
University Of Auckland

Solar Monitoring Panel

BTech 451 Mid-Year Report

Author:

David Armstrong

5636534

darm230

Supervisor:

Dr. Ulrich Speidel

August 2014

Abstract

This report contains information about all my project-related work on my BTech 451

project up to Sunday 10th August 2014. This BTech451 project is with Vector Limited.

The project involves producing a solution to answer a research question. This research

question is based on an optimisation challenge that the global solar industry is facing.

The solution will consist of a device that can turn a load on in the house to consume

power when it is in excess, with the goal of providing additional value to the customer.

The hardware component of the solution will consist of a Raspberry Pi connected to a

mains-switching relay. The software component of the solution will involve a program

running on the Raspberry Pi that is capable of making intelligent decisions based on the

state and recent history of a solar panel system.

The first chapter of this report introduces and outlines my project. It first gives an

introduction to Vector and the solar panel system that I’m working with. This chapter

then addresses the research question and the solution I am aiming to provide that will

enable me to answer the research question. There is also a brief introduction to some key

people who are involved with this project.

The second chapter provides a deeper understanding of the solar panel system that I’m

working with. It looks at the hardware components of the system, how they interact with

the house, as well as the software interface for the system.

The following chapter, chapter three, looks at the research I did into technologies. I

needed to do this research as Vector wasn’t specific about what device or programming

language(s) I should be using to create my solution. This chapter lists options and explains

the choices I made.

Chapter four then looks at the design of my solution that I will be creating. It looks at

both the hardware component of my solution and the software component of my solution.

The fifth chapter then looks at how much of the solution I have currently created and

implemented. It looks at both the hardware and software components of my solution.

The following chapter, chapter six, looks at the future work of my project. This future

work is based on the idea of the project I have at this point, however it may change due

input from Vector.

The final chapter is the conclusion of this report and looks at the current work of the

project and what will be done in the future.

Following the conclusion I have bibliography which lists some resources and references

that I have used during this project.

Contents

Abstract i

Contents ii

1 Project Introduction 1

1.1 The Company . 1

1.2 The Research Question . 2

1.3 The Solution . 3

1.4 People Involved . 3

2 Solar Panel System 5

2.1 Hardware . 5

2.1.1 Solar Panel Array . 5

2.1.2 Maximum Power Point Tracker (MPPT) 6

2.1.3 Inverter/Charger . 6

2.1.4 Battery . 7

2.1.5 Critical Load Panel (CLP) . 7

2.1.6 Main Load Panel (MLP) . 7

2.1.7 Computer Controller . 7

2.1.8 Measuring Point . 8

2.2 Sofware - The API . 8

3 Technology Research 10

3.1 Device . 10

3.1.1 Arduino . 10

3.1.2 Raspberry Pi . 11

3.2 Raspberry Pi Operating System . 11

3.2.1 Raspbian . 11

3.2.2 Pidora . 12

3.2.3 Arch Linux . 12

3.3 Programming languages . 12

3.3.1 Python . 12

3.3.2 Java . 13

3.3.3 C++ . 13

3.4 Status Query Result format . 13

3.4.1 XML . 14

3.4.2 JSON . 14

ii

Contents iii

4 Solution Design 15

4.1 Hardware . 15

4.1.1 Combined components . 15

4.1.2 Separate components . 16

4.2 Software . 16

4.2.1 Program Overview . 17

4.2.2 Logic Overview . 17

4.2.3 Solar Panel System API . 18

5 Current work 19

5.1 Raspberry Pi configuration . 19

5.2 Program Structure . 19

5.3 Solar Panel System API use . 20

5.4 GPIO output . 20

5.5 Classes . 21

5.5.1 DecisionMaker.java . 21

5.5.2 LoopTask.java . 21

5.5.3 APIConnection.java . 21

5.5.4 Logger.java . 21

5.5.5 LoadController.java . 22

5.6 External Libraries . 22

5.6.1 GSON . 22

5.6.2 Pi4j . 22

6 Future work 23

6.1 Decision making logic algorithm . 23

6.2 Connecting the Raspberry Pi to a relay 24

6.3 Sending information back to Vector . 24

7 Conclusion 25

Chapter 1

Project Introduction

The BTech (IT) degree is a four year degree offered by the University of Auckland. The

courses that are taken as part of this degree are mostly Computer Science and Information

Systems papers but include various others. As part of this degree, there is a year-long

project in the final year of the degree. This project is known as the BTech 451 project

and is worth 45 points, or 3 papers. This project usually involves an industry sponsor

that specifies a research question for the student to work on and answer.

My BTech 451 project is formally known as the “Solar Monitoring Panel” and is spon-

sored by the company Vector Limited. This chapter gives an introduction to Vector, the

background behind my project and an overview of my project.

1.1 The Company

Vector Limited [1] is an Auckland based multi-network infrastructure company. Vector

was formed in 1999 from Mercury Energy when new government regulations were intro-

duced, splitting up electricity distribution and electricity generation businesses. Electric-

ity distribution is Vector’s primary role. They own and operate the electricity distribution

network in the greater-Auckland area and they are also the largest power distribution

company in the country, however they don’t produce the power themselves. Vector also

operates a natural gas network, they supply gas to over 150,000 customers across the

North Island of New Zealand, using their 9,300 kilometre-long gas network. Vector owns

their own fibre-optic telecommunication networks in Auckland and Wellington. They also

have a nation-wide fibre network that has access points in other major cities, such as

Hamilton, Tauranga and Christchurch.

Recently Vector, like other distribution networks, has begun to investigate an optimisation

challenge that is based on over-supply with solar panel systems. The particular solar panel

1

Chapter 1. Project Introduction 2

system that Vector is allowing me to work with for this project consists of a collection

of components that are installed in a house or business. The system allows power to be

generated from the installed solar panels on a building’s roof. This power can be directly

used by the building, or stored in an onsite battery for future use. The battery can be

used at the same time as power is being produced by solar panels, or later during a time

when no solar power is being produced. The home/business is still connected to the power

grid like normal buildings, and whatever power the system requires that the solar panel

system is not providing on its own will be brought in from the grid like normal. Excess

power produced by a system can be exported back into the grid. This occurs when the

battery is fully charged and the system is producing more power than the home/business

requires. The owner of the home/business is reimbursed for the power exported, however

this rate is sometimes less than what it would cost to bring the same amount of power in

from the grid. There is also an HTTPS-based API for interacting with each solar panel

system.

1.2 The Research Question

A current challenge that the global solar industry faces is optimising the use of solar

panel systems to provide customers with the maximum value that the system can offer.

The research question for this project is “Can the strategic use of excess power provide

additional value to the customer”.

As mentioned before, excess power generated by a system is exported back into the grid,

provided the battery is fully charged and the solar panels are producing more power

than the house is consuming. While in principle this is the desired behaviour of the

system, there are situations where there is optimisation potential. An example for such

optimisation potential for the customer is when their system exports excess power during

the day, but later buys in power from the grid to power a power-hungry appliance. It would

be in the customer’s interest and more efficient to use the appliance when the excess power

is available. Another example of optimisation potential is when excess power is exported

to the grid while the export reimbursement rate is low. Depending on how much power

has been exported into the grid, the rate that a customer is reimbursed for exporting

power can vary. It would be a benefit to the customer to consume excess power with a

power-hungry device rather than exporting to the grid when the export rate is low.

Each solar panel system needs to make effective use of the excess power that it has

generated, however many systems have no control over loads in the house. It is also too

much work for the customer to monitor the status of a system to find out when it would

be a good time to use the excess power.

Chapter 1. Project Introduction 3

1.3 The Solution

To explore and answer this research question, Vector would like me to look for potential

added benefits that could arise from having a home/business strategically consume excess

power in situations instead of exporting it to the grid. One way of effectively using excess

power would be to have an appliance like a hot-water pre-heater run automatically when

power is in excess. Pre-heating the water when power is in excess will mean that the

normal hot-water heater won’t have to work as hard later as the water that enters the

hot-water heater will already be hotter than normal. If this device can run at times

when the export reimbursement rate is low then this will provide additional value to the

customer. Another way of effectively using excess power would be to have a power-hungry

appliance run when power is in excess, rather than exporting current power and buying

in power later in the day to power the appliance. An example of this appliance could be

a dryer. If it is possible to run the appliance earlier when power is in excess then it will

consume the excess power and there may be no need to import any power for it. In this

case the customer could be alerted that it is an appropriate time to use the appliance.

As part of this project, my job is to explore and answer the research question. To answer

this research question I will produce a solution that will enable an optional power-hungry

appliance in the house to be turned on to consume the excess power in a useful and

efficient way. Vector wants the solution to be in the form of a device that runs locally in

the home/business. The device will contain a program that will look at the current power

state of a solar panel system, recent power history of the system, and make a decision to

turn an appliance/load on or off accordingly.

Vector would also like information about decision outcomes and power states sent back

to them as otherwise they would have a limited view of what’s going on.

1.4 People Involved

There are several people involved with this project, from either Vector or The University

of Auckland. Here are some of the key people that have been involved with this project.

• Academic supervisor: Ulrich Speidel

My academic supervisor for this project is Ulrich Speidel. He has been assisting

me and supporting me throughout this project. I have kept in regular contact with

Ulrich during the project.

• BTech Coordinator: Sathiamoorthy Manoharan (Mano)

Mano is the BTech (IT) Coordinator and is the one who manages the BTech 451

project course. He was the one who assigned me this project.

Chapter 1. Project Introduction 4

• Previous Industry supervisor: Anthony Thornton

Anthony Thornton was my initial Industry supervisor, however he has recently left

Vector.

• Current Industry supervisor: Steve Muscroft-Taylor

After Anthony Thornton left Vector, Steve Muscroft-Taylor took his place and be-

came my new Industry supervisor. He was able to attend my mid-year seminar.

Chapter 2

Solar Panel System

The solar panel system that I’m working with is a complicated system that coexists with

existing standard power components of a building. The system contains both hardware

and software components. This chapter looks at the system and its components that are

installed in and outside the building.

2.1 Hardware

Several hardware components make up the system. They are mostly installed in a fridge-

sized cabinet that is located on the outside wall of the building. These components interact

with the existing components of the house. All the components are connected to an

onsite computer than connects to the internet via the pre-existing home/business internet

connection. Figure 2.1 refers to a logical diagram that displays the major components of

the system. As this is a logical diagram, the placement of components in this diagram

are not accurate or to scale, but it gives an idea of how they work together.

2.1.1 Solar Panel Array

Solar panels are an essential part of the system. An array of solar panels are installed

onto the roof of a house. They are placed either just on one side of the roof, or both

sides depending on how many the resident wants. If they are installed on just one side

of the roof then they are placed in the optimal position to generate the most power from

the sun. Power produced by the solar panels is in Direct Current (DC). Power from the

panels are fed into the Maximum Power Point Tracker (MPPT).

5

Chapter 2. Solar Panel System 6

Figure 2.1: Solar Panel System - Logical Diagram

2.1.2 Maximum Power Point Tracker (MPPT)

The Maximum Power Point Tracker (MPPT) is a device that aims to optimise the power

being produced by the solar panels at any given point in time. The MPPT does this by

varying the resistance of a circuit to maximise the Current-Voltage product, and there-

fore get the maximum amount of power available from the solar panels. The optimally

generated power is fed from the MPPT into the Inverter/Charger

2.1.3 Inverter/Charger

The Inverter/Charger is at the heart of the system. Its main job is to convert between

DC and AC power when power flows exist between components that use a mix of AC and

Chapter 2. Solar Panel System 7

DC power. If a power flow between components is in the same form the whole time – e.g.

flowing from one AC component to another AC component, it will just pass through the

Inverter/Charger without being converted. DC power is used by the MPPT (originating

from the solar panels) and the battery. AC power is used by the Critical Load Panel

(critical appliances in the house), Main Load Panel (other appliances in the house) and

the grid connection.

2.1.4 Battery

The battery stores power for later use. It uses DC power. The power used to charge

the battery can come from solar panels (via MPPT), or the grid. Having a chargeable

battery means that power can be stored while it is sunny, and used later when no power

is produced by solar panels. An example of this would be at night time or while it is very

cloudy. Batteries can also be used in the event of a power cut, so essential devices can

still run.

2.1.5 Critical Load Panel (CLP)

The Critical Load Panel (CLP) has the “critical” appliances and devices in the house

attached to it. It uses AC power. The CLP is connected directly to the Inverter/Charger.

In the event of a power cut, the CLP can still be provided with power from the battery

(via Inverter/Charger), or if the power cut is during day time it can also be provided

with power from the solar panels (via MPPT and Inverter/Charger). Power from the grid

can flow to the CLP like with standard houses (not using the solar panel system) via the

Inverter/Charger.

2.1.6 Main Load Panel (MLP)

The Main Load Panel (MLP) has the remaining (lower priority) appliances in the house

attached to it. It uses AC power. The MLP either receives its power from Inverter Charger

(sourced from the solar panels or the battery) or from the grid (like with standard homes).

2.1.7 Computer Controller

The computer controller doesn’t have any large amounts of power flowing through it,

but instead has data connections to components in the system. It is also connected to

the internet via the home internet connection. The computer looks at several bits of

Chapter 2. Solar Panel System 8

information from around the system, including the battery charge levels, power being

produced by the solar panels, and the flow of power between each component. Based

on the information of the system and the current power plan settings, it makes decisions

about whether the battery should be charged, left alone, or if power from the battery

should be used to power the CLP/MLP/grid.

This computer connects to the internet using the home/business internet connection. This

connection allows each system to be managed remotely. The current power plans and rules

being followed by the system can be modified. An example of remote management would

be before an expected storm, the system could be told to charge the battery and keep it

charged in case the storm causes the local power to go out.

2.1.8 Measuring Point

The measuring point isn’t a component as such, it is just the point where the Invert-

er/Charger, MLP and the grid are all connected to each other. If the MLP is requiring

more power than the Inverter/Charger is providing (if any), then the remaining required

power will be brought in from the grid. Power from the grid is also required if the In-

verter/Charger is requiring power from the MP. In this case the grid will power the MLP,

and supply some power to the Inverter/Charger. In the case that the Inverter/Charger

is sending more power to the MP than the MLP needs, power will be sent back into the

grid. In this case the owner of the house will be reimbursed for the power sent back into

the grid.

2.2 Sofware - The API

There exists an HTTPS-based API for communicating with the solar panel systems. It

uses a RESTful architecture. By writing custom POST, GET and DELETE HTTP

requests, a system can be communicated with remotely. The API doesn’t connect to a

system directly, but instead connects via the system provider of the solar panel system.

The primary function of the API that I will be using during this project will be to query

the state of a solar panel system to get information about battery charge levels and

important power flows. These power flows include:

• The amount of power being generated by the solar panels (PV)

• The current power rate that the battery is charging/discharging

• How much power is being taken in from (or exported to) the grid

Chapter 2. Solar Panel System 9

• The amount of power that the appliances in the house are using (measuring the

CLP and MLP)

• And several other flows

The API also allows power plans to be set and viewed. These plans include rules such

as how quickly the battery should be charged, and at what charge level power should be

exported to the grid.

A new version of the API was introduced last semester. This brought new features and

is an overall benefit to my project. However it broke some earlier code and I needed to

rewrite it. This caused a minor setback.

Chapter 3

Technology Research

There are several design decisions to be made in this project. Vector wasn’t specific about

what technologies or devices I should use as long as it does what they want it to, does it

efficiently, and is appropriate. This chapter covers some of the choices I made while I was

researching and developing.

3.1 Device

The first and main choice was to decide on what hardware I would run my software on.

Vector had said it needs to be a device that runs locally in the house/business. The device

needs to meet certain requirements. The device has certain requirements, these include:

• Being relatively cheap

• Supporting a programming language that has an HTTPS library

• Has enough processing power to make decisions

• Has an electrical interface to send a control signal to a relay

3.1.1 Arduino

The initial idea as suggested by Vector was to use an Arduino as the device to implement

the decision making program on. Arduino is an open-source single board microcontroller

[2]. The processor on an Arduino consists of either an 8-bit AVR CPU, or 32-bit ARM

CPU. Arduino models vary quite significantly, but are mostly all are used for hobby hard-

ware projects with basic computations. Programs on Arduino are written in C or C++.

10

Chapter 3. Technology Research 11

Although it has the electrical capability of sending a control signal and the computational

power to make decisions, it doesn’t support any HTTPS libraries. This is the main reason

why I couldn’t use Arduino as there would be no way use the API. Without being able

to use the API there would be no way to query a solar panel system and make decisions.

3.1.2 Raspberry Pi

After realising Arduino would not be a suitable choice, the next device I looked into

was the Raspberry Pi. Raspberry Pi is a credit-card sized single board computer [3].

Raspberry Pi’s have a 700MHz ARM CPU and either 256 or 512 MBs of RAM depending

on the model. Raspberry Pi’s are significantly more powerful than Arduinos. Raspberry

Pi’s can run a full version of Linux that is designed to use run on ARM CPUs. Within

a Linux distribution, programs can be written on various programming languages, such

as Java, Python or C++. Having an operating system running means more overhead

when compared to Arduino, but it makes software development much easier. Raspberry

Pi’s have several General-purpose input/output pins that can be used for sending control

signals. Raspberry Pi’s can connect to the internet/networks using an inbuilt 100Mb/s

Ethernet port, as well potentially using a Wi-Fi dongle in on one of its USB ports.

I chose to use Raspberry Pi as the device as it fulfils all the technical criteria, is easily

purchasable, and relatively cheap.

3.2 Raspberry Pi Operating System

Once I had chosen Raspberry Pi, I had to decide on the operating system I would install

on it. Unlike Arduino which had a basic operating system built into it, Raspberry Pi

needs an operating system to run. There were certain requirements for this Operating

system, it needs to be:

• Stable

• Easy to install

• Support a programming languages capable of HTTPS requests

3.2.1 Raspbian

Raspbian is a custom version of Debian Linux that is designed to run on a Raspberry Pi

[4]. It is currently the most popular and supported operating system. Raspbian comes

Chapter 3. Technology Research 12

pre-installed with many programming languages and development environments.

I chose to use Raspbian as it is the most supported operating system, stable, and supports

many programming languages.

3.2.2 Pidora

Pidora is a custom version of Fedora Linux that is designed to run on a Raspberry Pi [5].

Like Raspbian, Pidora comes pre-installed with various programming languages.

3.2.3 Arch Linux

There is also a version of Arch Linux that runs on Raspberry Pi’s [6]. Arch Linux re-

quires considerable more setup than Raspbian and Pidora, and comes installed with less

programming languages.

3.3 Programming languages

Once I had decided on using a Raspberry Pi as the device to run the program, the next

decision was what programming language and platform to choose from. The language

needs to :

• Support HTTPS queries for the using the solar panel system API

• Be able to run for a long time without crashing or suffering memory leaks

• Be relatively efficient when performing computations

• Have libraries for using the Raspberry Pi’s GPIO ports (sending the control signal)

3.3.1 Python

Python [7] is a multi-paradigm programming language that runs on a Virtual Machine.

The use of Python is encouraged on Raspberry Pi’s as it is pre-installed on the device

and many libraries for raspberry pi specific features (e.g. GPIO) are pre-installed too.

Python would have been a good choice for the project, but due to my limited experience

with it I chose not to use it.

Chapter 3. Technology Research 13

3.3.2 Java

Java [8] is a multi-paradigm programming language that runs on a Virtual Machine. Java

is also encouraged for use on Raspberry Pi’s, however not as strongly as Python. Java is

pre-installed on Raspberry Pi’s, however some libraries (e.g. GPIO libraries) need to be

installed from external sources. I chose Java over Python for this project as I feel it is

functionally-equivalent with Python for the software that I need to create, however I have

far more experience and confidence to code with it. One downside when compared to

using Python is that I will need to find and reference external libraries (which are easily

available) for using the GPIO interface. I feel this downside is more than out-weighted

by the benefits of using a language that I am more confident in.

3.3.3 C++

C++ [9] is multi-paradigm programming language that runs natively on hardware. Like

the Python and Java, C++ is supported on raspberry Pi’s and it is pre-installed. Like

Java, external libraries would need to be found and referenced to use the GPIO ports, or

code could be written in a C++ class to use them without too much effort. Code written

in C++ generally runs faster when compared to Python or Java code, but I would need

to put more effort into memory management to avoid memory leaks. I chose not to use

C++ as I don’t have too much experience in it and I would have had to put more effort

into writing the program. The speed advantages I would get from writing the program in

C++ would be small as my program is not computationally demanding.

3.4 Status Query Result format

Originally with the v1 API, XML was the only format that the retrieved system status

data would be in. However with the release of the v2 API, there is now the option of

using JSON as the format for the retrieved data to be in, as well XML. I needed to make

a decision between using XML or JSON as for retrieving system status data. I needed to

pick the format that:

• Uses the least amount of bandwidth

• Is computationally efficient

Chapter 3. Technology Research 14

3.4.1 XML

Extensible Markup Language (XML) is a data encoding language that uses opening and

closing tags. An example of data entry returned for how much power being produced by

the solar panels would be: <pvWatts>890</pvWatts>. This requires 22 characters. I

sampled the returned status in XML format at certain times (both day and night) and I

found on average the format used around 1920 characters.

3.4.2 JSON

JavaScript Object Notation (JSON) is also a data encoding language, however it uses

name-value pairs instead of tags. JSON is more light-weight than XML and this will

reduce data transmitted each query. An example of data entry returned for how much

power being produced by the solar panels would be: “pvWatts”:890, this requires 14

characters and represents the same amount of data as in the XML sample for the same

value. I sampled the returned status in JSON format at certain times (both day and

night) and I found on average the format used around 916 characters. This is less than

half the size of XML’s average of XML’s average of 1920 characters.

I chose to use JSON over XML as JSON uses less characters and therefore less internet

bandwidth will be consumed. It also has been found to be less computationally intensive

to parse JSON when compared to XML [10].

Chapter 4

Solution Design

This chapter looks at the overall design of my solution that will enable me to answer the

research question described earlier. It also describes design decisions that have been made

during my project. These designs include both hardware and software designs.

4.1 Hardware

Once I had decided on using a Raspberry Pi as the platform for making decisions and

sending a control signal, the next step was to design how the Raspberry Pi will be physi-

cally installed with other components. The device that we are currently looking at using

to switch a mains load on or off is a solid-state relay. These are capable of switching AC

loads for standard appliances in a home/business.

There are two main design choices about how to connect the Raspberry Pi and relay

together. At this point in time I’m not sure which will be used, potentially both could be

used. I will know more about this once I meet with Vector again to discuss the project.

4.1.1 Combined components

One hardware design is to combine both the Raspberry Pi and the relay together in one

box. There would be mains power going into it for both the Raspberry Pi and the relay.

There would be a standard mains power socket on the box that an appliance could plug

into. There would also be a Ethernet connection for the Raspberry Pi to connect to the

internet. This hardware design would be simpler to transport and demonstrate as it is all

in one box. Figure 4.1 is a basic logical diagram of a combined design.

15

Chapter 4. Solution Design 16

Figure 4.1: Combined - Logical Diagram

Figure 4.2: Separate - Logical Diagram

4.1.2 Separate components

The other hardware design is to separate both the Raspberry Pi and relay into separate

boxes. The “logic” box would contain the Raspberry Pi. The relay box would contain

the relay and have a mains power plug embedded into it. The two boxes would be linked

so the control signal can be sent from the Raspberry Pi to the relay. This link could be

either a basic wire, or potentially a type of wireless signal. Figure 4.2 is a basic logical

diagram of a separate design.

4.2 Software

There is a lot more flexibility with the design of my software compared to flexibility with

the design of the hardware. With most programming, there are often several ways of

producing the same outcome.

Chapter 4. Solution Design 17

4.2.1 Program Overview

The software that I will be developing as part of the solution will consist of a single

program that runs on the device with the sole purpose of making decisions about switching

a load on or off. The software will be written in Java and run on Raspbian Linux. This

decision-making program will be launched when the Raspberry Pi boots up as this will

allow it to initiate and run without human interaction. I am choosing to implement my

decision-making program as a command line program. There was no point making this

a GUI program as the basic decision-making algorithm needs to run discretely on the

device without displaying visual information or requiring human interaction. There is

the possibility of producing an optional GUI in the future to allow users to remotely

interact with the program, however this is not necessary for now and will only be needed

if Vector requires a new feature. A command line program will allow many optional input

parameters when the program is launched. This is handy for development and testing,

but will have limited benefits as the program will be auto-run without interacting.

4.2.2 Logic Overview

The core algorithm of my program involves a sequence of steps that will repeat at certain

intervals. Initially I will set the algorithm to repeat every 30 seconds, however this can

easily be changed. The core algorithm steps to be repeated at regular time intervals

include:

1. Using the API to fetch the currently power status of a solar panel system

2. Logging the power status information for use in the near-future

3. Using the power state information along with recently power history to make a

decision about whether or not to turn a load on or off

4. Send a control signal via a GPIO port to a relay based on the result of that decision

5. Find how long the above steps took, subtract this time from the interval amount

(e.g. 30 seconds) and sleep for the resulting amount of time

There will also be certain calculations performed on logged data to enable it to be used

by future iterations of the core algorithm. These calculations will be performed at the

end of each day, or potentially other times when needed.

Chapter 4. Solution Design 18

4.2.3 Solar Panel System API

The program will need to be able to use the solar panel system API in order to fetch the

power status of a system. As this is an HTTPS based API, I will need to manipulate

HTTPS queries to match the requirements of the API, this includes modifying HTTPS

headers. I will develop methods that perform these HTTPS query manipulations to

simplify the development of this program. Being able to use a single method to perform

functions like querying the status of a system will simplify the algorithm logic.

Chapter 5

Current work

This chapter looks at the work I have completed up to the end of the 2nd week of the

2nd Semester (ending Sunday 3rd August).

5.1 Raspberry Pi configuration

I have obtained a Raspberry Pi Model B and installed Raspbian onto it. I have left most

of the settings as default due to the fact it is already mostly configured to how I want it

to be. One thing I noticed that was the default DHCP configuration wasn’t working with

my network setup so I configured it with a static IP address. Once it was connected on

my network I can SSH onto it to run my program, and remotely control files using FTP.

Java 7 was already pre-installed with Raspbian so there is no need to install it.

5.2 Program Structure

As mentioned in the design chapter, I have implemented my program as a command line

program in Java that runs on the Raspberry Pi (running Raspbian). The basic structure

of my program is in place, however some parts are lacking. The program currently consists

of a basic core-algorithm as described earlier. This core algorithm consists of a loop that

repeats at certain time intervals, currently 30 seconds by default. The current logic for

each loop includes querying the state of a solar panel system using the API, making a very

basic decision about whether or not to turn a load on or off and then sending a control

signal to the GPIO. This power-state information is also currently logged for future use as

it will be used to help develop the improved decision logic. By default, the core-algorithm

loop will continue to forever. Upon launching the program a command line parameter

19

Chapter 5. Current Work 20

can be used to specify how long it should loop for (currently for development purposes).

For each iteration of the loop, the algorithm times how long these previously mentioned

steps took to execute (including network delay when querying the server) and then sleeps

for the corresponding amount of time. For example with the default setting of looping

every 30 seconds, if these steps took 2.5 seconds it will sleep for 27.5 seconds to ensure it

loops every 30 seconds. If there is a problem connecting to the network then it will just

log that no information has been made and wait for the next loop iteration.

The decision making logic is currently very basic and at this point it only looks at the grid

import/export amount. It decides to switch a load on if the system is exporting power

to the grid and switch it off if the system is importing power from the grid. This current

logic is more of a placeholder as I haven’t had the time or sample data to work on this

logic yet. This will comprise a large amount of the future development of this program.

5.3 Solar Panel System API use

I have currently created 4 basic methods for using the solar panel system API. These

include:

• Initiating a session with the API, this needs to be done first or else no other methods

will work

• Querying the status of a system in JSON format, I plan to use JSON as the return

format when querying the server due to reasons given earlier

• Querying the status of a system in XML format, although I plan to use JSON as

the return format I will leave the XML code in the class for now

• Disconnecting from the API session, this is optional but good practice

5.4 GPIO output

I am currently able to successfully send a control signal using the Raspberry Pi’s GPIO

ports. I installed the Pi4j library to do this. The Raspberry Pi isn’t hooked up to a relay

yet, however I have tested the GPIO output with an LED. The LED successfully lights

up when my program wants it to. Later when the Raspberry Pi is connected to a relay, I

will just send the same signal as I am doing currently.

Chapter 5. Current Work 21

5.5 Classes

I currently have 5 Java classes that I have created as part of the decision making program.

5.5.1 DecisionMaker.java

This class contains the main method of my program and is called when the program is

launched. The main purpose of this class is to define logon information about the solar

panel system that will be interacted with, initiate some program variables and then launch

the computation. This currently creates an instance of an APIConnection then launches

a LoopTask thread with the APIConnection instance as a parameter. This class also will

be able to control the LoopTask thread and cancel its execution early.

5.5.2 LoopTask.java

LoopTask.java is a subclass of thread. This class contains the higher level logic of my

program – the core algorithm. It is designed to loop at given time intervals (currently 30

seconds by default). The LoopTask thread is created with a handle to an APIConnection

instance that it will use to query information about a solar panel system.

At times I have noticed a loop iteration can take more than 30 seconds to execute. In the

event of this happening the thread will not sleep at all, it will immediately being the next

loop iteration. The program keeps a track of how many loop iterations have occurred,

and at which time each iteration should sleep. By doing this the program can correct its

timing and return to a regular pattern in the event that 1 or more iterations take more

than 30 seconds.

5.5.3 APIConnection.java

This class contains the 4 wrapper methods mentioned earlier for interacting with the

HTTPS based API. This class enables the LoopTask thread (where the main high-level

logic is) to interact with the API using simple methods, rather than having several lines

of manipulating and parsing HTTPS queries each time the class wants to use the API.

5.5.4 Logger.java

This class contains wrapper methods for writing information to a .csv file. It was made

to simply file writing for logging. Currently the class separates its logs into 1 .csv file

Chapter 5. Current Work 22

per day for simplicity, in such a way that they are nicely ordered. At the moment this

class is currently being used by a LoopTask instance to log information about the system

at regular intervals. This information will be used to work on and improve my decision-

making algorithm. At the moment I am logging every part of information about power

flows in case they will be required later. In the future I will only be keeping recent logs

about relevant information due to storage constraints on the Raspberry Pi.

5.5.5 LoadController.java

This is a simple class that simplifies GPIO output on the Raspberry Pi. It contains meth-

ods for switching the GPIO output on or off. These methods will be used for controlling

the load that will consume the excess power. An instance of the LoopTask class will use

these methods after it has finished making a decision. This class uses one of the external

libraries that I am currently using, Pi4j, as Raspbian doesn’t include a Java library for

GPIO interfacing.

5.6 External Libraries

I tried to limit the amount of external Java libraries used during this project. I only used

an external library when it enabled my program to do something it couldn’t do with stand

Java libraries, or I felt it brought significant benefits.

5.6.1 GSON

GSON is a Java library for JSON parsing [11]. It is created by Google. I needed to use a

JSON parsing library as Java surprisingly doesn’t include one with the standard libraries.

I chose GSON as it is easy to use and fairly efficient when compared to other external

Java JSON libraries.

5.6.2 Pi4j

Pi4j is a Java library for using the GPIO ports on a Raspberry Pi [12]. I needed a library

for interacting with the GPIO ports as Raspbian doesn’t include one for Java by default.

This is the only downside I have found when I chose to use Java over Python, as Raspbian

includes a simple Python GPIO library. I chose Pi4j as was the only GPIO library I could

find for Java.

Chapter 6

Future work

The first semester has seen a fair majority of the effort put into this project go into

understanding the system and communication with Vector. In the second semester of my

project, there will be a bigger focus on the development of my solution. This chapter

looks at the future work of the project

6.1 Decision making logic algorithm

I will need to develop and vastly improve the decision making algorithm logic for my

program. This algorithm will be potentially the most computationally intensive part of

my program, however I don’t feel it will be intensive enough to justify using a native

language like C++. At the moment I haven’t implemented any intelligent design making

logic; decisions are currently made just based on whether the system is currently exporting

power or not. This current algorithm was just a placeholder of the algorithm to be

developed.

A rough idea of the algorithm to be implemented is as follows. I will create logs of certain

power values at regular time intervals throughout each day. The values will include the

battery charge level, current power produced from solar panels (PV), and potentially

other values. At the end of each day I will perform some computations, these will include

noting what time sunrise occurred by looking for the first solar/PV value higher than 0

and what time sunset occurred by looking for what time after midday that the solar/PV

values dropped back down to 0. Then for each time interval I will calculate how much

power will be produced from this point in time until sunset. I will also look at how much

power will be charged into the battery from this point in time until sunset occurs. There

will most definitely be other calculations at this point. These calculations will be used

for future days to try to estimate how much power will be produced from a certain point

23

Chapter 6. Future work 24

in time. For example at 11am on the current day the algorithm will look at data and

calculations from previous days. It will look at the state of the system at 11am on other

days and try to estimate how much excess power will be produced this current day. When

this has been intelligently estimated, the algorithm will make a decision about whether

to turn the load on or off and if it is turned on how long it should be on for.

This is just a rough idea for now and I will give a more in-depth description in my final

report when I have developed and implemented this algorithm. The development of this

algorithm will be an iterative process and I am expecting to make many modifications

and refinements to make this as accurate as possible.

6.2 Connecting the Raspberry Pi to a relay

Currently the only hardware I have is just the Raspberry Pi and its basic components.

These components include a power source, microSD card, Ethernet cable, and LED for

testing GPIO function.

As mentioned before, there are 2 current hardware designs for connecting the Raspberry

Pi for a relay. A decision will need to be made about whether to keep all the components

together in one box, or separate the Raspberry Pi into one box and send a control signal

to separate box that contains a mains-switching relay. Vector will need to give me input

about this. I will give a more in-depth description of the choices made and the resultant

box/boxes in the final report.

Irrelevant of design, the relay we are currently looking at is a solid-state relay that’s

capable of switching a mains AC appliance. My academic supervisor, Ulrich Speidel, will

be able to set up the mains wiring of a prototype as he is qualified to do so.

6.3 Sending information back to Vector

Vector has mentioned before that they would like to know information about the load-

switching decisions that will be made by the device. They don’t want to just know the

outcome of the decisions, but also they would like to know the conditions of the system

and the reason the decision was made to be what it is. Vector wasn’t too specific about

the method of sending the information back to them, but it could be in the form of a

database that I store entries in. More information about sending information back to

Vector will be covered in the final report where I will give a more in-depth description of

this.

Chapter 7

Conclusion

This small chapter is just to conclude and sum up the report.

I am currently making steady progress on the solution that I am creating as part of this

project. This solution will help me to answer the research question. My solution will be

in the form of a decision-making device that will be able to switch an optional load on or

off via a relay. This optional load will consume excess power produced by a system. The

current progress in this project has involved learning about Vector and the solar panel

system, researching technologies to be used for the solution, designing the solution and

creating the start of the solution.

There is still a lot of work to be done on this project as mentioned in the future work sec-

tion. Although plenty of effort and time has currently gone into the project so far, there

has been a lot of overhead with communication, technology changes and understanding

the system. Last semester I had some communication issues with Vector which restrained

project progress slightly, however this semester the project is back on track with com-

munication. A setback occurred during the introduction of the new version of the API

as it broke some earlier code and I needed to rewrite it. I have also spent a lot of time

trying to understand the solar panel system that I’m working with, and its’ relationship

with XML/JSON outputs. Due to these multiple forms of project overhead, not a large

amount of time has been put into producing the solution. However with the remaining

weeks of the project there will be a considerable increase in the time and effort put into

the development of the solution.

The remaining weeks of this project will see me complete and evaluate my solution. I will

look at the impact it has and how well it answers the research question.

25

Bibliography

[1] Vector. Vector - about us. http://vector.co.nz/about-us.

[2] Arduino. Arduino - home. http://www.arduino.cc/.

[3] Raspberry Pi. Raspberry pi. http://www.raspberrypi.org/.

[4] Raspbian. Raspbian: Frontpage. http://http://www.raspbian.org/.

[5] Pidora. Pidora - raspberry pi fedora remix. http://pidora.ca/.

[6] Arch Linix ARM. Raspberry pi - archwiki - arch linux. https://wiki.archlinux.

org/index.php/Raspberry_Pi.

[7] Python. About python — python.org. https://www.python.org/about/.

[8] Oracle. Learn about java technology. http://java.com/en/about/.

[9] cplusplus.com. A brief description. http://www.cplusplus.com/info/

description/.

[10] Nurzhan Nurseitov, Michael Paulson, Randall Reynolds, and Clemente Izurieta.

Comparison of json and xml data interchange formats: A case study. 2009.

[11] Google. Google-gson. https://code.google.com/p/google-gson/.

[12] Pi4J. The pi4j project. http://pi4j.com/.

26

http://vector.co.nz/about-us
http://www.arduino.cc/
http://www.raspberrypi.org/
http://http://www.raspbian.org/
http://pidora.ca/
https://wiki.archlinux.org/index.php/Raspberry_Pi
https://wiki.archlinux.org/index.php/Raspberry_Pi
https://www.python.org/about/
http://java.com/en/about/
http://www.cplusplus.com/info/description/
http://www.cplusplus.com/info/description/
https://code.google.com/p/google-gson/
http://pi4j.com/

	Abstract
	Contents
	1 Project Introduction
	1.1 The Company
	1.2 The Research Question
	1.3 The Solution
	1.4 People Involved

	2 Solar Panel System
	2.1 Hardware
	2.1.1 Solar Panel Array
	2.1.2 Maximum Power Point Tracker (MPPT)
	2.1.3 Inverter/Charger
	2.1.4 Battery
	2.1.5 Critical Load Panel (CLP)
	2.1.6 Main Load Panel (MLP)
	2.1.7 Computer Controller
	2.1.8 Measuring Point

	2.2 Sofware - The API

	3 Technology Research
	3.1 Device
	3.1.1 Arduino
	3.1.2 Raspberry Pi

	3.2 Raspberry Pi Operating System
	3.2.1 Raspbian
	3.2.2 Pidora
	3.2.3 Arch Linux

	3.3 Programming languages
	3.3.1 Python
	3.3.2 Java
	3.3.3 C++

	3.4 Status Query Result format
	3.4.1 XML
	3.4.2 JSON

	4 Solution Design
	4.1 Hardware
	4.1.1 Combined components
	4.1.2 Separate components

	4.2 Software
	4.2.1 Program Overview
	4.2.2 Logic Overview
	4.2.3 Solar Panel System API

	5 Current work
	5.1 Raspberry Pi configuration
	5.2 Program Structure
	5.3 Solar Panel System API use
	5.4 GPIO output
	5.5 Classes
	5.5.1 DecisionMaker.java
	5.5.2 LoopTask.java
	5.5.3 APIConnection.java
	5.5.4 Logger.java
	5.5.5 LoadController.java

	5.6 External Libraries
	5.6.1 GSON
	5.6.2 Pi4j

	6 Future work
	6.1 Decision making logic algorithm
	6.2 Connecting the Raspberry Pi to a relay
	6.3 Sending information back to Vector

	7 Conclusion

