BTech Final Report
Dasarsh Vadugu

Abstract

This project requires the creation and development of a mobile application which can be run on
a tablet interface. Its use is centred on acting as an intermediary between users working in a
nursery and the information which they gather while doing so. The application will merge the
current, paper-based system of collecting information with a tablet interface. This will change
the way in which information is gathered while maintaining the same feel and user experience

which is analogous to filling out a questionnaire on paper. The existing paper-based system is

1

prone to several kinds of errors and resultant unstructured data, both of which can be
detrimental to users of the data. Questionnaires will be dynamically created based on
specifications which the application will be able to read, parse and understand. Integration of
cloud services allows for this application to have safe and secure access to the data from
anywhere. As a result of this application, time and effort will be saved with regards to collecting

information from the field.

Project Outline

SCION =

forests-products-innovation

Figure 1, Scion.

Scion is a New Zealand Crown Research Institute (CRI) that specialises in research, science
and technology development for the forestry, wood product and wood-derived materials and
other biomaterial sectors (About Scion, 2009). There are large grounds where plants and trees
are grown and kept track of for their research purposes. In these grounds and in the nursery,
several different things are observed and must be measured and recorded; these can vary from

the root structures, rates of growth or colouration of plants and more.

At Scion, when information is to be collected from the nursery, it is done so on paper. Whatever
information is being recorded is done so onto paper, and then this is passed on through many

people until it is entered into a digital format represented by an Excel spreadsheet, which is then

passed along to someone else who will then finally enter the information into their systems. This

paper-based system is a bottleneck in their operations and deserves to be streamlined.

The main issues with the existing paper-based system are as follows:

1. lllegibility of writing — What’s written on a paper form cannot be guaranteed to be
interpreted correctly by whoever has the task of entering the data into a spreadsheet.
This results in data which can have a high frequency of errors and makes it so that the
data is no longer reliable.

2. Validation of input — Another major contributor to unreliable data is the lack of validation.
Even if the data recorded is perfectly legible, there are no systems in place to ensure
that what has been recorded is appropriate. An example of this is an answer to a
guestion being valid only if it is a number between certain ranges. This is a constraint
which cannot be tightly enforced on paper. A consequence of such an issue is incorrect
data due to avoidable absentmindedness.

3. Time to get to system — The data collected is passed through the hands of several
employees before being entered into a digital format, which is then passed through the
hands of more employees before reaching its destination in the system. This is a waste
of time and resources, both of which are important to any organisation’s operations.
Such a delay in the storage of information may have consequences to the organisation
especially when dealing with clients who may require some information quickly.

4. Speed of recording information — The speed at which data is collected is something
which is also detrimental to the organisation. The pen is slower than the keyboard and
although this is can be a minor difference in speed for an individual record, this is
something that can add up to become a significant amount of time which is wasted.

5. Unstructured data — Data which is collected correctly, but not in a correct format is a
hindrance to operations. This data cannot be placed into a database easily, if it is
possible at all. This can prove to be a major issue with organisations as the data is

rendered essentially useless.

The substitution of the current paper-based system will eliminate the issues listed above. The
addition of a smart device allows for the problems to be mitigated, by means of this application

which is to be developed.

1. lllegibility is no longer an issue because all the data entered into the application will be
done so via a soft keyboard on the touch screen. Due to this, there is no issue with
misinterpretations of what is read.

2. Validation of input becomes possible by polling the fields in which data is to be entered.
These fields can be configured to reject input which does not fall within an accepted
subset of answers.

3. Time to get to system — The connectivity-enabled device will be able to send and receive
data over networks. As a direct result of this, the application will be able to send the data
which it collects to the system as soon as it is able. This transfer of data will only be
possible in the presence of network connectivity, so if there is no network at that time
and place, then the application will wait until there is a network signal which is strong
enough for it to perform the action of transferring data to the system where it is to be
stored.

4. Speed of recording information — The device’s touch screen will display a soft keyboard
which will greatly enhance the speed at which information can be input into the
application. Keyboards are a faster alternative to the pen and paper.

5. Unstructured data — The application will be able to configure fields in which data is to be
entered. This allows for the important pieces of data to be extracted from the user of the
device, which ultimately results in structured data which can be entered into a database,

allowing for the data to become useful information.

For the sake of quick and efficient recording of data in an outdoor nursery, an android
application is to be made. This is to reduce the amount of time taken for the current, paper-
based system to be processed and converted into an electronic form. The objective is to create
an application which will act as an intermediary between the user who is recording information
and the system where the recorded information is to be stored. Such a resultant application will

cause a seamless transition from data being recorded to data being stored.

There was a choice to be made regarding the operating system on which this application

was to run. The two choices were Apple’s iOS and Google’s Android.

The decision was one which was easy to make. iOS applications are written in Xcode which
is an integrated development environment (IDE) developed by Apple for developing

applications for both their mobile and desktop platforms. This requires the use of Objective-

4

C and their respective compilers for development. Android uses Eclipse as its IDE and the

programming language it incorporates to develop is Java.

I have significantly more experience in working with Java, and also have experimented with
building Android applications using the Eclipse IDE. Therefore, the decision to work with

Android programming in Java was natural.

The Android operating system has several properties integrated into their design which offer
some clear advantages for the design of this project. The aim is to reduce and eliminate the
need for paper-based systems. For this reason, these Android operating system properties
can be exploited to achieve this goal.

1. The Activity and the Service -_An activity is represented by what’s shown on the
screen. Each activity is delegated the screen once it has been started and therefore
has a user interface. An application may have several activities incorporated in its
functionalities. An example of this is a chatting application which may have one
activity for viewing all the chats, an activity for beginning a new chat with a person,
an activity for adding new people to an existing chat and another activity for the
actual chat thread. Activities have the ability to start other activities. Activities work
together to create the full functionality of an application.

In contrast to activities, services run in the background and have no user interface.
An example of a service is one which uploads and downloads data behind the
scenes without interrupting the user from performing any actions.

2. The Activity Lifecycle - The activity lifecycle is a way of describing the series of
changes that an activity goes through during after its being run. It can be used to
manage the behaviour of the activity via its lifecycle callback methods. For
developers, this means that they have control over what happens whenever a user
enters an activity or leaves an activity and provides methods to cater to events which

should have the ability to pause or stop an activity.

(e
starts

- onCreate()
User navigates |
back to the
_actvily onstart() - onRestart()
- onResume() -

" The activity |
mmes to the
round |
Anomer activity mmes
_in front af the a::'.nw!y

i - The activity |
[Gmer applications | Gl?mes to the
[#]

need memory | onPause() round |

—

{ The activity is no longer visible)

onStop()

——

anDestroy()

R
(e)

Figure 2, The activity lifecycle, with all the different stages of an activity’s life
from its starting to its shutting down.

3. Adaptable Layouts - The Android operating system is able to manage the layouts
that an application has incorporated within it. These layouts are able to scale and

grow appropriately to suit the screen size of the device that the application is being
run on. This property is one which is important because of the widespread presence
of the Android operating system. It can be run on all sorts of devices and therefore,
there are no set screen sizes to which developers may adjust or fine-tune their
application to work with as there is with Apple’s iOS. An example of this would be an
xml layout displaying the same elements, but either larger or smaller as a direct
result of the size of the screen. This leads to layouts being universally pleasing to the
eye regardless of the device with which the layout is being viewed with.

Media Capabilities - Applications have access to the media capabilities which are
available on the device. Therefore this allows applications to incorporate features
requiring either the camera for images or videos, or the audio recorder for audio-
related functionality. The touch display can also be considered to be a form of media
input and be taken full advantage of when allowing users to draw on top of selected
photos, giving them the ability to attract attention or annotate them if necessary.
Inbuilt Sensors - The sensors built into the devices enable applications to use the
operating system to use the information that the sensors gather. Applications can
now be aware of their surroundings, locations, temperatures and movements. This
collection of readily available information can be taken advantage of by using them
to deduce any information which the user would usually be required to do. This
reduces the amount of time and effort the user puts into performing their actions.
Connectivity - Nowadays, devices are almost constantly connected to a network.
This is an advantage because web services can be made use of without having to
interrupt the user. This is essential for actions such as syncing, uploading or
downloading files. Here, the situation where the user is forced to wait is avoided.
Android also provides several HTTP clients to allow applications to have the ability to
send or receive data.

Validation - Active policing of data is made possible with a smart device. In contrast
to paper questionnaires, a smart device is able to alert the user whenever something
erroneous has been entered into a field or if the user is about to perform an action
which is illegal or can cause issues in the handling of that information. Such data
validation results in data which is structured and cannot be misconstrued. This data

can reliably and consistently be transformed to meaningful information.

One of the more common processes which require recording information from the nursery is
mapping. Mapping is essentially a stocktake of the plants, resulting in a table which shows
where plants are located, how many there are, which client has ordered them, and so on. The
process of mapping can further be broken down into two categories; static mapping and

dynamic mapping.

Static mapping refers to the mapping of plants which are directly planted in soil in the ground.
These plants are not moved until the end of their research term or until they are ready to be sent
to the clients which have ordered them.

Static mapping requires the following information to be recorded:

Field Type
Compartment Text
Bed Numeric
Start of the bed Numeric
End of the bed Numeric
Bed length Numeric
Number of plants Numeric
Plant density Numeric
Client Text
Species Text
Details 1 (if any) Text
Details 2 (if any) Text
Photo details (if any) Text

Table 1, the fields and respective types of the data required for Static mapping form

Dynamic mapping refers to plants which are in small pots. These plants are moved from
location to location within the nursery depending on their health and stages of growth. An
example of this would be a sapling which has been growing inside a shed and receiving care
during its early growth being moved outside once it is ready to receive direct sunlight or a plant
which has taken too much harsh sunlight being moved back inside to receive careful watering to
counteract its negative growth.

Dynamic mapping requires the following information to be recorded:

Field Type
Environment Text
Location Text
Number of plants Numeric
Plant density Numeric
Client Text
Species Text
Details 1 (if any) Text
Details 2 (if any) Text
Photo details (if any) Text

Table 2, the fields and respective types of the data required for Dynamic mapping form

As can be seen, both types of mapping require similar information to be recorded, with the
exception of physical location which is fixed for static mapping and variable for dynamic
mapping and are referred to as different (compartments as opposed to environments). Also the
omission of the data relating to the bed in the dynamic form reflects the fact that the plants in
guestion are not planted in the ground.

The information regarding the client and species featuring in both types of mapping and that of
the location which is only featured in dynamic mapping are not to be entered freely by the user.
Users will be required to choose from a list of clients, species and locations. This list will need to
be accessible by the application, from which it will read and display the options to the user. The
ability to edit the information regarding client, species and location should also be one of the
functionalities of the application. This is to accommodate any additions of new clients, species

or locations.

Related Work

Kupzyk and Cohen (KA Kupzyk, 2014) acknowledge that data which is collected must be done
so correctly. Direct consequences of data entry errors are delayed analyses and incorrect
conclusions being reached. Two contributors to data entry errors are users entering the
incorrect values and users unintentionally skipping questions.

Kupzyk and Cohen proposed that these two factors can be resolved using simple strategies

which both require giving suggestions to the user. Incorrect data cannot be entered if users are

9

given a choice of valid answers to choose from, such as in a dropdown box or a multiple choice
scenario. The skipping of items can be prevented by implementing a counter which ensures that
all the questions have been answered, and will not allow the user to progress if there are any
answers which are missing.

Their system, implemented in Microsoft Excel, resulted in improved reporting in a nursing home

facility for reporting incidents of falls.

Kumar et al. (A. M. V. Kumar, 2013) address the fact that most published articles which rely on
data collection are not guaranteed to have data which is of a quality that is ensured by the
definitive gold standard of double entry and validation. The data is incorrect due to data entry
errors which are not accounted for.

The proposed solution to this by Kumar et al. was a system which would allow for those
collecting data to enter this data into fields which would be policed by inbuilt checks, thereby
reducing the frequency of data entry errors. Another feature which was added to this system
was that which used Dropbox to act as a file sharing service with both online and offline
capability. Its functionality extended beyond a file sharing service to a service which provided
near real-time file synchronisation.

The implementation of their system was a success in that it reduced the frequency of data entry

errors, and also positively impacted the time and effort required to work with the system.

Beretta et al. (L. Beretta, 2007) were faced with auditing a database and correcting identified
errors. In doing so, they acknowledge the importance of accurate data recording to prevent such
errors from being stored. They state that such errors can lead to serious information bias which
can be avoided by having consistent data recording.

Upon identifying and correcting erroneous data in their database, Beretta et al. found that data
collection being improved by a computer-assisted system would contribute to a better quality of
data in databases. They acknowledge that a computer-assisted system would be able to limit
errors in data entry by detecting and disallowing data which would not fall within an accepted

range.

Coons et al. (Stephen Joel Coons, 2009) investigated the possibility of electronic forms
performing differently in terms of the quality of the information which they gather when
compared to their paper-based alternatives. Their aim was to deduce and state any clear

advantages and/or disadvantages that electronic forms may have over paper-based forms.

10

Paper-based patient-reported outcome (PRO) measure forms were adapted to an electronic
format (ePRO) and their comparability or measurement equivalence was used to juxtapose the
guality of the information gathered. So as to not be biased towards any one platform of
electronic media, Coons et al. administered the PROs on several screen-based devices. Their
results show that there was no bias, indicating that any screen-based device could be used.
The data collected from an ePRO was determined to be of equal or superior quality when
compared to data collected by its paper-based predecessor. Coons et al. state that
administering the ePRO subsequent to the paper measure bears the same results that one
would get if the paper measure was administered twice.

Allenby et al. (A. ALLENBY, 2002) address the feasibility of touchscreen devices being used in
clinics for the purpose of patients recording information on their own. Their aim was to
determine how effective and useful the touchscreen devices will be as an alternative to a paper-
based alternative.

The comparison between paper-based and touchscreen-based questionnaires can be made by
converting the paper-based and then allowing the questionnaires to be put to use. The results
will indicate the feasibility of touchscreen devices being used in the clinic. Allenby et al. state
that data becomes more structured when collected in a more regulated fashion, as opposed to
systems similar to paper-based ones. It is claimed that making use of electronic media to collect
information also increases the speed of the data collection. This could allow for more
information to be collected and/or less time being spent on the questionnaires and/or both.

The results showed that the accuracy and completeness of the data which was collected by
means of the touchscreen device was excellent. This meant that the method, which eliminated
the need for transcription and secondary data entry, was deemed feasible to be used in the

clinic.

Design

There are five sheets in total which will take the form of the underlying information behind the
functionality of the application; two sheets for the static and dynamic mapping, and three sheets
for the information regarding the clients, species and locations. Each of these sheets will need
to be added to and this will be possible by the means of an individual form for each sheet. The
form will contain all the different fields which are required to complete a row which can then be

added to the corresponding sheet.

11

The forms for the client, species and location sheets will be simple in that they will not be doing

more than appending rows onto the end of their corresponding sheets. The design for these

three supplementary sheets will be near identical.

Field

Type

Company name

Text

Contact name

Text

Work phone Phone number
Mobile phone Phone number
Address Text

Table 3, the fields and respective types of the data required for the Client form

Field Type
Name Text
Code Text
Genus Text
Variety Text
Common name Text

Table 4, the fields and respective types of the data required for the Species form

Field

Type

Location

Text

Description

Text

Table 5, the fields and respective types of the data required for the Location form

Added camera-based functionality will be added to the mapping forms. While completing any of

the two mapping forms, users will be able to take a photo which can then be attached to the

sheet. This attachment is reflected by the value for ‘photo details’ being populated with the

filename of the photo that was taken. Additionally, if the user wishes to, they may draw on top of

a photo which they have just taken in case they feel the need to draw attention to some part of

the photo. This edited photo is attached to the sheet in the same way.

12

The sheets for clients, species and locations will be read by the application. This allows for the
addition of dropdown boxes in the mapping forms so that users may choose one of the existing
clients, species, and locations to populate the corresponding fields. This imposes a multiple
choice scenario on the user where they are to choose the correct entry from a range of existing
choices. As the application will be reading the aforementioned three sheets, any new rows
added to the sheets using the application will be reflected in the dropdown boxes instantly.

Forgiveness is an aspect which needs to be implemented to cater for situations when the user
has added an erroneous row to a sheet. In such a scenario, a user should be able to select the
erroneous row from the sheet preview, which will load that row’s values into the form, allowing
for the user to edit any field which is incorrect. Once this has been done, the user pressing the
button to confirm the row will replace the erroneous row with the corrected one, as opposed to
adding onto the end. This aspect of forgiveness is also something which needs to be present in
the photo editing process. Any drawn lines should be able to be undone as would be possible in

any standard image editing application.

There must be clarity in the design of the forms such that users will be able to easily tell what
information is to be filled in which field (Principles of User Interface Design). This serves as a
form of assistance to the user in that they can be reminded what to observe and record by the

application if they have forgotten or are new to the process.

Validation can be enforced by the application on the values entered into fields. This prevents
erroneous entries in the context of format and ensures a kind of structure in the resulting sheet.
Ensuring that a user only enters what they are meant to is an element which can easily be
achieved on a tablet device. As the only means of entering data is by the soft keyboard, the
forms can be configured in such a way that a standard QWERTY keyboard is only shown for
field which require text entries and a numerical keyboard being shown for fields which require

numerical entries.

Consistency between the designs of the forms is important for the user as this confirms for them
that similar things act in the same way (Android Design Principles). For this reason, the layouts
of the five forms have been kept the same in that fields which are the same or similar are in the

same positions across all forms. This results in interfaces with elements that looks similar which

13

can inherently be assumed of having similar behaviour, and makes it easier for users to

understand what is required of them (Principles of User Interface Design).

The fields in the form must follow a logical order. This is for the ease of use for the user. A form
with a logical flow will mean that users will not need to be jumping from field to field all across
the screen. The piece of information which naturally comes first will be featured first and will be
followed by that which naturally follows afterwards (Android Design Principles). The application
will begin to require information from a large-picture perspective, and then begin to focus on the
details of the information being collected.

Android Developer Tools and Software Development Kit

To develop this application, the Android Developer Tools (ADT) and the Android Software
Development Kit (SDK) will be used. This allows for the application to be built in Java using
Eclipse Integrated Development Environment (IDE). The IDE can emulate Android devices of
varying screen size and specifications, allowing for testing to be done on these virtual devices
while still retaining functioning features such as the camera, sensors, multitouch and telephony

(Developer Tools).

The ADT also allows for a running application to be installed onto a physical Android device,
which was what was done for development. The application was run on a tablet which directly
reflects its specification to be used on a tablet device. Debugging the application on a real,
physical tablet was also advantageous due to the low speed issues and lack of responsiveness

of the emulator.

The Android SDK version that was being developed for was 8 so every device running an

Android version from 2.2 onwards can run the application.

Data Model

The Entity-Relationship Diagram (ERD) represents the data and the flow of information within
the application. As mentioned before, the two mapping forms require information from two (or
three in the case of the dynamic mapping) sheets to complete a row which can then be added to
the sheet. This is evident in the ERD where the relationship between the two main forms and

the three remaining forms is represented as a one-to-many relationship. This means that for any

14

given static mapping entry, there can only be one client, or one species assigned. The same
can be said for the dynamic mapping entries with the addition of the one-to-many relationship

with locations.

Static Entry Dynamic Entry
Location
Time Time
Date Location Date
Compartment Description Environment
Bed Number } Location
Start of bed Plant Density
End of bed Client Number of Plants
Length of bed Company MonthiYear Planted
Plant Density Contact |_‘_ Client
Number of Plants Work Phone i Species
Month/Year Planted Mobile Phone Details 1
Client } Address Details 2
Species | Photo Details
Details 1
Details 2
Photo Details Species
Name
Code
Genus
Variety
Common Name

Figure 3, ERD showing the relationship between the data in the different forms

Implementation

Android Manifest

The Android Manifest xml file is mandatory for every application. It is an accumulation of all the
information regarding the application which is to be sent to the Android system before the actual
running of the application’s code (App Manifest). The information that it handles includes the
package name, the minimum SDK requirements, all the activities which will be used within the
application and the permissions which outline which protected parts of the Android API are to be

used, such as activating the camera or writing to the memory card.

For the application at this point, the manifest contains the following:
A package name of com.dasarsh.scion.
A minimum SDK of 8 which correlates to an Android version of 2.2.

A target SDK of 18 which correlates to an Android version of 4.3.

15

The permissions “android.permission.READ _EXTERNAL_STORAGE” and
“android.permission. WRITE_EXTERNAL_STORAGE” for the sake of reading and writing from
the memory card.

An activity for each of the following:

EntryPoint
StaticForm
DynamicForm
ClientForm
SpeciesForm
LocationForm
EditPhotoSurface

Static and Dynamic Mapping Forms

Both types of mapping require one activity each and both activities require two files for each of
them; a java file and an xml file. The xml file contains all the information regarding the layout of
the activity such as the layouts and their elements on the screen. The java file contains all the

code which enables what is seen on the screen to have their respective functionalities and also

handles any errors.

The XML Layouts

The layouts of the forms are near identical. They all have half of the screen dedicated to the
sheet preview while the other half is dedicated to the actual form. At the bottom of the half which
contains the form, there is a panel of buttons. The whole view is contained in a LinearLayout,
which was divided in two for the HorizontalScrollView to contain the preview and another

LinearLayout to contain the form and the buttons.

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"”
android:layout_width="match_parent"”
android:layout_height="match_parent"”
android:orientation="vertical"”

android:weightSum="100" >

<HorizontalScrollView

16

android:id="@+1d/STATIChsvPreview"
android:layout_width="fill_parent"”
android:layout_height="wrap_content"”
android:layout_weight="50" >

</HorizontalScrollView>

<LinearLayout
android:layout_width="fill_parent"”
android:layout_height="wrap_content"”
android:orientation="vertical”
android:weightSum="50" >

</LinearlLayout>

</LinearlLayout>

0 .
o5® Scion

Time Date Compartment number Bed number Startof bed End of bed Bed length Plant density Number of plants
12:56 06/07/2014 A 1 25 36 1 66 55
12:58 06/07/2014 C 6 85 78 13 25 36
12:59 06/07/2014 F 9 58 69 1 45 54
13:00 06/07/20714 D 4 14 36 22 a7 58
13:01 06/07/2014 G 2 45 8 33 60 50
13:01 06/07/2014 D 2 45 70 25 68 51
13:02 06/07/2014 B 5 25 60 35 65 52
13:02 06/07/2014 H] 65 87 22 58 66
13:03 06/07/2014 D 8 45 90 45 58 45
13:03 06/07/2014 E 5 78 105 27 68 90
13:04 06/07/2014 B 5 25 70 45 68 55
13:04 06/07/2014 A 5 55 98 43 70 100
13:05 06/07/2014 C 5 140 190 50 55 68
13:09 06/07/2074 B 6 570 680 110 58 66
13:10 06/07/2014 C 5 555 666 m 87 95
13:10 06/07/2014 H 1 50 90 40 70 80
13:12 06/07/2014 B 5 58 70 12 40 66
13:13 06/07/2014 B 14 55 100 45 48 98
13:14 06/07/2014 B 2 50 150 100 45 86
13:31 06/07/2014 C] 45 78 33 70 70
13:32 06/07/2014 E 4 50 90 40 55 68
13:33 06/07/2014 B 5 50 90 40 88 88
13:34 06/07/20714 D 7 54 98 44 55 47
13:35 06/07/2014 C] 50 90 40 77 88
13:36 06/07/2014 B] 450 500 50 60 48
13:37 06/07/2014 B 2 40 60 20 80 90

11:1 11/07/2014

Compartment eg 'A’ Bed number

Start of bed End of bed Length of bed

Plant density Number of plants

Month/Year planted eq '04/2014'
Details 1
Details 2

Client Company Species Name

A

Attach photo Edit photo Make a sheet Clear

Figure 4, the division of the screen in two for the preview and the form

17

The sheet preview’s design dictates that it should look and act like a spreadsheet editor similar
to Microsoft Excel. This means that should the sheet become large in terms of both rows and
columns, there should be no issues with both horizontal and vertical scrolling in order to be able
to view any cell at any position. To accomplish this requirement, nesting layouts within layouts

was necessary.

The HorizontalScrollView further contains a Scrollview which contains a TableLayout. The
TablelLayout within a Scrollview gives the preview the functionality of vertical scrolling as the
TablelLayout grows vertically. The Scrollview within a HorizontalScrollView gives the

functionality of horizontal scrolling as the TableLayout (and the Scrollview encasing it) grows

horizontally.

<HorizontalScrollView
android:id="@+1d/STATIChsvPreview"
android:layout_width="fill_parent”
android:layout_height="wrap_content”

android:layout_weight="50" >

<ScrollView
android:layout_width="match_parent”
android:layout_height="match_parent”

android:orientation="horizontal" >

<Tablelayout
android:id="@+1d/STATICtablelLayoutPreview"
android:layout_width="fill_parent”
android:layout_height="fill_parent” >

</TablelLayout>
</ScrollView>

</HorizontalScrollView>

18

The lower half of the screen is dedicated to the LinearLayout of the form with which users are to
record information to add rows to the sheet. This was implemented in a straightforward way
such that every field which requires the whole width of the screen is simply added to the
LinearLayout, whereas fields which are related and are to be grouped together on the same line
are added into a nested LinearLayout. An example of this is the two fields regarding the
beginning and ending of a bed, and the field regarding the length of the bed. All three fields are
added to a LinearLayout which is nested within the LinearLayout dedicated for the bottom half

of the screen.

<LinearlLayout
android:layout_width="filLl_parent"”
android:layout_height="wrap_content”
android:orientation="vertical”

android:weightSum="50" >

<LinearlLayout
android:layout_width="filLl_parent"”
android:layout_height="wrap_content™”
android:orientation="horizontal"”

android:weightSum="99" >

<EditText
android:id="@+1d/STATICetBedStart"
android:layout_width="fill_parent”
android:layout_height="wrap_content™”
android:layout_weight="33"
android:ems="10"
android:hint="@string/StartOfBed"

android:inputType="number" />

<EditText
android:id="@+1d/STATICetBedEnd"
android:layout_width="fill_parent"”

"

android:layout_height="wrap_content

19

android:layout_weight="33"
android:ems="10"
android:hint="@string/EndOfBed"

android:inputType="number" />

<EditText
android:id="@+1d/STATICetBedLength"
android:layout_width="fill_parent"”
android:layout_height="wrap_content"”
android:layout_weight="33"
android:ems="10"
android:hint="@string/LengthOfBed"
android:inputType="number"” />

</LinearlLayout>

</LinearlLayout>

Start of bed End of bed Length of bed

Figure 5, the grouping of the bed-related fields on one line

The form layout features fields in which users are to enter the data which they record. These
fields are EditText elements and text can be entered into them. EditText elements can give
users hints to serve as reminders on what to enter. These hints are useful to provide clarity and
also functions to remind the users of what is to be entered. An EditText element can be
configured to only accept a type of input, which serves as validation in the following case where
only a number will be accepted, which prompts the user with a numberpad as opposed to a
QWERTY keyboard to type with.

<EditText
android:id="@+1d/STATICetBed"
android:layout_width="f1ilLl_parent"”

android:layout_height="wrap_content"”

20

android:layout_weight="50"
android:ems="10"
android:hint="@string/BedNumber"

android:inputType="number" />

0 .
85® Scion

13:02 06/07/2014 H 9 65 87 22 58 66
13:03 06/07/2014 D 8 45 90 45 58 45
13:03 06/07/2014 E 5 78 105 27 68 90
13:04 06/07/2014 B 5 25 70 45 68 55
13:04 06/07/2014 A 5 55 98 43 T0 100
13:05 06/07/2014 C 5 140 190 50 55 68
13:09 06/07/2014 B 6 570 680 110 58 66
13:10 06/07/2014 C 5 555 666 1 a7 95
13:10 06/07/2014 H 11 50 90 40 T0 80
13:12 06/07/2014 B 5 58 70 12 40 66
13:13 06/07/2014 B 14 55 100 45 48 498
13:14 06/07/2014 B 2 50 150 100 45 66
13:31 06/07/2014 C 4 45 78 33 T0 70
13:32 06/07/2014 E 4 50 90 40 55 68
13:33 06/07/2014 B 5 50 a0 40 88 a8
13:34 06/07/2014 D 7 54 98 44 55 47
13:35 06/07/2014 C 4 50 90 40 7 88
13:36 06/07/2014 B 4 450 500 50 60 48
13:37 06/07/2014 B 2 40 60 20 80 90
19:50 06/07/2014
10:42 07/07/2014 Ad 7 97 98 1 75 68
11:11 11/07/2014

A Bed number

Start of bed End of bed Length of bed
Plant density Number of plants

Month/Year planted eg '04/2014'

Figure 6, a numberpad is shown for input which should strictly be numeric

Spinner elements feature in the form layout. These elements are for giving the user a multiple
choice scenario where they are to choose a single option which is most appropriate. For this
application, the spinner elements are used to provide a dropdown box where users are to select

the appropriate Client, Species and Location.

<Spinner

android:id="@+1d/STATICspCompany"

21

android:layout_width="match_parent"”
android:layout_height="wrap_content™”

android:layout_weight="50" />

Button elements conclude the form layout. These elements are used to trigger events when
they are pressed and are listened to within the form’s accompanying java class. The two main
mapping forms contain four buttons which are nested within a LinearLayout which groups them

together.

<LinearlLayout
android:layout_width="filLl_parent"”
android:layout_height="wrap_content"”
android:orientation="horizontal "

android:weightSum="100" >

<Button
android:id="@+1d/STATICbAttachPhoto"
android:layout_width="wrap_content”
android:layout_height="wrap_content™”

android:layout_weight="25"

android:text="@string/AttachPhoto” />

<Button
android:id="@+1d/STATICbEditPhoto"
android:layout_width="wrap_content”
android:layout_height="wrap_content"”

android:layout_weight="25"

android:text="@string/EditPhoto"” />

<Button
android:id="@+1d/STATICbSubmit"
android:layout_width="wrap_content"”
android:layout_height="wrap_content"”
android:layout_weight="25"

android:text="@string/MakeASheet" />

22

<Button
android:id="@+1d/STATICbClear"
android:layout_width="wrap_content"”
android:layout_height="wrap_content"”
android:layout_weight="25"
android:text="@string/Clear"” />

</LinearlLayout>

Attach photo Edit photo Make a sheet Clear

Figure 7, the layout of buttons featured in both Static and Dynamic mapping forms

Make a sheet Clear

Figure 8, the layout of buttons featured in the Client, Species and Location forms

The three forms for Client, Species and Location which do not require camera and photo editing

functionalities have only the buttons required to add rows and clear fields. They are near
identical.

23

Client Company Client Contact ClientWork phone Client Mobile phone Client Address SpeciesName SpeciesCode Species Genus Species Variety Species Common Name

The Dasarsh Company DasarshVadugu (09)1234567 +6411234567 31 ClientRd Speciesname1 Speciescode1 Species genus 1 Species variety 1 Species common name 1
We Want Plants John Planter (09)1234568 +6411234567 32ClientRd Speciesname2 Speciescode2 Speciesgenus2 Speciesvariety2 Species common name 2
The Green Party Kim Dotcom (09)1234569 +6411234567 33ClientRd Speciesname3 Speciescode3 Species genus3 Speciesvariety 3 Species common name 3
Colyplay Chris Martin (09)1234570 +6411234567 34 ClientRd Speciesnamed4 Speciescoded Species genus 4 Speciesvariety 4 Species common name 4
GeoTech LouisHamilton (08)1234571 +6411234567 35ClientRd Speciesname5 Speciescode5 Speciesgenus5 Speciesvariety 5 Species common name 5
Major Plants Olga Gurlukovich ~ (08)1234572 +6411234567 36 Client Rd Speciesname6 Speciescode Species genus6 Speciesvariety 6 Species common name 6
Android Prince George (09)1234573 +6411234567 37 ClientRd Speciesname7 Speciescode? Speciesgenus7 Speciesvariety 7 Species common name 7
Nintendo Homer Simpson (09)1234574 +6411234567 38 ClientRd Speciesname8 Speciescode8 Species genus8 Species variety 8 Species common name 8
vodafone Avril Lavigne (09)1234575 +6411234567 39 Client Rd Speciesname8 Speciescode 9 Species genus 9 Speciesvariety 9 Species common name 9
Windows Bill Gates (09)1234576 +6411234567 40 Client Rd Species name 10 Species code 10 Species genus 10 Species variety 10 Species common name 10
Nascar Lightning McQueen (08)1234577 +6411234567 41 ClientRd Speciesname 11 Species code 11 Species genus 11 Species variety 11 Species common name 11
Disney David Beckham (08)1234578 +6411234567 42 ClientRd Species name 12 Species code 12 Species genus 12 Species variety 12 Species commen name 12
Monsters Inc. Mike Mazowski (08)1234579 +6411234567 43 ClientRd Species name 13 Species code 13 Species genus 13 Species variety 13 Species common name 13
HP Tom Jerry (09)1234580 +6411234567 44 ClientRd Species name 14 Species code 14 Species genus 14 Species variety 14 Species common name 14
Les Mills Brad Pitt (09)1234581 +6411234567 45 ClientRd Species name 15 Species code 15 Species genus 15 Species variety 15 Species common name 15
University of Auckland Angelina Jolie (09)1234582 +6411234567 46 Client Rd Species name 16 Species code 16 Species genus 16 Species variety 16 Species common name 16
WWF Dwayne Johnson ~ (08)1234583 +6411234567 47 Client Rd Species name 17 Species code 17 Species genus 17 Species variety 17 Species commen name 17
National Basketball Association Kobe Bryant (09)1234584 +6411234567 48 ClientRd Species name 18 Species code 18 Species genus 18 Species variety 18 Species common name 18
Unicef Walter White (09)1234585 +6411234567 49 Client Rd Species name 19 Species code 19 Species genus 19 Species variety 19 Species common name 19
skinny Mobile Guysen Lang (09)1234586 +6411234567 50 ClientRd Species name 20 Species code 20 Species genus 20 Species variety 20 Species common name 20
Orcon Gandalf White (09)1234587 +6411234567 51 ClientRd Species name 21 Species code 21 Species genus 21 Species variety 21 Species common name 21
k;‘om pany Bpecies name

Contact name Species code

Work phone Genus

Mobile phone Variety

Postal address Common name

Make a sheet Clear Make a sheet Clear

Location Location Description
Location 1 Description 1
Location2 Description 2
Location 3 Description 3
Locationd Description 4
Location5 Description 5
Location 6 Description &
Location7 Description 7
Location 8 Description 8
Location9 Description 9
Location 10 Description 10
Location 11 Description 11
Location 12 Description 12
Location 13 Description 13
Location 14 Description 14
Location 15 Description 15
Location 16 Description 16
Location 17 Description 17
Location 18 Description 18
Location 19 Description 19
Location 20 Description 20
Location 21 Description 21

Location

Location description

Make a sheet Clear

24

Figure 9, the three forms for Client, Species and Location are near identical aesthetically and

functionally

Imported APIs

The Java Excel API of version 2.6.12 was imported for this application. Its purpose is to read,
write and modify Excel spreadsheets (Khan, Java Excel API - A Java API to read, write and
modify Excel spreadsheets). This API allows for Java code to access the means to create

spreadsheets dynamically as well as read spreadsheets and access the cell data.

The Java Classes

Java classes which accompany their respective xml classes instantiate the xml file’s elements
and handle events which are either triggered by those elements or require updating the values

of those elements.

All the java classes created extends the Activity class which allows the java class to be
launched as an activity from within other java classes. Having the Activity class as a super class
allows for the java class to have access to many of the methods within said Activity class, such
as the oncreate method which allows for the java class to be linked to its respective xml layout.

All of the java classes implement the onClickListener to be able to better handle events
where buttons have been pressed. The two mapping forms implement the
onItemSelectedListener for the case of when an item in a Spinner element has been
selected. Due to the fact that these two listeners are interfaces, the methods within them must

be implemented within the java class, even if empty.

What must be done first in the java class is the linking of the java class with its respective xml

layout class. This is done by setting the content of the screen to be the xml view.
setContentView(R.layout.static_form);
Only after this can the instantiation of the xml elements be done. Certain EditText elements

have been programmatically configured in the java class such that they are not able to be

edited. These are the time and date EditText elements which are to be automatically generated

25

by the Android API. This was done by passing null to an EditText element’s keyListener

method.

EditText date, time;
time = (EditText) findViewById(R.id.STATICetTime);

time.setKeyListener(null);

The purpose of using this method to nullify any changes made to the EditText as opposed to
using a simple label which cannot be changed by default is to retain the look and feel of a form
which is going to be used to populate a row which will be added to a sheet.

The time and date values which are displayed in the time and date EditText elements are
derived from the Date class. The java class instantiates a Date which matches the system time
of the device and deduces the hours and minutes to use for the time and the day, month and
year to use for the date. String operations are done to prepend ‘0’ to the minutes and seconds
values to prevent the time being shown as 12:9 instead of 12:09. The date and time are also
lastly combined together to create a String which will be used as the filenames of photos taken
using the application.

The two EditText elements for the starting and ending lengths of the beds, which are then used
to calculate the length of the bed itself, are set to update the value of the EditText element
dedicated to the length of the bed once the focus has changed from either the start or end
EditText. This was done using the EditText element’s setOnFocusChangelListener method

and passing a custom onFocusChangeListener into it.

bedStart.setOnFocusChangelListener(new OnFocusChangelListener() {
public void onFocusChange(View v, boolean hasFocus) {
if ('hasFocus) {
updateBedLength();

})s

26

Spinner elements are instantiated by means of population with the data which is being read
from the corresponding xlIs sheet. The Client spinner element will be reading the column of

clients from the client.xls sheet and then displaying those clients as Spinner items.

ArrayList<String> list = new ArraylList<String>();

// add the names of the companies stored in the client.xsl file into
// the ArraylList for the spinner
for (int 1 = 9; i < numRows; i++) {

list.add(sheet.getCell(@, i).getContents());

}
ArrayAdapter<String> adapter = new ArrayAdapter<String>(this,

android.R.layout.simple_spinner_item, list);

adapter.setDropDownViewResource(android.R.layout.simple_spinner_dropdown_item)

spinner.setAdapter(adapter);

spinner.setOnItemSelectedListener(this);

The spinner is populated with items which correlate to columns of the sheet which is being
read, inclusive of the column heading such as “Client Company” or “Species Name”. The
headings are included due to the fact that there is no direct way to programmatically configure a

hint for the user in the same way that can be done with an EditText element.

27

O 5
i iaa

1
;1 GeoTech

rtof bed End of bed Bed length Plant density Number of plants

36 n 66 55
Client Company Client Contact ClientWork phone Client Mobile phone Client Address 1 78 13 25 36
The Dasarsh Company Dasarsh Vadugu (09)1234567 +6411234567 31 ClientRd 1 Major Plants 69 1 45 54
We Want Plants John Planter (09)1234568 +6411234567 32 ClientRd 1 36 22 87 58
The Green Party Kim Dotcom (09)1234569 +6411234567 33 GlientRd 1 78 33 60 50
Colyplay Chris Martin (09)1234570 +6411234567 34 Client Rd 1 Android 70 25 68 51
GeoTech Louis Hamilton (09)1234571 +6411234567 35 ClientRd 1 60 35 65 52
Major Plants Olga Gurlukovich (09)1234572 +6411234567 36 ClientRd 1 Nintendo a7 22 58 66
Android Prince George (09)1234573 +6411234567 37 ClientRd 1 90 45 58 45
Nintendo Homer Simpson (09)1234574 +6411234567 38 ClientRd 1 105 27 68 90
Vodafone Avril Lavigne (09)1234575 +6411234567 39 GlientRd 1 Vodafone 70 a5 68 55
Windows Bill Gates (09)1234576 +6411234567 40 Client Rd 1 98 43 70 100
Nascar Lightning McQueen (09)1234577 +6411234567 41 Client Rd 1 | 190 50 55 68
Disney David Beckham (09)1234578 +6411234567 42 Client Rd 1 Windows | 680 110 58 66
Monsters Inc Mike Mazowski (09)1234579 +6411234567 43 ClientRd 1 i 666 m 87 95
HP Tom Jerry (09)1234580 +6411234567 44 Glient Rd 1 Nascar 90 a0 70 80
Les Mills Brad Pitt (09)1234581 +6411234567 45 GlientRd 1 70 12 40 66
University of Auckland Angelina Jolie (09)1234582 +6411234567 46 Client Rd 1 100 45 48 98
WWF Dwayne Johnson (09)1234583 +0411234567 47 Client Rd 1 Disney 150 100 45 66
National Basketball Association Kobe Bryant (09)1234584 +6411234567 48 Client Rd 1 8 33 70 70
Unicef Walter White (09)1234585 +6411234567 49 ClientRd T Monsters Inc 90 a0 55 68
Skinny Mobile Guysen Lang (09)1234586 +6411234567 50 GlientRd 1 90 40 88 88
Orcon Gandalf White (09)1234587 +6411234567 51 Client Rd 1 98 44 55 47
1 HP 90 40 77 88
1 500 50 60 48
1 . 60 20 80 90
; Les Mills
1 98 1 75 68
: University of Auckland 11/07/2014
Lumpany
A WWF 6
Contact name
Work phone National Basketball Association 10
Number of plants
Mobile phone Unicef
Postal address
Skinny Maobile
Make a sheet Clear
Orcon
Client Company 4 Species Name
Attach photo Edit photo Make a sheet Clear

. m

Figure 10, the entries from the Client Company column from the Client sheet are shown as items

— I

in the Spinner element in the Static form

The onItemSelected method of the onItemSelectedListener interface which was mandatorily
implemented includes a switch case which deduces which spinner element has had an item
selected from, and then proceeds to check the position of the item which was selected. If the
item is in position 0, then that means the first element has been selected, which is the column
heading. The column heading is not valid data which can be entered into the sheet, and so if it
has been selected, the data added in its stead is simply an empty String.

@Override
public void onItemSelected(AdapterView<?> parent, View view, int position,

long id) {

// for handling when a Spinner item is selected

switch (parent.getId()) {
case R.id.STATICspCompany:

28

// if the column header is not the one which is selected
if (position != @) {

company.setSelection(position);

companyData = (String) company.getSelectedItem();
} else {

companyData = "";
}
break;

case R.id.STATICspSpecies:
// if the column header is not the one which is selected
if (position != @) {
species.setSelection(position);
speciesData = (String) species.getSelectedItem();
} else {

speciesData = 5

break;

// cases are set such that if there is not change to the spinner
// values and they display the column headers, they do not appear on
// the sheet once added

In the xml layout, the sheet preview consists of a HorizontalScrollView encasing a ScrollView
encasing a TablelLayout. The TableLayout is the real sheet preview being displayed, and the
HorizontalScrollView and ScrollView which it is nested in serves as a means of navigation
within the sheet. A TablelLayout is to be populated with TableRow elements, which can contain
any element within it. The sheet that is to be previewed is being read from one row at a time,
and each cell in that row is being used to create a TextView element which is then added to a
TableRow element and finally added to the TableLayout element. The TextView is being made

with some padding on both left and right sides of the cell information and a simple resource

29

defining a border is being drawn do differentiate the cells from one another and separate the

data.

HorizontalScrollView hsc;

TableLayout tl1;

hsc = (HorizontalScrollView) findViewById(R.id.STATIChsvPreview);
tl = (TableLayout) findViewById(R.id.STATICtablelayoutPreview);

// starting at rowsDisplayed to add only new rows
for (int i = rowsDisplayed; i < numRows; i++) {

// create a new TableRow

TableRow tr = new TableRow(this);

// width FILL_PARENT height WRAP_CONTENT

tr.setLayoutParams(new TableRow.LayoutParams(

TableRow.LayoutParams .FELE—PARENT,
TableRow.LayoutParams.WRAP_CONTENT));

for (int j = 9; j < numCols; j++) {
// create a new TextView
TextView b = new TextView(this);
// because jxl1 works like (columns, rows)
b.setText(" " + sheet.getCell(j, i).getContents() + " ");
// width FILL_PARENT height WRAP_CONTENT
b.setLayoutParams(new TableRow.LayoutParams(

TableRow.LayoutParams.FELL—PARENT,
TableRow.LayoutParams.WRAP_CONTENT));

// draw the border around each TextView for grid look
b.setBackgroundResource(R.drawable.border);
// add the TextView to the TableRow
tr.addview(b);

}
// Add the TableRow to the TableLayout which is width

// FILL_PARENT and height WRAP_CONTENT
tl.addView(tr, new TablelLayout.LayoutParams(
TablelLayout.LayoutParams.FELL—PARENT,

30

TablelLayout.LayoutParams.WRAP_CONTENT));

For the static form, which features the starting and ending bed EditText elements and the bed
length EditText element, there is a method which calculates the length from the starting and
ending values. This method is called whenever there is a shift in focus from either of the two
EditText elements. The first check being made is one which ensures that the lengths of the
data in the two elements are greater than 0, which means that there is a non-null value in the
EditText element. The values are then parsed from their default type of String to integer. This is
a safe operation and there is no case where data which is not a number is attempted to be
parsed into an integer format. This is due to the validation occurring on the xml layout side
where the input type is assigned to being numeric, which only allows users to enter numbers.
On successfully parsing the values, there is a check to see whether the end value is greater
than the start value. If this is true, the length is calculated by subtraction. If that is not the case,
the user will be alerted to it by means of an AlertDialog which then prompts the user back to

the EditText element for the end of the bed by requesting the focus to that element.

@SuppressWarnings("deprecation™)
public void updateBedLength() {
// if both bedStart and bedEnd have values
if (bedStart.getText().length() > © & bedEnd.getText().length() > @) {
// get these values
int start = Integer.parseInt(bedStart.getText().toString());
int end = Integer.parseInt(bedEnd.getText().toString());
// compute the length
int length = end - start;
// if end is greater than start (as it should always be)
if (end > start) {
// set the text to bedLength
bedLength.setText(length + "");
} else {
// otherwise alert the user
AlertDialog alertDialog = new AlertDialog.Builder(context)
.create();

alertDialog.setTitle("Invalid argument");

31

alertDialog.setMessage("The value for 'bed end' must be
greater than the value for 'bed start'");
alertDialog.setButton("Okay",
new DialogInterface.OnClickListener() {

public void onClick(DialogInterface

dialog, int which) {

bedEnd.requestFocus();

})s
alertDialog.show();

o 8 oo g e
12:56 06/07/2014 A 1 25 36 1 66 55
12:58 06/07/2014 C 6 65 78 13 25 36
12:59 06/07/2014 F 9 58 69 1 15 54
13:00 06/07/2014 D 4 14 36 22 87 58
13:01 06/07/2014 G 2 45 78 33 60 50
13:01 06/07/2014 D 2 45 70 25 68 51
13:02 06/07/2014 B 5 25 60 35 65 52
13:02 06/07/2014 H 9 65 87 22 58 66
13:03 06/07/2014 D 8 45 90 45 58 45
13:03 06/07/2014 E 5 78 105 27 68 90
13:04 06/07/2014 B 5 25 70 45 63 55
13:04 06/07/2014 A 5 55 98 43 70 100
13:05 06/07/2014 C 5 140 190 50 55 68
13:09 06/07/2014 B 6 570 680 110 58 66
13:10 06/07/2014 C 5 555 666 m 87 95
13:10 06/07/2014 H n 50 90 40 70 80
13:12 06/07/2014 B 5 58 70 12 40 66
13:13 06/07/2014 B 14 55 100 45 48 98
13:14 06/07/2014 B 2 50 150 100 45 66
13:31 06/07/2014 C 4 45 78 33 70 70 Invalid argument
13:32 06/07/2014 E 4 50 90 40 55 68
11:28 11/07/2014 The value for 'bed end' must be greater than the value for 'bed start'
Compartment eg 'A’ Bed number
Okay

50 25 Length of bed

Plant density Number of plants

Month/Year planted eg '04/2014'

Figure 11, the value for the end of the bed (25) is less than that of the start of the bed (50), and so
the user is prompted with an alert

The onClick method which must be implemented due to the class implementing the

onClickListener interface contains the code which handles what is to happen if any of the

32

buttons are pressed. The method is passed a view, from which a switch case is required to

determine which of the buttons has been pressed.

@SuppressWarnings("deprecation™)
@Override

public void onClick(View v) {

// what to do when buttons are pressed

switch (v.getId()) {
// submit button is pressed

case R.id.STATICbSubmit:

break;
// attach photo button is pressed
case R.id.STATICbAttachPhoto:

break;
// edit photo button is pressed
case R.id.STATICbEditPhoto:

break;
// clear button is pressed

case R.id.STATICbClear:

break;

In the case of the “Submit” button being pressed, all the information from the respective fields
will be collected, and then there will be a check to determine whether the sheet for the mapping

exists.

collect();

File path = new File("sdcard/scion/static_mapping.x1ls");

33

If the path exists, the collected data will be appended to the existing file as a new row. If the
path does not exist, that means there is no previously existing spreadsheet to append onto and
a new sheet is required to be made. A Toast message is displayed afterwards to confirm to the

user that the required operation has completed.

if (path.exists()) {
// if so, add to the sheet
excelAdder();
Toast toast = Toast.makeText(this, "Row added to sheet",
Toast.LENGTH_SHORT);
toast.show();
} else {
// if not, make a new sheet and add to it
excelTesterStatic();
Toast toast = Toast.makeText(this, "Sheet created”,
Toast.LENGTH_SHORT);

toast.show();

Once the new row has been added, the preview is required to show the changes made to either
the existing sheet, or display the new sheet. This is done by essentially reloading the whole

activity again and finishing the running activity so as not to waste resources.

// restart the activity so that the form can be used again to add
// more rows

startActivity(starterIntent);

// finish this activity so as not to waste resources more

finish();

The variable starterintent is required to restart the same activity. It is an Intent type and is a

global variable which was instantiated in the onCreate method as such:

starterIntent = getIntent();

34

In the case of the “Attach photo” button being pressed, an intent for starting the camera
application will be started. The user will be prompted to take a photo using the device’s default
camera application and once they have done so, the camera activity will complete and the code
from the onActivityResult method will be run. This is due to the fact that the
startActivityForResult method is used, which means that there is an opportunity to do
something once an activity finishes, as opposed to letting them finish and moving on which is

what would happen if the startActivity method was used instead.

// create an intent for starting the camera
i = new Intent(android.provider.MediaStore.ACTION_IMAGE_CAPTURE);
// activity for result returns to the onActivityResult() method

startActivityForResult(i, cameraData);

On completion of the camera activity, there is a switch case which determines that the camera
activity has finished and has results which are to be handled. These results are the data
regarding the photo taken. With this data, the application saves the photo in the jpg format,
using the date and time string mentioned earlier as the filename. Lastly, a boolean used to store

whether a photo has been taken or not is set to true.

switch (requestCode) {

case cameraData:
Bundle extras = data.getExtras();
Bitmap bmp = (Bitmap) extras.get("data");
OutputStream stream;

try {

File scionDir = new File("/sdcard/scion/photos/");
// If /sdcard/scion/photos/ is not a directory, then make it
if (!scionDir.isDirectory()) {
scionDir.mkdirs();
}
// save the photo using the timestamp (dateTimeString) as
// its filename
stream = new FileOutputStream("/sdcard/scion/photos/"

+ dateTimeString + ".jpg");

35

bmp.compress(CompressFormat.JPEG, 100, stream);
photoData = dateTimeString + ".jpg";
} catch (FileNotFoundException e) {

e.printStackTrace();

Toast toast = Toast.makeText(this, "Photo saved and attached",
Toast.LENGTH_SHORT);

toast.show();

// set isPhotoAttached boolean to true so editing can take place
isPhotoAttached = true;
break;

case editPhotoData:

break;

In the case of the “Edit photo” button being pressed, the boolean for deducing whether a photo
has been taken will be checked. If the boolean is true and a photo has been taken, then an
activity in which the taken photo can be edited is started. A Bundle object is used to send
information from between activities. In this case, the Bundle object is carrying the path of the
previously taken photo as this will be used as the path for the edited photo once editing has
been completed. If a photo has not been taken, then the user is prompted to do so by means of

an AlertDialog before trying to edit a photo.

// if a photo has been attached
if (isPhotoAttached == true) {
// create a new bundle for sending to the next activity
Bundle basket = new Bundle();
// attach the path to the attached photo
basket.putString("photoPath", "/sdcard/scion/photos/"
+ dateTimeString + ".jpg");
// create an intent for the editing activity
Intent a = new Intent(this, EditPhotoSurface.class);

// send the bundle

36

a.putExtras(basket);
// start the editing activity
startActivityForResult(a, editPhotoData);
} else {
// if a photo has not been attached, alert and prompt the user
// to do so with a dialog
AlertDialog alertDialog = new AlertDialog.Builder(context)
.create();
alertDialog.setTitle("No photo to edit");
alertDialog
.setMessage("Take a photo first in order to edit it.");
alertDialog.setButten("Okay",
new DialogInterface.OnClickListener() {
public void onClick(DialogInterface dialog,
int which) {
// nothing happens

})s
alertDialog.show();

In the case that the “Clear” button is pressed, the initialise and clearEditTexts methods are
called. Calling the initialise method ensures that the spinner elements are reset to their
default values and calling the clearEditTexts method programmatically sets the values for all
the EditText elements to be that of an empty String.

// initialise() resets the spinners
initialise();
// clearEditTexts() resets the EditTexts

clearEditTexts();

private void clearkEditTexts() {

// clears the values for the EditTexts

37

plantDensity.setText("");
whenPlanted.setText("");

numPlants.setText("");

There are two methods in which spreadsheets are written to; the method used to create a
spreadsheet if there is not one already existing, and the method used to add a row to an
existing spreadsheet. Both methods make use of the Java Excel API to do so. Writing to a
spreadsheet requires creating a WritableWorkbook object using the Workbook’s factory method
(Khan, Java Excel API Tutorial). Then the WritableWorkbook object is used to create a
WritableSheet object which Label objects are added to. Label objects dictate the cell position of
the information that is to be entered into the sheet. Once all the changes have been made, the
WritableWorkbook object must be written to and then closed in that order, otherwise an empty

file will be created. The resultant file is an xls file which can be read by Excel.

In both methods, the data collected from the fields are added to an ArrayList. This ArrayList is
cycled through and each item is added to the sheet. The difference between the two methods is
that the excelAdder method creates a copy of the existing sheet, counts the number of rows,
appends the new row, and then overwrites the existing sheet. The excelCreate method adds

column headers first, then proceeds to add the data and then saves the sheet.

The java classes for the three supplementary forms (Client, Species and Location) are near
identical to one another. They do not contain any of the functionality with regards to the camera,
or editing photos. They are simply for adding rows to their respective sheets and contain many
of the same methods, with the exceptions being those which are necessary to have as a

consequence of implementing the onItemSelectedListener interface.

38

EditPhotoSurface.java

The EditPhotoSurface.java class is used to enable photo editing functionality. Its purpose is to
receive photos which have been taken by the user, and then give them the capability of drawing
on top of that photo to bring attention to any area which requires it.

The EditPhotoSurface class extends the Activity class, and contains a nested class; the
DrawingView wWhich extends the View class. The DrawingView class is what allows the user to

draw on top of the photo.

An instance of a brawingView object is created, and then the Bundle object which is passed to

the EditPhotoSurface activity is opened. This Bundle object contains the path to the image that
was taken. With this, the image can be loaded as a Bitmap object from local memory and drawn
as the background of the brawingview. Once this has been done, the DrawingView is passed as

an argument to the setContentview method.

DrawingView dv;

String photoPath;

dv = new DrawingView(this);

Bundle gotBasket = getIntent().getExtras();
photoPath = gotBasket.getString("photoPath");

Bitmap source = BitmapFactory.decodeFile(photoPath, options);
Drawable bg = new Bitmapbrawable(source);
dv.setBackgroundDrawable(bg);

setContentView(dv);

The nested DrawingView class handles all the drawing events. By means of a switch case on a
MotionEvent object, the onTouchEvent method determines whether the user has touched the

screen, is moving their finger while touching the screen or lifted their finger from the screen.

@Override
public boolean onTouchEvent(MotionEvent event) {

float x = event.getX();

39

float y = event.getY();

switch (event.getAction()) {

case MotionEvent.ACTION_DOWN :
touch_start(x, y);
invalidate();
break;

case MotionEvent.ACTION_MOVE:
touch_move(x, y);
invalidate();
break;

case MotionEvent.ACTION_UP:
touch_up();
invalidate();
break;

}

return true;

Once a user has touched the screen, the application will give initial values to an already defined
Path object. As the user moves their finger across the screen, the Path object is given more
coordinates to map to, giving the effect of a line being drawn. Finally once the user lifts their
finger from the screen, the line drawn is set and the Path object is reset and ready to be used

again for any further lines.

private Path mPath;
mPath = new Path();

private float mX, mY;

private static final float TOUCH_TOLERANCE = 4;

private void touch_start(float x, float y) {
mPath.reset();
mPath.moveTo(x, y);
mX = X;

my =y;

40

private void touch_move(float x, float y) {
float dx = Math.abs(x - mX);
float dy = Math.abs(y - mY);
if (dx >= TOUCH_TOLERANCE || dy >= TOUCH_TOLERANCE) {

mPath.quadTo(mX, mY, (x + mX) / 2, (y + mY) / 2);
mxX = X;

my =y;

private void touch_up() {
mPath.lineTo(mX, mY);
mCanvas.drawPath(mPath, mPaint);

mPath.reset();

Figure 12, an attached photo can be drawn on to bring attention to any particular area

41

Saving of the image has been handled by making use of the device’s default Android back
button. If this is pressed, the user will be asked whether they want to save the photo with the
changes they have made, or whether to discard them. Both of these choices call the finish
method, causing the activity to end and return to the onActivityResult method from the
respective mapping activity which called it. Control is returned to the onActivityResult method

because the EditPhotoSurface activity was started using the startActivityForResult method.

@SuppressWarnings("deprecation™)
@Override
public boolean onKeyDown(int keyCode, KeyEvent event) {

if (keyCode == KeyEvent.KEYCODE BACK && event.getRepeatCount() == 0) {

AlertDialog alertDialog = new
AlertDialog.Builder(context).create();
alertDialog.setTitle("Save image?");
alertDialog.setMessage("Do you want to save this image?");
alertDialog.setButton("Save",
new DialogInterface.OnClickListener() {
public void onClick(DialogInterface dialog, int which) {
dv.setDrawingCacheEnabled(true);
Bitmap b = dv.getDrawingCache();
try {
b.compress(CompressFormat.JPEG, 95,
new FileOutputStream(photoPath));
finish();
} catch (FileNotFoundException e) {
e.printStackTrace();

1)
alertDialog.setButton2("Don't save",
new DialogInterface.OnClickListener() {
public void onClick(DialogInterface dialog, int which) {
finish();

42

})s
alertDialog.show();

return true;

return super.onKeyDown(keyCode, event);

Save Image?

Do you want to save this image?

Don'tsave

Figure 13, the user is prompted to save or discard the edits that have been made

43

Abstraction

This application, although achieving most of the goals, was restricted to the very specific forms
that were required by Scion. They were hardcoded and therefore limited to only the static and
dynamic mapping processes. The level of abstraction could be lifted such that the application

could grow into one which could construct any digital questionnaire based on specifications.

Updated Design

Updated Layout Design

With regards to design, the application needed to change in such a way that the preview would
no longer consume half of the available screen real estate. This caused a problem with the
display in that when the soft keyboard appears so that users may enter input, the screen
becomes congested and the preview causes the actual form itself to appear small, making it
difficult to navigate through.

The new design required a change in layout, while still keeping the layouts and functionalities of
the form and the preview intact. This would give the user a cleaner, unobstructed view of both

the questionnaire and the preview.

Questionnaire Specifications

The questionnaire is to be based on a specification and this is required to cater to all the
different types of questions. All of these types of questions must be accounted for in the
specification which is to be read from and understood by the application.

These are as follows:

1. Text questions — These questions require answers which comprise of text only. This
can be a question suitable for answers which are names, addresses, descriptions or
explanations.

2. Numeric questions — These questions require answers which are strictly numeric in
format. An example of such a question is one which may ask for a particular number of
times that an event has occurred, or one which may ask for the difference of two

measurements.

44

3. Multiple choice questions —What is presented is a question and multiple answers from
which the user may select one, or more depending on the context. The two different
contexts are as follows:

a. Single response — Users may only select one of the presented answers. This is
analogous to a question where there are many possible answers, but only one
definite answer.

b. Multiple response — Users may select many of the presented answers. This is
analogous to a question where there may be more than one definite answer.

4. Time/Date questions — The responses to these questions are the time and/or the date.
This type of question can be automatically filled in by the application itself.

5. Location questions — The field is to be filled with the address of the user. This field is
one which can be populated automatically by use of the device’s sensors.

6. Media questions — A question is asked, to which the answer is an image, a video or an

audio recording.

Cloud Service Integration

The new iteration of the application should have access to a cloud service. This allows for files
to be loaded from and saved to the cloud. This provides resultant safe and secure access to

those files.

There should be the ability to download a specification file from the cloud, which can then be
used to display the questionnaire that it details. The questionnaire displayed will correspond to
an Excel sheet containing all the data collected from the fields in the questionnaire. Using the
application to fill out the fields in the form, the user should be able to update the current sheet,

and then upload the sheet to the cloud.

45

Figure 14, The transfer of data between cloud storage and the device.

In the case of there being no network connectivity for the sake of uploading sheets to the cloud,
there should be an offline synchronisation feature incorporated. This will ensure that even if
there is no network connectivity when the sheet should be uploaded to the cloud, the application
will make it such that the sheet is uploaded whenever network connectivity is regained.

Updated Implementation

Updated Layout Implementation

In order to present a cleaner and less obstructive view of both the questionnaire and the
preview, the whole project was changed to accommodate swipe views with tabs. Swipe views
are an effective way of navigating, allowing users to switch between sibling screens using a
simple horizontal finger gesture (Google, Android Horizontal Paging). The tab views are called
Fragments which are representative of a portion of an Activity’s user interface (Google, Android
Fragments). There are two Fragments, one for the dynamic questionnaire and the second for

the spreadsheet preview.

46

- -
& FormCreator FORM SPREADSHEET = W FormCreator i idleizar

Time Time Time Date Date Date Location
2:46pm 9:33pm 21:33 19/10/2014 2014/10/19 10/19/2014 12 Grafton Rd, The University of Auckland, Auc
- 10:17pm 22:17 19/10/2014 2014/10/19 10/19/2014 36 Wynyard St, The University of Auckland, Auc
e 10:19pm 22:19 19/10/2014 2014/10/19 10/19/2014 36 Wynyard St, The University of Auckland, Auc
14:46 10:40pm 22:40 19/10/2014 2014/10/19 10/19/2014 36 Wynyard St, The University of Auckland, Auc
Date 11:33pm 23:33 19/10/2014 2014/10/19 10/19/2014 34 Wynyard St, The University of Auckland, Auc
9:40am 9:40 20/10/2014 2014/10/20 10/20/2014 34 Wynyard St, The University of Auckland, Auc
020 9:40am 9:40 20/10/2014 2014/10/20 10/20/2014 36 Wynyard St, The University of Auckland, Auc
Date 9:47am 9:41 20/10/2014 2014/10/20 10/20/2014 36 Wynyard St, The University of Auckland, Auc
2014/10/27 9:44am 9:44 20/10/2014 2014/10/20 10/20/2014 12 Grafton Rd, The University of Auckland, Auc
1:26pm 13:26 20/10/2014 2014/10/20 10/20/2014 12 Grafton Rd, The University of Auckland, Auc
eie 5:35pm 17:35 20/10/2014 2014/10/20 10/20/2014 12 Grafton Rd, The University of Auckland, Auc
10/27/2014 5:40pm 17:40 20/10/2014 2014/10/20 10/20/2014 36 Wynyard St, The University of Auckland, Auc
P—— 6:30pm 18:30 20/10/2014 2014/10/20 10/20/2014 36 Wynyard St, The University of Auckland, Auc
6:31pm 18:31 20/10/2014 2014/10/20 10/20/2014 36 Wynyard St, The University of Auckland, Auc
Inside the catch 8:59pm 20:59 20/10/2014 2014/10/20 10/20/2014 36 Wynyard St, The University of Auckland, Aut
Pick one 9:04pm 21:04 20/10/2014 2014/10/20 10/20/2014 34 Wynyard St, The University of Auckland, Auc
One 9:06pm 21:06 20/10/2014 2014/10/20 10/20/2014 34 Wynyard St, The University of Auckland, Auc
9:08pm 21:08 20/10/2014 2014/10/20 10/20/2014 36 Wynyard St, The University of Auckland, Auc
Two 11:22pm 23:22 20/10/2014 2014/10/20 10/20/2014 36 Wynyard St, The University of Auckland, Auc
12:05am 00:05 21/10/2014 2014/10/21 10/21/2014 12 Grafton Rd, The University of Auckland, Auc
Three 12:06am 00:06 21/10/2014 2014/10/21 10/21/2014 12 Grafton Rd, The University of Auckland, Auc
12:10am 00:10 21/10/2014 2014/10/21 10/21/2014 12 Grafton Rd, The University of Auckland, Auc
[Pl 12:12am 00:12 21/10/2014 2014/10/21 10/21/2014 36 Wynyard St, The University of Auckland, Auc
Pick some
| One
] Two
Three
Four

Please select an appropriate photo

CAMERA
GALLERY
EDIT PHOTO
-
I&| FormCreator FORM SPREADSHEET

Time Time Date Date Date
9:33pm 21:33 19/10/2014 2014/10/19 10/1¢
10:17pm 22:17 19/10/2014 2014/10/19 10/1¢
10:19pm 22:19 19/10/2014 2014/10/19 10/1¢
10:40pm 22:40 19/10/2014 2014/10/19 10/1¢
11:33pm 23:33 19/10/2014 2014/10/19 10/1¢
9:40am 9:40 20/10/2014 2014/10/20 10/2C
9:40am 9:40 20/10/2014 2014/10/20 10/2C
9:41am 9:41 20/10/2014 2014/10/20 10/2C
9:44am 9:44 20/10/2014 2014/10/20 10/2C

1:26pm 13:26 20/10/2014 2014/10/20 10/2C
5:35pm 17:35 20/10/2014 2014/10/20 10/2C
5:40pm 17:40 20/10/2014 2014/10/20 10/2C
6:30pm 18:30 20/10/2014 2014/10/20 10/2C
6:31pm 18:31 20/10/2014 2014/10/20 10/2C
8:59pm 20:59 20/10/2014 2014/10/20 10/2C
9:04pm 21:04 20/10/2014 2014/10/20 10/2C
9:06pm 21:06 20/10/2014 2014/10/20 10/2C
9:08pm 21:08 20/10/2014 2014/10/20 10/2C
11:22pm 23:22 20/10/2014 2014/10/20 10/2C

12:05am 00:05 21/10/2014 2014/10/21 10/21
12:06am 00:06 21/10/2014 2014/10/21 10/21
12:10am 00:10 21/10/2014 2014/10/21 10/21
12:12am 00:12 21/10/2014 2014/10/21 10/21

\MERA
\{LLERY

TPHOTO

a7

Figure 15, The two slide tabs contain the questionnaire and preview sections
respectively. Sliding between the two gives a smooth interface where a user can easily

switch their view.

This meant that the minimum SDK version had changed from 8 to 11 to accommodate this.
Therefore, a device is required to be running an Android version of 3.0 or higher in order to run
this application.

As a result of this, users can easily switch between the two tabs. This preserves the functionality
of both the form and the preview components. The preview has also been modified so that on
pressing one of the cells, the cell's respective row is highlighted. This is a minor adaptation
made for the ease of use for the user.

Newly Imported APIs

The Dropbox Sync API requires libraries which contain the necessary Java files regarding the

different data structures and exceptions related to the Sync API. This library was imported.

For the Chooser to work, the Chooser SDK project was also imported. This project was added
to the form creator application as a dependency, which allowed the application to use the

Chooser to navigate through a user’s Dropbox account.

Updated Android Manifest

As a result of the new project layout design, the manifest itself was subject to change. The
changes are as follows:

A package name of com.dasarsh.formcreator.

A minimum SDK of 11 which correlates to an Android version of 3.0.

A target SDK of 18 which correlates to an Android version of 4.3.

The permissions:

1. “android.permission.READ_EXTERNAL_STORAGE” and
“android.permission.WRITE_EXTERNAL_STORAGE?” for the sake of reading

and writing from the memory card.

48

2. “android.permission.ACCESS_FINE_LOCATION” and
“android.permission.ACCESS_COURSE_LOCATION?” in order for the application
to have access to the location data which can be deduced by the device.

3. “android.permission.INTERNET” AND “android.permission.NETWORK_STATE”
so that the application is able to test the state of the network and have access to
the Internet if it is available.

4. “android.permission.WAKE_LOCK” used to allow the service to run even if the
screen is off.

An activity for each of the following:
1. XMLReader
2. XMLElement
3. DbxAuthActivity
4. AuthActivity
5. EditPhotoSurface
A service for:

1. DbxSyncService

Updated XML Layouts

The XML layouts are no longer static due to the newly dynamic nature of the application. As a

result of this, there are only two XML layouts, both of which are nearly empty.

The two XML layouts, activity xmlreader.xml and fragment_xmlreader_dummy.xml, are linked

to the main XMLReader activity and for the fragments which it uses, respectively.

The activity_xmlreader.xml layout file contains the default viewrager item which is often used
to encase Fragments (Google, Android ViewPager). This is empty as it will be populated with

the Fragments and there is no need to make changes to this.

<android.support.véd.view.ViewPager
xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:id="@+id/pager"
android:layout width="match parent"

android:layout height="match parent"

49

tools:context=".XMLReader" >

</android.support.véd.view.ViewPager>

The fragment_xmlreader_dummy.xml layout file contains a rRelativeLayout which contains a
LinearLayout. This inner LinearLayout is important because it is here that, depending on the

Fragment chosen, the layout is populated either with the dynamically generated questionnaire
or the spreadsheet.

<RelativeLayout

xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout width="match parent"”
android:layout height="match parent"
android:paddingBottom="@dimen/activity vertical margin"
android:paddingLeft="@dimen/activity horizontal margin"
android:paddingRight="@dimen/activity horizontal margin"

android:paddingTop="@dimen/activity vertical margin"

tools:context=".XMLReader$SDummySectionFragment" >

<LinearLayout
android:id="@+id/layoutXML"
android:layout width="match parent"
android:layout height="match parent"
android:orientation="vertical" >

</LinearLayout>

</RelativelLayout>

Improved Photo Editing

The photo editing functionality with which users are able to draw on top of taken photos was
previously displaying an image which was of notably low quality. This problem was caused by
the image being saved into the local memory in a way which was compressing the image as
much as possible. This was addressed by allowing the whole image to be saved and used
without any compression. As a result of this, the image which can be drawn on top of is now of

full quality, just as the user had taken it.

50

OutputStream stream;
try {
Bitmap bmp = MediaStore.Images.Media.getBitmap (
getActivity () .getContentResolver (), imageUri);
File scionDir = new File("/sdcard/scion/photos/");
// If /sdcard/scion/photos/ is not a directory, then make it
if (!scionDir.isDirectory()) {
scionDir.mkdirs () ;

}
// save the photo using the timestamp (dateTimeString) as
// its filename
if (!dateTimeStringValid) {
setupTimeAndDate (true, new EditText (getActivity()), true,
0);
}
stream = new FileOutputStream("/sdcard/scion/photos/"
+ dateTimeString + ".png");
bmp.compress (CompressFormat.PNG, 100, stream);
stream.flush();
stream.close () ;
} catch (FileNotFoundException e) {
e.printStackTrace () ;
} catch (IOException e) {
e.printStackTrace () ;

}

XML Specification File and XSD

The application is required to dynamically generate a questionnaire from a file which specifies
the questions and formats in the questionnaire. This specification file was decided to be an
Extensible Markup Language (XML) file. The XML file is to be constructed from an XML
Schema Definition (XSD) which declares all the rules regarding what is legal and illegal when
creating a well-formed XML file which is applicable to this application. In addition to the
discussed types of questions being included in the schema, an option to display just text was

also implemented.

The XSD includes rules and regulations regarding video and audio questions. Due to time
constraints, this feature was not implemented and will be skipped over when the application is
performing a parse of the input xml file. Therefore, even if there is a question which requires a
video or audio answer in the XML specification file, it will not be displayed in the dynamically

generated questionnaire on the screen.

51

Representation of Question Types

All of the questions are represented by a question portion and an answer portion. The question

portion is reflects the actual question, e.g. “What is your name?” or “How many days has it been

since your last visit?” The answer portion is generated depending on the type of question.

The answer portion is defined as follows:

1.

Text questions — Text answers are represented by a single EditText. As this type of
guestion is general and open to any kind of input, there are no restrictions placed on
what the user enters.
Numeric questions — An EditText is generated below the question and it is here that
the answer is to be given. Numeric answers must strictly be of numeric format so the soft
keyboard will display the numberpad as opposed to the usual QWERTY keyboard
layout.
Multiple answer — The answer portion is defined depending on the type of multiple
choice question:

a. Single response — The answers are represented as radio buttons. Of these

buttons, only one may be selected at any one time.
b. Multiple response — The answers are represented as checkboxes. Of these
checkboxes, one or more may be selected at any one time.

Time/Date questions — The time answer is shown as an EditText which has been
populated by the current time. This time is the system time of the device. This EditText
is editable, which allows for the user to correct any errors.
Location questions — The location answer is an EditText which is automatically
populated by the system using the location which is deduced from the GPS coordinates
of the device. The location shown is the address of the device’s position. This EditText
can be edited, which allows for any incorrect locations to be corrected.
Media questions — For this implementation, there is only functionality for attaching
images. Media questions are represented by three buttons. The first of the three buttons
is the button which allows users to take a photo. This opens the device’s native camera
application and proceeds to allow the user to take a photo of whichever subject they
wish. The second button is one which allows users to select a photo which has already
been taken. Pressing this button opens the device’s default photo gallery application
from which the user is able to select a photo. The final button allows users to edit the

photo which they have either just taken using the camera or has selected from their

52

gallery. This leads the user to a screen where they are able to draw on top of their

selected photo as they see fit.

Parsing the XML Specification File

The XML file is parsed so that it can be understood by the application, only then can the
guestionnaire be generated dynamically by specifications in the XML file. The parsing is
performed by the application and each question from the XML file is made into an xMLElement.
All of these XMLElements are placed into an array in the order that they appear in the XML file
and once that is done, they can all be generated into the constituent questions and answers that

are specified in the XML file.

What types of tickets did you purchase?
O adult

q [child
[Family

Element 03 Group

[other

Figure 16, The method in which a question specified in the XML file is parsed to an

XMLElement Object which is processed into a question which can then be displayed.

XMLElement.java

An xMLElement iS @ custom Java class which was created in order to represent the questions
which are read from the XML specification file. While reading the XML file, the application uses
the information it gathers about each question specified in the XML code to create and populate

an array of XMLElements.

An XMLElement has six properties;
1. Type — Defines and used to differentiate between the different types of questions.
2. Attributes — A collection of the attributes which have been read.
3. Items — A collection of the items which can appear as options which users can choose
from.

4. Question — The question which is being to be answered.

53

5. Label — The string of text which is to be displayed if the element is a label as opposed to
a guestion.
6. Index — A number assigned to each number which is used in order to keep track of the

guestions when placed in an array.

Cloud Service Implementation

Cloud services were implemented using the Dropbox API. The Dropbox API offered some
useful utilities which proved to make this application able to perform its goals. The application
makes use of the Chooser Drop-in and the Sync API.

Both the Sync APl and the Chooser Drop-in require the user to have a Dropbox account which
is linked to the application. This is ensured every time the user presses the button which lets
them add a new row to the sheet.

The Chooser Drop-in allows for the application to display a chooser. Using this, the user may
browse through their full Dropbox account file system to navigate to the specification file which

they wish to load into the application.

The Chooser is initialised and launched as such:

DbxChooser mChooser;

mChooser = new DbxChooser (APP KEY) ;
mChooser. forResultType (DbxChooser.ResultType.DIRECT LINK) .launch (this,

DBX CHOOSER REQUEST) ;

Here, the app kEY is the key which is assigned to the application once it has been registered on
your Dropbox account. The integer value for bBx CcHOOSER REQUEST can be any number so

long as you handle this activity using the same number in the onActivityResult method
On beginning this activity which launches the Chooser, the user is shown a Chooser in the

Dropbox style and layout. From here, the user is to select the XML specification file of their

choice. This will cause the selected file to be downloaded into the device’s local memory.

54

43 Choosefile
Dropbox

‘._f Camera Uploads
Photos
scionl

Text

form4.xml
1.6 KB, medified 2 weeks ago

form5.xml
2.5 KB, madified 2 weeks ago

Getting Started.pdf
243.3 KB, modified 1 year ago

hello.txt
14 Bytes, modified 1 month ago

hi.txt
21 Bytes, modified 2 weeks ago

hi1412634817331.txt

Figure 17, The Dropbox Chooser APl used to navigate the user’s Dropbox storage.

This is done in the handling of the call to the Chooser in the onActivityResult method. Here,
the application checks all the finished results from activities and differentiates them according to
the identifier which was given when they were launched. In this case, the identifier given was

DBX CHOOSER REQUEST which was simply a number.

static final int DBX CHOOSER REQUEST = 0; // Can be anything
In the handling of this request, the URL specifying the file which was chosen is used in order to

download the file from the user’s Dropbox account over the network. This file is downloaded and

stored into a folder based in the device’s local root memory called “scion”.

55

} else if (requestCode == DBX CHOOSER REQUEST) {
if (resultCode == Activity.RESULT OK) {
DbxChooser.Result result = new DbxChooser.Result (data);

// Handle the result

// DOWNLOAD THE URL FROM GETLINK () FOR DOWNLOAD

final DownloadTask downloadTask = new
DownloadTask (getActivity());

downloadTask.setFilename (result.getName ()) ;

xmlFile += result.getName () ;

filename = result.getName () ;

saveFilename = filename.substring (0, filename.indexOf('."'))
+ ".xls";

downloadTask.execute (result.getLink () .toString());

lelse {
// Failed or was cancelled by the user.
Toast toast = Toast.makeText (getActivity(),
"Failed or was cancelled by the user",
Toast.LENGTH LONG) ;

toast.show() ;

Once this has been done, the application proceeds to process the file which has been
downloaded and parse the XML file into questions.

The Sync API provides a way for the application to access the user’s Dropbox account, and also

to download and upload files.

This application uses this Sync API for the purpose of uploading spreadsheets to the user’s
Dropbox account. This is done whenever the user presses the Submit button, which has a
listener set to it which in turn uploads the most recent revision of the spreadsheet which the

user has been working on to their Dropbox account.

submit.setOnClickListener (new OnClickListener () {

@Override

56

public void onClick (View view) {

accessDropBox () ;

|

The accessDropBox method takes the current spreadsheet and adds a timestamp to the end of
the filename and then uploads it to the user’'s Dropbox storage. This is currently being statically
saved to a folder named “scion1” in the root of the Dropbox storage. This is due to the fact that

there is no implementation of the Dropbox Saver API for the Android operating system.

private void accessDropBox () {
try {

DbxFileSystem dbxFs = DbxFileSystem.forAccount (mDbxAcctMgr

.getLinkedAccount ());
String name = saveFilename.substring(O0,
saveFilename.indexOf ('."')) + " " + dateTimeString + ".xls";

DbxFile testFile = dbxFs.create (new DbxPath("/scionl/" +

name)) ;
try f{
File f = new File ("sdcard/scion/" + saveFilename);
testFile.writeFromExistingFile (f, false);
} finally {

testFile.close();

}

} catch (Unauthorized e) {
e.printStackTrace () ;

} catch (InvalidPathException e) {
e.printStackTrace () ;

} catch (DbxException e) {
e.printStackTrace () ;

} catch (IOException el) {

el.printStackTrace () ;

57

Dropbox

Camera Uploads folder
Photos folder
scion folder

The scionl folder located in the root is where the .xIs spreadsheet files are uploaded to.

Drophox » scionl

form15_2014_10_22 121845.xls document 22/10/2014 12:18 AM
form15_2014_10_22_122022.xls document 22/10/2014 12:20 AM
form15.xml code 19/10/2014 9:28 PM

Within the scionl directory, there is an example of an XML specification file, form15.xml,
and two revisions of spreadsheets which have been created from that specification. The
revisions are appended with a timestamp for the sake of differentiating between them.

Communicator.java

This class is used for the communication between Fragments. The need for this arose when
looking for a way for one Fragment to invoke a method which was to be executed in another
Fragment. In particular, the intended operation was for the preview in the second Fragment to
update every time the Fragment in which it was enclosed was selected. The Communicator
interface can be used to invoke methods from a separate Fragment, as it cannot be done

directly by referencing the separate Fragment.

Communicator.java iS an interface which contains only the setuppreview method.

The XMLReader class implements this communicator interface. It is for the sake of use in the

nested bummySectionFragment class where it is initialised as follows:

58

Communicator comm;
public View onCreateView (LayoutInflater inflater, ViewGroup container,

Bundle savedInstanceState) {

comm = (Communicator)getActivity();

On clicking the “Add row” button which will add the row to the sheet, the Communicator object

will be prompted to update the preview by calling the setuppPreview method.

add.setOnClickListener (new OnClickListener () {
@QOverride

public void onClick (View view) {

comm.setupPreview () ;

I Communicator

IIIIII’

Activity

Fragment 1 Fragment 2

59

Figure 18, The process of communication between Fragments by use of the
Communicator which is implemented by the Activity

Conclusion

This application allows for a form or questionnaire to be digitalised. This results in a method of
data collection which is free of errors and ensures structured data. Human effort and time is also
saved by use of this application as it can reduce the amount of time that a user spends giving or

collecting details while offering a simple way to entered information into the device.

The implementation of this application on a smart device allows for several advantages over
paper-based systems such as control over the interface of the device; the ability to make use of
the media capabilities such as the camera and the audio recorder; the ability to use the data
collected from the device’s inbuilt sensors for information such as time, date, location,
movement or temperature; the fact that there is usually constant connectivity to networks; and
that smart devices offer a way to police the data being entered for inconsistencies or illegal

values.

This solution is very versatile. It can be used to digitise any sort of form due to its capability to
handle all types of questions. A likely scenario is the administrator of a questionnaire sharing
the XML specification file with their chosen participants by email, which saves the XML
specification file into the participants’ Dropbox accounts. From there, the participants only need
to open the application and load the specification file from their Dropbox account and complete

the questionnaire.

The paper-based system is eliminated as a direct result of this solution. This reduces the need
for printing, distribution and collection which can be hindrances in terms of cost, effort and time.
The data received and sent is done so over the Dropbox cloud service which provides safe and

secure access to the data stored.
This application, originally intended to solve a singular problem can change the way that data

collection is performed. There is a need to eliminate paper-based systems due to all the

inherent flaws and this is what can be achieved.

60

Future Work

There are still some features which have not been implemented as of yet. One of these is one
which allows for users to be able to effectively undo any mistakes that they make. Implementing
this will mean adding listeners to the preview in such a way that if a user was to press and of the
cells, the data stored in the row which contains that cell will populate the form, allowing for the
user to change any of the information. Another element which requires the addition of this
context is the photo editing functionality, as a user may wish to undo whatever they have drawn
and try again.

Adaptations which could be made include modifying the application such that the resultant sheet
is uploaded onto the servers of the administrators or the questionnaire as opposed to a Dropbox
account. This allows for a seamless process where administrators can send the questionnaire
specification to participants who can dynamically generate them and subsequently have their

answers sent back to the administrators of the questionnaire.

Another addition which could be made is one which allows for the questions to be grouped
together and categorized as dependent on one another. An example of this is one which groups
three fields together where each of these fields is to have numeric data entered into them. The

difference between the first two fields is to be used to calculate and populate the third field.

Questions specified in the XML file can possibly be adapted to include a specification of how
much of the screen width they are to occupy. The current implementation delegates each
guestion the whole width of the screen, which can be a potential waste of space if the questions

are one which ask very short questions and require very short answers.

The way in which the spreadsheet tab which is displaying the preview is operating can be
modified. The way in which the preview is being updated has the potential to cause large lags in
operation. This is because the whole spreadsheet is being read and then the whole preview is
being loaded and displayed again. This can be avoided if the numbers of rows read and
displayed are kept count of. Then only the new rows can be added as opposed to replacing the

whole preview with much of the same data.

61

Bibliography

A. ALLENBY, D. M.-C. (2002). The application of computer touch-screen technology in
screening for psychosocial distress in an ambulatory oncology setting.

A. M. V. Kumar, B. N. (2013). Efficient, quality-assured data capture in operational research
through innovative use of open-access technology.

About Scion. (2009). Retrieved August 8, 2014, from Scion:
http://www.scionresearch.com/general/about-us

Android Design Principles. (n.d.). Retrieved August 8, 2014, from Android Developers:
http://developer.android.com/design/get-started/principles.html

App Manifest. (n.d.). Retrieved August 9, 2014, from Android Developers:
http://developer.android.com/guide/topics/manifest/manifest-intro.html

Developer Tools. (n.d.). Retrieved August 8, 2014, from Android Developers:
http://developer.android.com/tools/index.html

Google. (n.d.). Android Fragments. Retrieved October 24, 2014, from Android Developer:
http://developer.android.com/guide/components/fragments.html

Google. (n.d.). Android Horizontal Paging. Retrieved October 24, 2014, from Android Developer:
http://developer.android.com/training/implementing-navigation/lateral.html#horizontal-
paging

Google. (n.d.). Android ViewPager. Retrieved October 24, 2014, from Android Developer:
http://developer.android.com/reference/android/support/va4/view/ViewPager.html

Introduction to the Google Drive Android API. (n.d.). Retrieved August 7, 2014, from Android
Developers: https://developers.google.com/drive/android/intro

KA Kupzyk, M. C. (2014). Data Validation and Other Strategies for Data Entry. 1-11.

Khan, A. (n.d.). Java Excel API - A Java API to read, write and modify Excel spreadsheets.
Retrieved August 7, 2014, from Java Excel API: http://www.andykhan.com/jexcelapi/

Khan, A. (n.d.). Java Excel API Tutorial. Retrieved August 7, 2014, from Java Excel API
Tutorial: http://www.andykhan.com/jexcelapi/tutorial.html#writing

L. Beretta, V. A. (2007). Improving the quality of data entry in a low-budget head injury
database.

Principles of User Interface Design. (n.d.). Retrieved August 8, 2014, from Bokardo:
http://bokardo.com/principles-of-user-interface-design/

Stephen Joel Coons, P. C. (2009). Recommendations on Evidence Needed to Support
Measurement Equivalence between Electronic and Paper-Based Patient-Reported
Outcome (PRO) Measures: ISPOR ePRO Good Research Practices Task Force Report.

62

Appendix

formcreator.xsd

<?xml version="1.0" encoding="UTF-8" ?>
<xs:schema xmins:xs="http://www.w3.0rg/2001/XMLSchema">
<xs:element name="form">
<xs:complexType>

<xs:choice minOccurs="0" maxOccurs="unbounded">

<xs:element name="time" >
<xs:complexType>
<xs:attribute name="format" type="xs:string"/>
</xs:complexType>

</xs:element>

<xs:element name="date" >
<xs:.complexType>
<xs:attribute name="format" type="xs:string"/>
</xs:complexType>

</xs:element>

<xs:element name="location" />

<xs:element name="question" >
<xs:complexType>
<xs:sequence>
<xs:element name="questionQ" type="xs:string"/>
<xs:element name="item" type="xs:string" minOccurs ="0
maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="type" type="xs:string"/>
</xs:complexType>

</xs:element>

63

<xs:element name="photo" >
<xs:complexType>
<xs:sequence>
<xs:element name="questionQ" type="xs:string"/>
</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="display_text" type="xs:string" >

</xs:element>

</xs:choice>
</xs:.complexType>
</xs:element>

</xs:schema>

64

