText().toString());

 // compute the length

 int length = end - start;

 // if end is greater than start (as it should always be)

 if (end > start) {

 // set the text to bedLength

 bedLength.setText(length + "");

 } else {

 // otherwise alert the user

 AlertDialog alertDialog = new AlertDialog.Builder(context)

 .create();

 alertDialog.setTitle("Invalid argument");

32

 alertDialog.setMessage("The value for 'bed end' must be

greater than the value for 'bed start'");

 alertDialog.setButton("Okay",

 new DialogInterface.OnClickListener() {

 public void onClick(DialogInterface

dialog, int which) {

 bedEnd.requestFocus();

 }

 });

 alertDialog.show();

 }

 }

 }

Figure 11, the value for the end of the bed (25) is less than that of the start of the bed (50), and so

the user is prompted with an alert

The onClick method which must be implemented due to the class implementing the

onClickListener interface contains the code which handles what is to happen if any of the

33

buttons are pressed. The method is passed a view, from which a switch case is required to

determine which of the buttons has been pressed.

 @SuppressWarnings("deprecation")

 @Override

 public void onClick(View v) {

 // what to do when buttons are pressed

 switch (v.getId()) {

 // submit button is pressed

 case R.id.STATICbSubmit:

 ...

 break;

 // attach photo button is pressed

 case R.id.STATICbAttachPhoto:

 ...

 break;

 // edit photo button is pressed

 case R.id.STATICbEditPhoto:

 ...

 break;

 // clear button is pressed

 case R.id.STATICbClear:

 ...

 break;

 }

 }

In the case of the “Submit” button being pressed, all the information from the respective fields

will be collected, and then there will be a check to determine whether the sheet for the mapping

exists.

 collect();

 File path = new File("sdcard/scion/static_mapping.xls");

34

If the path exists, the collected data will be appended to the existing file as a new row. If the

path does not exist, that means there is no previously existing spreadsheet to append onto and

a new sheet is required to be made. A Toast message is displayed afterwards to confirm to the

user that the required operation has completed.

 if (path.exists()) {

 // if so, add to the sheet

 excelAdder();

 Toast toast = Toast.makeText(this, "Row added to sheet",

 Toast.LENGTH_SHORT);

 toast.show();

 } else {

 // if not, make a new sheet and add to it

 excelTesterStatic();

 Toast toast = Toast.makeText(this, "Sheet created",

 Toast.LENGTH_SHORT);

 toast.show();

 }

Once the new row has been added, the preview is required to show the changes made to either

the existing sheet, or display the new sheet. This is done by essentially reloading the whole

activity again and finishing the running activity so as not to waste resources.

 // restart the activity so that the form can be used again to add

 // more rows

 startActivity(starterIntent);

 // finish this activity so as not to waste resources more

 finish();

The variable starterIntent is required to restart the same activity. It is an Intent type and is a

global variable which was instantiated in the onCreate method as such:

starterIntent = getIntent();

35

In the case of the “Attach photo” button being pressed, an intent for starting the camera

application will be started. The user will be prompted to take a photo using the device’s default

camera application and once they have done so, the camera activity will complete and the code

from the onActivityResult method will be run. This is due to the fact that the

startActivityForResult method is used, which means that there is an opportunity to do

something once an activity finishes, as opposed to letting them finish and moving on which is

what would happen if the startActivity method was used instead.

 // create an intent for starting the camera

 i = new Intent(android.provider.MediaStore.ACTION_IMAGE_CAPTURE);

 // activity for result returns to the onActivityResult() method

 startActivityForResult(i, cameraData);

On completion of the camera activity, there is a switch case which determines that the camera

activity has finished and has results which are to be handled. These results are the data

regarding the photo taken. With this data, the application saves the photo in the jpg format,

using the date and time string mentioned earlier as the filename. Lastly, a boolean used to store

whether a photo has been taken or not is set to true.

 switch (requestCode) {

 case cameraData:

 Bundle extras = data.getExtras();

 Bitmap bmp = (Bitmap) extras.get("data");

 OutputStream stream;

 try {

 File scionDir = new File("/sdcard/scion/photos/");

 // If /sdcard/scion/photos/ is not a directory, then make it

 if (!scionDir.isDirectory()) {

 scionDir.mkdirs();

 }

 // save the photo using the timestamp (dateTimeString) as

 // its filename

 stream = new FileOutputStream("/sdcard/scion/photos/"

 + dateTimeString + ".jpg");

36

 bmp.compress(CompressFormat.JPEG, 100, stream);

 photoData = dateTimeString + ".jpg";

 } catch (FileNotFoundException e) {

 e.printStackTrace();

 }

 Toast toast = Toast.makeText(this, "Photo saved and attached",

 Toast.LENGTH_SHORT);

 toast.show();

 // set isPhotoAttached boolean to true so editing can take place

 isPhotoAttached = true;

 break;

 case editPhotoData:

 …

 break;

 }

In the case of the “Edit photo” button being pressed, the boolean for deducing whether a photo

has been taken will be checked. If the boolean is true and a photo has been taken, then an

activity in which the taken photo can be edited is started. A Bundle object is used to send

information from between activities. In this case, the Bundle object is carrying the path of the

previously taken photo as this will be used as the path for the edited photo once editing has

been completed. If a photo has not been taken, then the user is prompted to do so by means of

an AlertDialog before trying to edit a photo.

// if a photo has been attached

 if (isPhotoAttached == true) {

 // create a new bundle for sending to the next activity

 Bundle basket = new Bundle();

 // attach the path to the attached photo

 basket.putString("photoPath", "/sdcard/scion/photos/"

 + dateTimeString + ".jpg");

 // create an intent for the editing activity

 Intent a = new Intent(this, EditPhotoSurface.class);

 // send the bundle

37

 a.putExtras(basket);

 // start the editing activity

 startActivityForResult(a, editPhotoData);

 } else {

 // if a photo has not been attached, alert and prompt the user

 // to do so with a dialog

 AlertDialog alertDialog = new AlertDialog.Builder(context)

 .create();

 alertDialog.setTitle("No photo to edit");

 alertDialog

 .setMessage("Take a photo first in order to edit it.");

 alertDialog.setButton("Okay",

 new DialogInterface.OnClickListener() {

 public void onClick(DialogInterface dialog,

 int which) {

 // nothing happens

 }

 });

 alertDialog.show();

 }

In the case that the “Clear” button is pressed, the initialise and clearEditTexts methods are

called. Calling the initialise method ensures that the Spinner elements are reset to their

default values and calling the clearEditTexts method programmatically sets the values for all

the EditText elements to be that of an empty String.

 // initialise() resets the spinners

 initialise();

 // clearEditTexts() resets the EditTexts

 clearEditTexts();

private void clearEditTexts() {

 // clears the values for the EditTexts

 …

38

 plantDensity.setText("");

 whenPlanted.setText("");

 numPlants.setText("");

 …

 }

There are two methods in which spreadsheets are written to; the method used to create a

spreadsheet if there is not one already existing, and the method used to add a row to an

existing spreadsheet. Both methods make use of the Java Excel API to do so. Writing to a

spreadsheet requires creating a WritableWorkbook object using the Workbook’s factory method

(Khan, Java Excel API Tutorial). Then the WritableWorkbook object is used to create a

WritableSheet object which Label objects are added to. Label objects dictate the cell position of

the information that is to be entered into the sheet. Once all the changes have been made, the

WritableWorkbook object must be written to and then closed in that order, otherwise an empty

file will be created. The resultant file is an xls file which can be read by Excel.

In both methods, the data collected from the fields are added to an ArrayList. This ArrayList is

cycled through and each item is added to the sheet. The difference between the two methods is

that the excelAdder method creates a copy of the existing sheet, counts the number of rows,

appends the new row, and then overwrites the existing sheet. The excelCreate method adds

column headers first, then proceeds to add the data and then saves the sheet.

The java classes for the three supplementary forms (Client, Species and Location) are near

identical to one another. They do not contain any of the functionality with regards to the camera,

or editing photos. They are simply for adding rows to their respective sheets and contain many

of the same methods, with the exceptions being those which are necessary to have as a

consequence of implementing the OnItemSelectedListener interface.

39

EditPhotoSurface.java

The EditPhotoSurface.java class is used to enable photo editing functionality. Its purpose is to

receive photos which have been taken by the user, and then give them the capability of drawing

on top of that photo to bring attention to any area which requires it.

The EditPhotoSurface class extends the Activity class, and contains a nested class; the

DrawingView which extends the View class. The DrawingView class is what allows the user to

draw on top of the photo.

An instance of a DrawingView object is created, and then the Bundle object which is passed to

the EditPhotoSurface activity is opened. This Bundle object contains the path to the image that

was taken. With this, the image can be loaded as a Bitmap object from local memory and drawn

as the background of the DrawingView. Once this has been done, the DrawingView is passed as

an argument to the setContentView method.

 DrawingView dv;

 String photoPath;

...

 dv = new DrawingView(this);

Bundle gotBasket = getIntent().getExtras();

 photoPath = gotBasket.getString("photoPath");

...

Bitmap source = BitmapFactory.decodeFile(photoPath, options);

 Drawable bg = new BitmapDrawable(source);

 dv.setBackgroundDrawable(bg);

 setContentView(dv);

The nested DrawingView class handles all the drawing events. By means of a switch case on a

MotionEvent object, the onTouchEvent method determines whether the user has touched the

screen, is moving their finger while touching the screen or lifted their finger from the screen.

 @Override

 public boolean onTouchEvent(MotionEvent event) {

 float x = event.getX();

40

 float y = event.getY();

 switch (event.getAction()) {

 case MotionEvent.ACTION_DOWN:

 touch_start(x, y);

 invalidate();

 break;

 case MotionEvent.ACTION_MOVE:

 touch_move(x, y);

 invalidate();

 break;

 case MotionEvent.ACTION_UP:

 touch_up();

 invalidate();

 break;

 }

 return true;

 }

Once a user has touched the screen, the application will give initial values to an already defined

Path object. As the user moves their finger across the screen, the Path object is given more

coordinates to map to, giving the effect of a line being drawn. Finally once the user lifts their

finger from the screen, the line drawn is set and the Path object is reset and ready to be used

again for any further lines.

 private Path mPath;

 mPath = new Path();

private float mX, mY;

 private static final float TOUCH_TOLERANCE = 4;

private void touch_start(float x, float y) {

 mPath.reset();

 mPath.moveTo(x, y);

 mX = x;

 mY = y;

41

 }

 private void touch_move(float x, float y) {

 float dx = Math.abs(x - mX);

 float dy = Math.abs(y - mY);

 if (dx >= TOUCH_TOLERANCE || dy >= TOUCH_TOLERANCE) {

 mPath.quadTo(mX, mY, (x + mX) / 2, (y + mY) / 2);

 mX = x;

 mY = y;

 }

 }

 private void touch_up() {

 mPath.lineTo(mX, mY);

 mCanvas.drawPath(mPath, mPaint);

 mPath.reset();

 }

Figure 12, an attached photo can be drawn on to bring attention to any particular area

42

Saving of the image has been handled by making use of the device’s default Android back

button. If this is pressed, the user will be asked whether they want to save the photo with the

changes they have made, or whether to discard them. Both of these choices call the finish

method, causing the activity to end and return to the onActivityResult method from the

respective mapping activity which called it. Control is returned to the onActivityResult method

because the EditPhotoSurface activity was started using the startActivityForResult method.

 @SuppressWarnings("deprecation")

 @Override

 public boolean onKeyDown(int keyCode, KeyEvent event) {

 if (keyCode == KeyEvent.KEYCODE_BACK && event.getRepeatCount() == 0) {

 AlertDialog alertDialog = new

AlertDialog.Builder(context).create();

 alertDialog.setTitle("Save image?");

 alertDialog.setMessage("Do you want to save this image?");

 alertDialog.setButton("Save",

 new DialogInterface.OnClickListener() {

 public void onClick(DialogInterface dialog, int which) {

 dv.setDrawingCacheEnabled(true);

 Bitmap b = dv.getDrawingCache();

 try {

 b.compress(CompressFormat.JPEG, 95,

 new FileOutputStream(photoPath));

 finish();

 } catch (FileNotFoundException e) {

 e.printStackTrace();

 }

 }

 });

 alertDialog.setButton2("Don't save",

 new DialogInterface.OnClickListener() {

 public void onClick(DialogInterface dialog, int which) {

 finish();

 }

43

 });

 alertDialog.show();

 return true;

 }

 return super.onKeyDown(keyCode, event);

 }

Figure 13, the user is prompted to save or discard the edits that have been made

44

Abstraction

This application, although achieving most of the goals, was restricted to the very specific forms

that were required by Scion. They were hardcoded and therefore limited to only the static and

dynamic mapping processes. The level of abstraction could be lifted such that the application

could grow into one which could construct any digital questionnaire based on specifications.

Updated Design

Updated Layout Design

With regards to design, the application needed to change in such a way that the preview would

no longer consume half of the available screen real estate. This caused a problem with the

display in that when the soft keyboard appears so that users may enter input, the screen

becomes congested and the preview causes the actual form itself to appear small, making it

difficult to navigate through.

The new design required a change in layout, while still keeping the layouts and functionalities of

the form and the preview intact. This would give the user a cleaner, unobstructed view of both

the questionnaire and the preview.

Questionnaire Specifications

The questionnaire is to be based on a specification and this is required to cater to all the

different types of questions. All of these types of questions must be accounted for in the

specification which is to be read from and understood by the application.

These are as follows:

1. Text questions – These questions require answers which comprise of text only. This

can be a question suitable for answers which are names, addresses, descriptions or

explanations.

2. Numeric questions – These questions require answers which are strictly numeric in

format. An example of such a question is one which may ask for a particular number of

times that an event has occurred, or one which may ask for the difference of two

measurements.

45

3. Multiple choice questions – What is presented is a question and multiple answers from

which the user may select one, or more depending on the context. The two different

contexts are as follows:

a. Single response – Users may only select one of the presented answers. This is

analogous to a question where there are many possible answers, but only one

definite answer.

b. Multiple response – Users may select many of the presented answers. This is

analogous to a question where there may be more than one definite answer.

4. Time/Date questions – The responses to these questions are the time and/or the date.

This type of question can be automatically filled in by the application itself.

5. Location questions – The field is to be filled with the address of the user. This field is

one which can be populated automatically by use of the device’s sensors.

6. Media questions – A question is asked, to which the answer is an image, a video or an

audio recording.

Cloud Service Integration

The new iteration of the application should have access to a cloud service. This allows for files

to be loaded from and saved to the cloud. This provides resultant safe and secure access to

those files.

There should be the ability to download a specification file from the cloud, which can then be

used to display the questionnaire that it details. The questionnaire displayed will correspond to

an Excel sheet containing all the data collected from the fields in the questionnaire. Using the

application to fill out the fields in the form, the user should be able to update the current sheet,

and then upload the sheet to the cloud.

46

Figure 14, The transfer of data between cloud storage and the device.

In the case of there being no network connectivity for the sake of uploading sheets to the cloud,

there should be an offline synchronisation feature incorporated. This will ensure that even if

there is no network connectivity when the sheet should be uploaded to the cloud, the application

will make it such that the sheet is uploaded whenever network connectivity is regained.

Updated Implementation

Updated Layout Implementation

In order to present a cleaner and less obstructive view of both the questionnaire and the

preview, the whole project was changed to accommodate swipe views with tabs. Swipe views

are an effective way of navigating, allowing users to switch between sibling screens using a

simple horizontal finger gesture (Google, Android Horizontal Paging). The tab views are called

Fragments which are representative of a portion of an Activity’s user interface (Google, Android

Fragments). There are two Fragments, one for the dynamic questionnaire and the second for

the spreadsheet preview.

47

48

Figure 15, The two slide tabs contain the questionnaire and preview sections

respectively. Sliding between the two gives a smooth interface where a user can easily

switch their view.

This meant that the minimum SDK version had changed from 8 to 11 to accommodate this.

Therefore, a device is required to be running an Android version of 3.0 or higher in order to run

this application.

As a result of this, users can easily switch between the two tabs. This preserves the functionality

of both the form and the preview components. The preview has also been modified so that on

pressing one of the cells, the cell’s respective row is highlighted. This is a minor adaptation

made for the ease of use for the user.

Newly Imported APIs

The Dropbox Sync API requires libraries which contain the necessary Java files regarding the

different data structures and exceptions related to the Sync API. This library was imported.

For the Chooser to work, the Chooser SDK project was also imported. This project was added

to the form creator application as a dependency, which allowed the application to use the

Chooser to navigate through a user’s Dropbox account.

Updated Android Manifest

As a result of the new project layout design, the manifest itself was subject to change. The

changes are as follows:

A package name of com.dasarsh.formcreator.

 A minimum SDK of 11 which correlates to an Android version of 3.0.

 A target SDK of 18 which correlates to an Android version of 4.3.

 The permissions:

1. “android.permission.READ_EXTERNAL_STORAGE” and

“android.permission.WRITE_EXTERNAL_STORAGE” for the sake of reading

and writing from the memory card.

49

2. “android.permission.ACCESS_FINE_LOCATION” and

“android.permission.ACCESS_COURSE_LOCATION” in order for the application

to have access to the location data which can be deduced by the device.

3. “android.permission.INTERNET” AND “android.permission.NETWORK_STATE”

so that the application is able to test the state of the network and have access to

the Internet if it is available.

4. “android.permission.WAKE_LOCK” used to allow the service to run even if the

screen is off.

 An activity for each of the following:

1. XMLReader

2. XMLElement

3. DbxAuthActivity

4. AuthActivity

5. EditPhotoSurface

A service for:

1. DbxSyncService

Updated XML Layouts

The XML layouts are no longer static due to the newly dynamic nature of the application. As a

result of this, there are only two XML layouts, both of which are nearly empty.

The two XML layouts, activity_xmlreader.xml and fragment_xmlreader_dummy.xml, are linked

to the main XMLReader activity and for the fragments which it uses, respectively.

The activity_xmlreader.xml layout file contains the default ViewPager item which is often used

to encase Fragments (Google, Android ViewPager). This is empty as it will be populated with

the Fragments and there is no need to make changes to this.

<android.support.v4.view.ViewPager

xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:id="@+id/pager"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

50

 tools:context=".XMLReader" >

</android.support.v4.view.ViewPager>

The fragment_xmlreader_dummy.xml layout file contains a RelativeLayout which contains a

LinearLayout. This inner LinearLayout is important because it is here that, depending on the

Fragment chosen, the layout is populated either with the dynamically generated questionnaire

or the spreadsheet.

<RelativeLayout

xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:paddingBottom="@dimen/activity_vertical_margin"

 android:paddingLeft="@dimen/activity_horizontal_margin"

 android:paddingRight="@dimen/activity_horizontal_margin"

 android:paddingTop="@dimen/activity_vertical_margin"

 tools:context=".XMLReader$DummySectionFragment" >

 <LinearLayout

 android:id="@+id/layoutXML"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:orientation="vertical" >

 </LinearLayout>

</RelativeLayout>

Improved Photo Editing

The photo editing functionality with which users are able to draw on top of taken photos was

previously displaying an image which was of notably low quality. This problem was caused by

the image being saved into the local memory in a way which was compressing the image as

much as possible. This was addressed by allowing the whole image to be saved and used

without any compression. As a result of this, the image which can be drawn on top of is now of

full quality, just as the user had taken it.

51

OutputStream stream;

 try {

 Bitmap bmp = MediaStore.Images.Media.getBitmap(

getActivity().getContentResolver(), imageUri);

 File scionDir = new File("/sdcard/scion/photos/");

 // If /sdcard/scion/photos/ is not a directory, then make it

 if (!scionDir.isDirectory()) {

 scionDir.mkdirs();

 }

 // save the photo using the timestamp (dateTimeString) as

 // its filename

 if(!dateTimeStringValid){

setupTimeAndDate(true, new EditText(getActivity()), true,

0);

 }

 stream = new FileOutputStream("/sdcard/scion/photos/"

 + dateTimeString + ".png");

 bmp.compress(CompressFormat.PNG, 100, stream);

 stream.flush();

 stream.close();

 } catch (FileNotFoundException e) {

 e.printStackTrace();

 } catch (IOException e) {

 e.printStackTrace();

 }

XML Specification File and XSD

The application is required to dynamically generate a questionnaire from a file which specifies

the questions and formats in the questionnaire. This specification file was decided to be an

Extensible Markup Language (XML) file. The XML file is to be constructed from an XML

Schema Definition (XSD) which declares all the rules regarding what is legal and illegal when

creating a well-formed XML file which is applicable to this application. In addition to the

discussed types of questions being included in the schema, an option to display just text was

also implemented.

The XSD includes rules and regulations regarding video and audio questions. Due to time

constraints, this feature was not implemented and will be skipped over when the application is

performing a parse of the input xml file. Therefore, even if there is a question which requires a

video or audio answer in the XML specification file, it will not be displayed in the dynamically

generated questionnaire on the screen.

52

Representation of Question Types

All of the questions are represented by a question portion and an answer portion. The question

portion is reflects the actual question, e.g. “What is your name?” or “How many days has it been

since your last visit?” The answer portion is generated depending on the type of question.

The answer portion is defined as follows:

1. Text questions – Text answers are represented by a single EditText. As this type of

question is general and open to any kind of input, there are no restrictions placed on

what the user enters.

2. Numeric questions – An EditText is generated below the question and it is here that

the answer is to be given. Numeric answers must strictly be of numeric format so the soft

keyboard will display the numberpad as opposed to the usual QWERTY keyboard

layout.

3. Multiple answer – The answer portion is defined depending on the type of multiple

choice question:

a. Single response – The answers are represented as radio buttons. Of these

buttons, only one may be selected at any one time.

b. Multiple response – The answers are represented as checkboxes. Of these

checkboxes, one or more may be selected at any one time.

4. Time/Date questions – The time answer is shown as an EditText which has been

populated by the current time. This time is the system time of the device. This EditText

is editable, which allows for the user to correct any errors.

5. Location questions – The location answer is an EditText which is automatically

populated by the system using the location which is deduced from the GPS coordinates

of the device. The location shown is the address of the device’s position. This EditText

can be edited, which allows for any incorrect locations to be corrected.

6. Media questions – For this implementation, there is only functionality for attaching

images. Media questions are represented by three buttons. The first of the three buttons

is the button which allows users to take a photo. This opens the device’s native camera

application and proceeds to allow the user to take a photo of whichever subject they

wish. The second button is one which allows users to select a photo which has already

been taken. Pressing this button opens the device’s default photo gallery application

from which the user is able to select a photo. The final button allows users to edit the

photo which they have either just taken using the camera or has selected from their

53

gallery. This leads the user to a screen where they are able to draw on top of their

selected photo as they see fit.

Parsing the XML Specification File

The XML file is parsed so that it can be understood by the application, only then can the

questionnaire be generated dynamically by specifications in the XML file. The parsing is

performed by the application and each question from the XML file is made into an XMLElement.

All of these XMLElements are placed into an array in the order that they appear in the XML file

and once that is done, they can all be generated into the constituent questions and answers that

are specified in the XML file.

Figure 16, The method in which a question specified in the XML file is parsed to an

XMLElement object which is processed into a question which can then be displayed.

XMLElement.java

An XMLElement is a custom Java class which was created in order to represent the questions

which are read from the XML specification file. While reading the XML file, the application uses

the information it gathers about each question specified in the XML code to create and populate

an array of XMLElements.

An XMLElement has six properties;

1. Type – Defines and used to differentiate between the different types of questions.

2. Attributes – A collection of the attributes which have been read.

3. Items – A collection of the items which can appear as options which users can choose

from.

4. Question – The question which is being to be answered.

54

5. Label – The string of text which is to be displayed if the element is a label as opposed to

a question.

6. Index – A number assigned to each number which is used in order to keep track of the

questions when placed in an array.

Cloud Service Implementation

Cloud services were implemented using the Dropbox API. The Dropbox API offered some

useful utilities which proved to make this application able to perform its goals. The application

makes use of the Chooser Drop-in and the Sync API.

Both the Sync API and the Chooser Drop-in require the user to have a Dropbox account which

is linked to the application. This is ensured every time the user presses the button which lets

them add a new row to the sheet.

The Chooser Drop-in allows for the application to display a chooser. Using this, the user may

browse through their full Dropbox account file system to navigate to the specification file which

they wish to load into the application.

The Chooser is initialised and launched as such:

DbxChooser mChooser;

…

mChooser = new DbxChooser(APP_KEY);

 mChooser.forResultType(DbxChooser.ResultType.DIRECT_LINK).launch(this,

DBX_CHOOSER_REQUEST);

Here, the APP_KEY is the key which is assigned to the application once it has been registered on

your Dropbox account. The integer value for DBX_CHOOSER_REQUEST can be any number so

long as you handle this activity using the same number in the onActivityResult method.

On beginning this activity which launches the Chooser, the user is shown a Chooser in the

Dropbox style and layout. From here, the user is to select the XML specification file of their

choice. This will cause the selected file to be downloaded into the device’s local memory.

55

Figure 17, The Dropbox Chooser API used to navigate the user’s Dropbox storage.

This is done in the handling of the call to the Chooser in the onActivityResult method. Here,

the application checks all the finished results from activities and differentiates them according to

the identifier which was given when they were launched. In this case, the identifier given was

DBX_CHOOSER_REQUEST which was simply a number.

static final int DBX_CHOOSER_REQUEST = 0; // Can be anything

In the handling of this request, the URL specifying the file which was chosen is used in order to

download the file from the user’s Dropbox account over the network. This file is downloaded and

stored into a folder based in the device’s local root memory called “scion”.

56

 } else if (requestCode == DBX_CHOOSER_REQUEST) {

 if (resultCode == Activity.RESULT_OK) {

 DbxChooser.Result result = new DbxChooser.Result(data);

 // Handle the result

 // DOWNLOAD THE URL FROM GETLINK()FOR DOWNLOAD

 final DownloadTask downloadTask = new

DownloadTask(getActivity());

 downloadTask.setFilename(result.getName());

 xmlFile += result.getName();

 filename = result.getName();

 saveFilename = filename.substring(0, filename.indexOf('.'))

+ ".xls";

 downloadTask.execute(result.getLink().toString());

 }else {

 // Failed or was cancelled by the user.

 Toast toast = Toast.makeText(getActivity(),

 "Failed or was cancelled by the user",

 Toast.LENGTH_LONG);

 toast.show();

 }

 }

Once this has been done, the application proceeds to process the file which has been

downloaded and parse the XML file into questions.

The Sync API provides a way for the application to access the user’s Dropbox account, and also

to download and upload files.

This application uses this Sync API for the purpose of uploading spreadsheets to the user’s

Dropbox account. This is done whenever the user presses the Submit button, which has a

listener set to it which in turn uploads the most recent revision of the spreadsheet which the

user has been working on to their Dropbox account.

 submit.setOnClickListener(new OnClickListener() {

 @Override

57

 public void onClick(View view) {

 …

 accessDropBox();

 }

 });

The accessDropBox method takes the current spreadsheet and adds a timestamp to the end of

the filename and then uploads it to the user’s Dropbox storage. This is currently being statically

saved to a folder named “scion1” in the root of the Dropbox storage. This is due to the fact that

there is no implementation of the Dropbox Saver API for the Android operating system.

private void accessDropBox() {

 try {

 DbxFileSystem dbxFs = DbxFileSystem.forAccount(mDbxAcctMgr

 .getLinkedAccount());

 String name = saveFilename.substring(0,

saveFilename.indexOf('.')) + "_" + dateTimeString + ".xls";

 DbxFile testFile = dbxFs.create(new DbxPath("/scion1/" +

name));

 try {

 File f = new File("sdcard/scion/" + saveFilename);

 testFile.writeFromExistingFile(f, false);

 } finally {

 testFile.close();

 }

 } catch (Unauthorized e) {

 e.printStackTrace();

 } catch (InvalidPathException e) {

 e.printStackTrace();

 } catch (DbxException e) {

 e.printStackTrace();

 } catch (IOException e1) {

 e1.printStackTrace();

 }

 }

58

The scion1 folder located in the root is where the .xls spreadsheet files are uploaded to.

Within the scion1 directory, there is an example of an XML specification file, form15.xml,

and two revisions of spreadsheets which have been created from that specification. The

revisions are appended with a timestamp for the sake of differentiating between them.

Communicator.java

This class is used for the communication between Fragments. The need for this arose when

looking for a way for one Fragment to invoke a method which was to be executed in another

Fragment. In particular, the intended operation was for the preview in the second Fragment to

update every time the Fragment in which it was enclosed was selected. The Communicator

interface can be used to invoke methods from a separate Fragment, as it cannot be done

directly by referencing the separate Fragment.

Communicator.java is an interface which contains only the setupPreview method.

The XMLReader class implements this Communicator interface. It is for the sake of use in the

nested DummySectionFragment class where it is initialised as follows:

59

 Communicator comm;

 public View onCreateView(LayoutInflater inflater, ViewGroup container,

 Bundle savedInstanceState) {

 …

 comm = (Communicator)getActivity();

 …

 }

On clicking the “Add row” button which will add the row to the sheet, the Communicator object

will be prompted to update the preview by calling the setupPreview method.

 add.setOnClickListener(new OnClickListener() {

 @Override

 public void onClick(View view) {

 …

 comm.setupPreview();

 …

 }

 });

60

Figure 18, The process of communication between Fragments by use of the

Communicator which is implemented by the Activity

Conclusion

This application allows for a form or questionnaire to be digitalised. This results in a method of

data collection which is free of errors and ensures structured data. Human effort and time is also

saved by use of this application as it can reduce the amount of time that a user spends giving or

collecting details while offering a simple way to entered information into the device.

The implementation of this application on a smart device allows for several advantages over

paper-based systems such as control over the interface of the device; the ability to make use of

the media capabilities such as the camera and the audio recorder; the ability to use the data

collected from the device’s inbuilt sensors for information such as time, date, location,

movement or temperature; the fact that there is usually constant connectivity to networks; and

that smart devices offer a way to police the data being entered for inconsistencies or illegal

values.

This solution is very versatile. It can be used to digitise any sort of form due to its capability to

handle all types of questions. A likely scenario is the administrator of a questionnaire sharing

the XML specification file with their chosen participants by email, which saves the XML

specification file into the participants’ Dropbox accounts. From there, the participants only need

to open the application and load the specification file from their Dropbox account and complete

the questionnaire.

The paper-based system is eliminated as a direct result of this solution. This reduces the need

for printing, distribution and collection which can be hindrances in terms of cost, effort and time.

The data received and sent is done so over the Dropbox cloud service which provides safe and

secure access to the data stored.

This application, originally intended to solve a singular problem can change the way that data

collection is performed. There is a need to eliminate paper-based systems due to all the

inherent flaws and this is what can be achieved.

61

Future Work

There are still some features which have not been implemented as of yet. One of these is one

which allows for users to be able to effectively undo any mistakes that they make. Implementing

this will mean adding listeners to the preview in such a way that if a user was to press and of the

cells, the data stored in the row which contains that cell will populate the form, allowing for the

user to change any of the information. Another element which requires the addition of this

context is the photo editing functionality, as a user may wish to undo whatever they have drawn

and try again.

Adaptations which could be made include modifying the application such that the resultant sheet

is uploaded onto the servers of the administrators or the questionnaire as opposed to a Dropbox

account. This allows for a seamless process where administrators can send the questionnaire

specification to participants who can dynamically generate them and subsequently have their

answers sent back to the administrators of the questionnaire.

Another addition which could be made is one which allows for the questions to be grouped

together and categorized as dependent on one another. An example of this is one which groups

three fields together where each of these fields is to have numeric data entered into them. The

difference between the first two fields is to be used to calculate and populate the third field.

Questions specified in the XML file can possibly be adapted to include a specification of how

much of the screen width they are to occupy. The current implementation delegates each

question the whole width of the screen, which can be a potential waste of space if the questions

are one which ask very short questions and require very short answers.

The way in which the spreadsheet tab which is displaying the preview is operating can be

modified. The way in which the preview is being updated has the potential to cause large lags in

operation. This is because the whole spreadsheet is being read and then the whole preview is

being loaded and displayed again. This can be avoided if the numbers of rows read and

displayed are kept count of. Then only the new rows can be added as opposed to replacing the

whole preview with much of the same data.

62

Bibliography

A. ALLENBY, D. M.-C. (2002). The application of computer touch-screen technology in

screening for psychosocial distress in an ambulatory oncology setting.

A. M. V. Kumar, B. N. (2013). Efficient, quality-assured data capture in operational research

through innovative use of open-access technology.

About Scion. (2009). Retrieved August 8, 2014, from Scion:

http://www.scionresearch.com/general/about-us

Android Design Principles. (n.d.). Retrieved August 8, 2014, from Android Developers:

http://developer.android.com/design/get-started/principles.html

App Manifest. (n.d.). Retrieved August 9, 2014, from Android Developers:

http://developer.android.com/guide/topics/manifest/manifest-intro.html

Developer Tools. (n.d.). Retrieved August 8, 2014, from Android Developers:

http://developer.android.com/tools/index.html

Google. (n.d.). Android Fragments. Retrieved October 24, 2014, from Android Developer:

http://developer.android.com/guide/components/fragments.html

Google. (n.d.). Android Horizontal Paging. Retrieved October 24, 2014, from Android Developer:

http://developer.android.com/training/implementing-navigation/lateral.html#horizontal-

paging

Google. (n.d.). Android ViewPager. Retrieved October 24, 2014, from Android Developer:

http://developer.android.com/reference/android/support/v4/view/ViewPager.html

Introduction to the Google Drive Android API. (n.d.). Retrieved August 7, 2014, from Android

Developers: https://developers.google.com/drive/android/intro

KA Kupzyk, M. C. (2014). Data Validation and Other Strategies for Data Entry. 1-11.

Khan, A. (n.d.). Java Excel API - A Java API to read, write and modify Excel spreadsheets.

Retrieved August 7, 2014, from Java Excel API: http://www.andykhan.com/jexcelapi/

Khan, A. (n.d.). Java Excel API Tutorial. Retrieved August 7, 2014, from Java Excel API

Tutorial: http://www.andykhan.com/jexcelapi/tutorial.html#writing

L. Beretta, V. A. (2007). Improving the quality of data entry in a low-budget head injury

database.

Principles of User Interface Design. (n.d.). Retrieved August 8, 2014, from Bokardo:

http://bokardo.com/principles-of-user-interface-design/

Stephen Joel Coons, P. C. (2009). Recommendations on Evidence Needed to Support

Measurement Equivalence between Electronic and Paper-Based Patient-Reported

Outcome (PRO) Measures: ISPOR ePRO Good Research Practices Task Force Report.

63

Appendix

formcreator.xsd

<?xml version="1.0" encoding="UTF-8" ?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="form">

 <xs:complexType>

 <xs:choice minOccurs="0" maxOccurs="unbounded">

 <xs:element name="time" >

 <xs:complexType>

 <xs:attribute name="format" type="xs:string"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="date" >

 <xs:complexType>

 <xs:attribute name="format" type="xs:string"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="location" />

 <xs:element name="question" >

 <xs:complexType>

 <xs:sequence>

 <xs:element name="questionQ" type="xs:string"/>

 <xs:element name="item" type="xs:string" minOccurs ="0

maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="type" type="xs:string"/>

 </xs:complexType>

 </xs:element>

64

 <xs:element name="photo" >

 <xs:complexType>

 <xs:sequence>

 <xs:element name="questionQ" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="display_text" type="xs:string" >

 </xs:element>

 </xs:choice>

 </xs:complexType>

 </xs:element>

</xs:schema>

