UNIVERSITY OF AUCKLAND

SOLAR MONITORING PANEL

BTech 451 Final Report

Author: Supervisor:
David Armstrong Dr. Ulrich Speidel
5636534
darm230

October 28, 2014

Abstract

This final report contains information about all my project-related work on my BTech
451 project throughout the year until Tuesday 28th October 2014. This BTech451 project
is with Vector Limited. The project involves producing a solution to answer a research
question. This research question is based on an optimisation challenge that the global
solar industry is facing. To help answer this research question, I produce a solution that
consists of an intelligent load switching device that can switch a load on in the house to
consume power when it is in excess, with the goal of providing additional value to the
customer. The hardware component of the solution consists of a Raspberry Pi connected
to switches that can turn loads inside a house on or off. The software component of the
solution involves a Java program running on the Raspberry Pi that is capable of making
intelligent decisions based on the state and recent history of a solar panel system. The
completed solution successfully switches loads on when conditions are right for providing
additional value, and off in other cases. This completed solution helps answer the research
question. I find that this solution can bring additional value to a customer who has a
solar panel system installed with storage, but only if the load(s) being switched on use

power in an efficient and non-wasteful way.

Contents

Abstract

Contents

1

Project Introduction

1.1 The Company oo vttt
1.2 The Research Question
1.3 The Solution
1.4 People Involved
1.5 Report Overview e

Related Work

Solar Panel System
3.1 Hardware
3.2 Software - The API.

Technology Research

4.1 Device Lo e e
4.2 Raspberry Pi Operating System
4.3 Programming languageso o e
4.4 Status Query Result format oo

Solution Design

5.1 Hardware e
5.2 Software — Decision Making Program
5.3 Software - Web Parameter Editor,

Decision Making Algorithms

6.1 Overview e
6.2 First algorithm o
6.3 Second Algorithm L
6.4 Third Algorithm
6.5 Fourth and Final Algorithm
Implementation

7.1 Raspberry Pi configuration
7.2 Hardware related

ii

12
12
13
14
15

17
17
21
22

24
24
24
26
27
28

Contents iii

7.3 Software — Decision Making Program 33
7.4 Software — Web Parameter Editor, 37
7.5 Used Classes v v v v i i it e 37
7.6 Unused Classes« . o it 40
7.7 External Librarieso 41
7.8 Implementation Resultso 43
8 Challenges 44
8.1 Daylight Savings 44
8.2 Decision Making Algorithms 45
8.3 API not displaying the Current Rule 45
8.4 Java Classpath Configuration 45
9 Evaluation 47
9.1 Testing« . o e 47
9.2 Answering the Research Question 48
10 Future work 50
10.1 Thorough Testing 50
10.2 Displaying Information Lo Lo L 50
10.3 Alerting and Manual Load Switching 51

11 Conclusion 52

Chapter 1

Project Introduction

The BTech (IT) degree is a four year degree offered by the University of Auckland. The
courses that are taken as part of this degree are mostly Computer Science and Information
Systems papers but include various others. As part of this degree, there is a year-long
project in the final year of the degree. This project is known as the BTech 451 project
and is worth 45 points, or 3 papers. This project usually involves an industry sponsor
that specifies a research question for the student to work on and answer.

My BTech 451 project is formally known as the “Solar Monitoring Panel” and is spon-
sored by the company Vector Limited. This chapter gives an introduction to Vector, the

background behind my project and an overview of my project.

1.1 The Company

Vector Limited [1] is an Auckland based multi-network infrastructure company. Vector
was formed in 1999 from Mercury Energy when new government regulations were intro-
duced, splitting up electricity distribution and electricity generation businesses. Electric-
ity distribution is Vector’s primary role. They own and operate the electricity distribution
network in the greater-Auckland area and they are also the largest power distribution
company in the country, however they don’t produce the power themselves. Vector also
operates a natural gas network, they supply gas to over 150,000 customers across the
North Island of New Zealand, using their 9,300 kilometre-long gas network. Vector owns
their own fibre-optic telecommunication networks in Auckland and Wellington. They also
have a nation-wide fibre network that has access points in other major cities, such as
Hamilton, Tauranga and Christchurch.

Recently Vector, like other distribution networks, has begun to investigate an optimisation

challenge that is based on over-supply with solar panel systems. The particular solar panel

1

Chapter 1. Project Introduction 2

system that Vector is allowing me to work with for this project consists of a collection
of components that are installed in a house or business. The system allows power to be
generated from the installed solar panels on a building’s roof. This power can be directly
used by the building, or stored in an onsite battery for future use. The battery can be
used at the same time as power is being produced by solar panels, or later during a time
when no solar power is being produced. The home/business is still connected to the power
grid like normal buildings, and whatever power the system requires that the solar panel
system is not providing on its own will be brought in from the grid like normal. Excess
power produced by a system can be exported back into the grid. This occurs when the
battery is fully charged and the system is producing more power than the home/business
requires. The owner of the home/business is reimbursed for the power exported, however
this rate is sometimes less than what it would cost to bring the same amount of power in
from the grid. There is also an HTTPS-based API for interacting with each solar panel

system.

1.2 The Research Question

A current challenge that the global solar industry faces is optimising the use of solar
panel systems to provide customers with the maximum value that the system can offer.
The research question for this project is “Can the strategic use of excess power provide
additional value to the customer?”

As mentioned before, excess power generated by a system is exported back into the grid,
provided the battery is fully charged and the solar panels are producing more power than
the house is consuming. The rate that users are reimbursed for excess power export
varies across electricity retailers [2]. While in principle this is the desired behaviour of
the system, there are situations where there is optimisation potential. An example for
such optimisation potential for the customer is when their system exports excess power
during the day, but later buys in power from the grid to power a power-hungry appliance.
It would be in the customer’s interest and more efficient to use the appliance when the
excess power is available. Another example of optimisation potential is when excess power
is exported to the grid while the export reimbursement rate is low. Depending on how
much power has been exported into the grid, the rate that a customer is reimbursed for
exporting power can vary. It would be a benefit to the customer to consume excess power
with a power-hungry device rather than exporting to the grid when the export rate is low.
Each solar panel system needs to make effective use of the excess power that it has
generated, however many systems have no control over loads in the house. It is also too
much work for the customer to monitor the status of a system to find out when it would

be a good time to use the excess power.

Chapter 1. Project Introduction 3

1.3 The Solution

To explore and answer this research question, Vector would like me to look for potential
added benefits that could arise from having a home/business strategically consume excess
power in situations instead of exporting it to the grid. One way of effectively using excess
power would be to have an appliance like a hot-water pre-heater run automatically when
power is in excess. Pre-heating the water when power is in excess will mean that the
normal hot-water heater won’t have to work as hard later as the water that enters the
hot-water heater will already be hotter than normal. If this device can run at times
when the export reimbursement rate is low then this will provide additional value to the
customer as this would be more cost effective than exporting power at a low rate and
later buying power at a high rate.

As part of this project, my job is to explore and answer the research question. To answer
this research question I will produce a solution that will enable an optional power-hungry
appliance in the house to be turned on to consume the excess power in a useful and
efficient way. Vector wants the solution to be in the form of a device that runs locally in
the home/business. The device will contain a program that will look at the current power
state of a solar panel system, recent power history of the system, and make a decision to
turn an appliance/load on or off accordingly.

This project focuses on a specific case where the user has a power retailer plan which
reimburses at a higher rate when little power has been exported, but reimburses at a low
rate when lots of power has been exported. This threshold will be known as the export
threshold. If the user is paid a constant low rate for any power exported, then this export
threshold would be 0.

1.4 People Involved

There are several people involved with this project, from either Vector or The University

of Auckland. Here are some of the key people that have been involved with this project.

e Academic supervisor: Ulrich Speidel
My academic supervisor for this project is Ulrich Speidel. He has been assisting
me and supporting me throughout this project. I have kept in regular contact with

Ulrich during the project.

e BTech Coordinator: Sathiamoorthy Manoharan (Mano)
Mano is the BTech (IT) Coordinator and is the one who manages the BTech 451

project course. He was the one who assigned me this project.

Chapter 1. Project Introduction 4

e Previous Industry supervisor: Anthony Thornton
Anthony Thornton was my initial Industry supervisor, however he has recently left

Vector.

e Current Industry supervisor: Steve Muscroft-Taylor
After Anthony Thornton left Vector, Steve Muscroft-Taylor took his place and be-

came my new Industry supervisor. He was able to attend my mid-year seminar.

1.5 Report Overview

The following chapter looks at literature I found that relates to this project. After this,
the next chapter looks at research I did on understanding the particular solar panel
system that I worked with during this project. Following this, the next chapter looks at
the technology that I researched. This technology research includes the type of physical
device to be used during this project. After this initial research, the following chapter
looks at hardware and software design decisions I made about the solution. The next
chapter looks at different decision-making algorithms that I had developed. I then discuss
at the actual implementation of both the hardware and the software of the solution in the
follow chapter. Next I discuss some of the challenges that I faced during this project and
describe how I solved them. The next chapter, the evaluation chapter, is where I evaluate
the solution and answer the research question. I then discuss some possible future work
and ways that this project can be continued. After this, there is the conclusion chapter
which sums up the project. I then finally conclude the report with an acknowledgement

section and bibliography.

Chapter 2

Related Work

This chapter looks at literature that relates to my project.

In 2014, Vulic et al.[3] looked at using excess solar power to chill water as an efficient
way of dealing with excess power. Instead of water being chilled overnight as usual, they
looked at using power during peak solar-generation times to chill large tanks of water.
They found this was an efficient way of dealing with excess power as the water was chilled
while power was in excess, and there was less power needed to chill water at later stages
during the day. This is related to my work as an example of a load that I look at storing

excess power with is a hot water pre-heater.

In 2011, Chhabra et al.[4] investigated storing excess solar energy to even out/smooth
the use of solar-generated power. This deliberate storing of excess power for later use is
known as time shifting. They found that time shifting can bring financial benefits if the
battery within a building is used at the right times. This work is similar to mine as some

of the loads used with my device could be used for time-shifting power.

In 2011, Matallanas et al.[5] developed a control system for Demand-Side Management
(DSM) of a system that is similar to the one that I'm working with as part of this project.
This control system maximises use of solar-generated power and enhances local energy
performance by scheduling tasks demanded by the user at appropriate times. This work

is similar to my own as I am also trying to maximise the use of solar-generated power.

In 2012, Giorgio et al.[6] propose a design for more efficient management of electrical
energy in a domestic environment. This paper is focused around smart home controllers.
The results from this paper provide a proof of concepts that consumers will get benefits

from the more efficient use of energy management. Although this paper isn’t based around

5

Chapter 2. Related Work 6

solar excess use, some of the general efficiency concepts can relate to my work.

In 2014, Giorgio et al.[7] presented an approach for local energy management that auto-
mated Demand-Side Management (DSM) programs. They dealt with houses that have a
solar panel system similar to the one I'm working with, as well as smart appliances and
electric cars. They didn’t find any major results during this paper but instead proposed a
control framework. This work is similar to mine as it deals with time shifting some loads

for more efficient power use.

Out of all the related work I could find, I found the most similar and relevant to be the
paper by Vulic et al.[3]. This was due to the fact they were using excess solar-generated
power to chill water so less power had to be taken in from the grid to chill it later. This
is similar to one of the examples that I use in this report. My example is using a hot
water pre-heater to heat water while excess power is being generated by solar panels. This
example can save power from being brought in later to heat hot water as it is already

heated.

Chapter 3

Solar Panel System

The solar panel system that I'm working with is a complicated system that coexists with
existing standard power components of a building. The system contains both hardware
and software components. This chapter looks at the system and its components that are

installed in and outside the building.

3.1 Hardware

Several hardware components make up the system. They are mostly installed in a fridge-
sized cabinet that is located on the outside wall of the building. These components interact
with the existing components of the house. All the components are connected to an
onsite computer that connects to the internet via the pre-existing home/business internet
connection. Figure 3.1 refers to a logical diagram that displays the major components of
the system. As this is a logical diagram, the placement of components in this diagram

are not accurate or to scale, but it gives an idea of how they work together.

3.1.1 Solar Panel Array

Solar panels are an essential part of the system. An array of solar panels are installed
onto the roof of a house. They are placed either just on one side of the roof, or both
sides depending on how many the resident wants. If they are installed on just one side
of the roof then they are placed in the optimal position to generate the most power from
the sun. Power produced by the solar panels is in Direct Current (DC). Power from the

panels are fed into the Maximum Power Point Tracker (MPPT).

Chapter 3. Solar Panel System 8

Maximum
Power Point
Tracker (DC)

Critical Load| ™\
/ Panel (AC) \

Computer| | Inverter/
Controller] | €harger Lo | Main Load

L | Panel (AC)
Internet
Connection Battery (DC) Grid Connectign (AC)

I

FI1GURE 3.1: Solar Panel System - Logical Diagram
3.1.2 Maximum Power Point Tracker (MPPT)

The Maximum Power Point Tracker (MPPT) is a device that aims to optimise the power
being produced by the solar panels at any given point in time. The MPPT does this by
varying the resistance of a circuit to maximise the Current-Voltage product, and there-
fore get the maximum amount of power available from the solar panels. The optimally

generated power is fed from the MPPT into the Inverter/Charger

3.1.3 Inverter/Charger

The Inverter/Charger is at the heart of the system. Its main job is to convert between

DC and AC power when power flows exist between components that use a mix of AC and

Chapter 3. Solar Panel System 9

DC power. If a power flow between components is in the same form the whole time — e.g.
flowing from one AC component to another AC component, it will just pass through the
Inverter/Charger without being converted. DC power is used by the MPPT (originating
from the solar panels) and the battery. AC power is used by the Critical Load Panel
(critical appliances in the house), Main Load Panel (other appliances in the house) and

the grid connection.

3.1.4 Battery

The battery stores power for later use. It uses DC power. The power used to charge
the battery can come from solar panels (via MPPT), or the grid. Having a chargeable
battery means that power can be stored while it is sunny, and used later when no power
is produced by solar panels. An example of this would be at night time or while it is very
cloudy. Batteries can also be used in the event of a power cut, so essential devices can

still run.

3.1.5 Critical Load Panel (CLP)

The Critical Load Panel (CLP) has the “critical” appliances and devices in the house
attached to it. It uses AC power. The CLP is connected directly to the Inverter/Charger.
In the event of a power cut, the CLP can still be provided with power from the battery
(via Inverter/Charger), or if the power cut is during day time it can also be provided with
power from the solar panels (via MPPT and Inverter/Charger). Power from the grid can
flow to the CLP just like with standard houses (not using the solar panel system) via the
Inverter/Charger.

3.1.6 Main Load Panel (MLP)

The Main Load Panel (MLP) has the remaining (lower priority) appliances in the house
attached to it. It uses AC power. The MLP either receives its power from Inverter Charger

(sourced from the solar panels or the battery) or from the grid (like with standard homes).

3.1.7 Computer Controller

The computer controller doesn’t have any large amounts of power flowing through it,
but instead has data connections to components in the system. It is also connected to

the internet via the home internet connection. The computer looks at several bits of

Chapter 3. Solar Panel System 10

information from around the system, including the battery charge levels, power being
produced by the solar panels, and the flow of power between each component. Based
on the information of the system and the current power plan settings, it makes decisions
about whether the battery should be charged, left alone, or if power from the battery
should be used to power the CLP/MLP/grid.

This computer connects to the internet using the home/business internet connection. This
connection allows each system to be managed remotely. The current power plans and rules
being followed by the system can be modified. An example of remote management would
be before an expected storm, the system could be told to charge the battery and keep it

charged in case the storm causes the local power to go out.

3.1.8 Measuring Point

The measuring point isn’t a component as such, it is just the point where the Invert-
er/Charger, MLP and the grid are all connected to each other. If the MLP is requiring
more power than the Inverter/Charger is providing (if any), then the remaining required
power will be brought in from the grid. Power from the grid is also required if the In-
verter/Charger is requiring power from the MP. In this case the grid will power the MLP,
and supply some power to the Inverter/Charger. In the case that the Inverter/Charger
is sending more power to the MP than the MLP needs, power will be sent back into the
grid. In this case the owner of the house will be reimbursed for the power sent back into

the grid.

3.2 Software - The API

There exists an HTTPS-based API for communicating with the solar panel systems. It
uses a RESTful architecture. By writing custom POST, GET and DELETE HTTP
requests, a system can be communicated with remotely. The API doesn’t connect to a
system directly, but instead connects via the system provider of the solar panel system.

The primary function of the API that I will be using during this project will be to query
the state of a solar panel system to get information about battery charge levels and

important power flows. These power flows include:

e The amount of power being generated by the solar panels (PV)
e The current power rate that the battery is charging/discharging

e How much power is being taken in from (or exported to) the grid

Chapter 3. Solar Panel System 11

e The amount of power that the appliances in the house are using (measuring the
CLP and MLP)

e And several other flows

The API also allows power plans to be set and viewed. These plans include rules such
as how quickly the battery should be charged, and at what charge level power should be
exported to the grid.

A new version of the API was introduced last semester. This brought new features and
is an overall benefit to my project. However it broke some earlier code and I needed to

rewrite it. This caused a minor setback.

Chapter 4

Technology Research

There are several design decisions to be made in this project. Vector wasn’t specific about
what technologies or devices I should use as long as it does what they want it to, does it
efficiently, and is appropriate. This chapter covers some of the choices I made while I was

researching and developing.

4.1 Device

The first and main choice was to decide on what hardware I would run my software on.
Vector had said it needs to be a device that runs locally in the house/business. The device
needs to meet certain requirements. The device has certain requirements, these include:

e Being relatively cheap

Supporting a programming language that has an HT'TPS library

Has enough processing power to make decisions

Has an electrical interface to send a control signal to a relay

4.1.1 Arduino

The initial idea as suggested by Vector was to use an Arduino as the device to implement
the decision making program on. Arduino is an open-source single board microcontroller
[8]. The processor on an Arduino consists of either an 8-bit AVR CPU, or 32-bit ARM
CPU. Arduino models vary quite significantly, but are mostly all used for hobby hard-

ware projects with basic computations. Programs on Arduino are written in C or C++.

12

Chapter 4. Technology Research 13

Although it has the electrical capability of sending a control signal and the computational
power to make decisions, it doesn’t support any HTTPS libraries. This is the main reason
why I couldn’t use Arduino as there would be no way to use the API. Without being able

to use the API there would be no way to query a solar panel system and make decisions.

4.1.2 Raspberry Pi

After realising Arduino would not be a suitable choice, the next device I looked into
was the Raspberry Pi. Raspberry Pi is a credit-card sized single board computer [9].
Raspberry Pi’s have a T00MHz ARM CPU and either 256 or 512 MBs of RAM depending
on the model. Raspberry Pi’s are significantly more powerful than Arduinos. Raspberry
Pi’s can run a full version of Linux that is designed to run on ARM CPUs. Within a Linux
distribution, programs can be written on various programming languages, such as Java,
Python or C++. Having an operating system running means there is more CPU overhead
when compared to Arduino, but it makes software development much easier. Raspberry
Pi’s have several General-purpose input/output pins that can be used for sending control
signals. Raspberry Pi’s can connect to the internet/networks using an inbuilt 100Mb/s
Ethernet port, as well potentially using a Wi-Fi dongle in on one of its USB ports.

I chose to use Raspberry Pi as the device as it fulfils all the technical criteria, is easily

purchasable, and relatively cheap.

4.2 Raspberry Pi Operating System

Once I had chosen Raspberry Pi, I had to decide on the operating system I would install
on it. Unlike Arduino which had a basic operating system built into it, Raspberry Pi
needs an operating system to run. There were certain requirements for this Operating
system, it needs to be:

e Stable

e Easy to install

e Support a programming language capable of HT'TPS requests

4.2.1 Raspbian

Raspbian is a custom version of Debian Linux that is designed to run on a Raspberry Pi

[10]. It is currently the most popular and supported operating system. Raspbian comes

Chapter 4. Technology Research 14

pre-installed with many programming languages and development environments.
I chose to use Raspbian as it is the most supported operating system, stable, and supports

many programming languages.

4.2.2 Pidora

Pidora is a custom version of Fedora Linux that is designed to run on a Raspberry Pi

[11]. Like Raspbian, Pidora comes pre-installed with various programming languages.

4.2.3 Arch Linux

There is also a version of Arch Linux that runs on Raspberry Pi’s [12]. Arch Linux
requires considerably more setup than Raspbian and Pidora, and comes installed with

less programming languages.

4.3 Programming languages

Once I had decided on using a Raspberry Pi as the device to run the program, the next
decision was what programming language and platform to choose from. The language

needs to :

Support HTTPS queries for the using the solar panel system API

Be able to run for a long time without crashing or suffering memory leaks

Be relatively efficient when performing computations

Have libraries for using the Raspberry Pi’s GPIO ports (sending the control signal)

4.3.1 Python

Python [13] is a multi-paradigm programming language that runs on a Virtual Machine.
The use of Python is encouraged on Raspberry Pi’s as it is pre-installed on the device
and many libraries for raspberry pi specific features (e.g. GPIO) are pre-installed too.
Python would have been a good choice for the project, but due to my limited experience

with it I chose not to use it.

Chapter 4. Technology Research 15

4.3.2 Java

Java [14] is a multi-paradigm programming language that runs on a Virtual Machine.
Java is also encouraged for use on Raspberry Pi’s, however not as strongly as Python.
Java is pre-installed on Raspberry Pi’s, however some libraries (e.g. GPIO libraries) need
to be installed from external sources. I chose Java over Python for this project as I feel
it is functionally-equivalent with Python for the software that I need to create, however I
have far more experience and confidence to code with it. One downside when compared to
using Python is that I will need to find and reference external libraries (which are easily
available) for using the GPIO interface. I feel this downside is more than out-weighed by

the benefits of using a language that I am more confident in.

4.3.3 CH+

C++ [15] is a multi-paradigm programming language that runs natively on hardware.
Like the Python and Java, C++ is supported on raspberry Pi’s and it is pre-installed.
Like Java, external libraries would need to be found and referenced to use the GPIO
ports, or code could be written in a C++ class to use them without too much effort.
Code written in C++4 generally runs faster when compared to Python or Java code, but I
would need to put more effort into memory management to avoid memory leaks. I chose
not to use C+-+ as I don’t have too much experience in it and I would have had to put
more effort into writing the program. The speed advantages I would get from writing the

program in C++ would be small as my program is not computationally demanding.

4.4 Status Query Result format

Originally with the vl API, XML was the only format that the retrieved system status
data would be in. However with the release of the v2 API, there is now the option of
using JSON as the format for the retrieved data to be in, as well XML. I needed to make
a decision between using XML or JSON as for retrieving system status data. I needed to

pick the format that:

e Uses the least amount of bandwidth

e Is computationally efficient

Chapter 4. Technology Research 16

4.4.1 XML

Extensible Markup Language (XML) is a data encoding language that uses opening and
closing tags. An example of data entry returned for how much power being produced by
the solar panels would be: <pvWatts>890</pvWatts>. This requires 22 characters. I
sampled the returned status in XML format at certain times (both day and night) and I

found on average the format used around 1920 characters.

4.4.2 JSON

JavaScript Object Notation (JSON) is also a data encoding language, however it uses
name-value pairs instead of tags. JSON is more light-weight than XML and this will
reduce data transmitted each query. An example of data entry returned for how much
power being produced by the solar panels would be: “pvWatts”:890, this requires 14
characters and represents the same amount of data as in the XML sample for the same
value. I sampled the returned status in JSON format at certain times (both day and
night) and I found on average the format used around 916 characters. This is less than
half the size of XML’s average of XML’s average of 1920 characters.

I chose to use JSON over XML as JSON uses less characters and therefore less internet
bandwidth will be consumed. It also has been found to be less computationally intensive
to parse JSON when compared to XML [16].

Chapter 5

Solution Design

This chapter looks at the overall design of my solution that will enable me to answer the
research question described earlier. It also describes design decisions that have been made

during my project. These designs include both hardware and software designs.

5.1 Hardware

Once I had decided on using a Raspberry Pi as the platform for making decisions and
sending a control signal, the next step was to design how the Raspberry Pi will be physi-
cally installed. It also needed to be decided on how the Raspberry Pi would interact with
switching hardware. As this is a software based course, my Academic supervisor, Ulrich
Speidel, developed the hardware side of this project. This was due to the fact there was
wiring that needed to be done that I didn’t know how to do, and wasn’t expected to
know due to the BTech (IT) degree not covering hardware in enough depth. I also legally
couldn’t do some of the wiring that was involved.

There were 3 main types of hardware designs that were discussed during this project that
specified how the Raspberry Pi and switching hardware would be arranged and connected.

We ended up going with the last design, but I have also listed the first two.

5.1.1 Combined Components — Single Switch

The first hardware design was to combine both the Raspberry Pi and the relay together
in one box. There would be mains power going into it for both the Raspberry Pi and the
relay. There would be a standard mains power socket on the box that an appliance could

plug into. There would also be an Ethernet connection for the Raspberry Pi to connect

17

Chapter 5. Solution Design 18

Internet
Raspberry Pi
Control Signal
Mains Rel /7 \|Plug
Power elay | |for Load

FI1GURE 5.1: Combined - Logical Diagram

to the internet.

The advantages of this design include:
e Easier to transport and demonstrate, especially for academic seminars and for pre-
senting to Vector

e Simpler to deploy as there was only 1 box to be placed in the house

The disadvantages of this design include:

e Lack of flexibility as this box (including the Raspberry Pi) had to be placed right

next to the desired load

e Potential heat problems due as the relay could have heated up the Raspberry Pi too

much

e More dangerous to develop as there was high-voltage circuitry from the solid-start

relay right next to the low voltage Raspberry Pi

We chose not to use this design due to the many downsides of this design. Figure 5.1 is

a basic logical diagram of this combined design.

5.1.2 Separate Components — Single Switch

The second hardware design was to separate both the Raspberry Pi and relay into separate

3

boxes. The “logic box” would contain the Raspberry Pi. The “relay box” would contain

the relay and have a mains power plug embedded into it. The two boxes would be linked

Chapter 5. Solution Design 19

Logic Box Relay Box

Plug for load

/' \
Internet |

Raspberry Pi

Data Relay

Connectign

Mains Power Mains Power

FIGURE 5.2: Separate - Logical Diagram

so the control signal can be sent from the Raspberry Pi to the relay. This link could be
either a basic wire, or potentially a type of wireless signal.

The advantages of this design include:

e More flexibility with the arrangement of the two boxes, only the relay box would
need to be placed near the load, the logic box could be placed in a different and

more easily accessible place.

e No heat or voltage issues as the relay and the PI are physically seperate

The disadvantages of this design include:

e Only one load could be switched at a time

e There could be locations where the relay box is too big to setup

This 2nd design was a better design than the 1st, but there was still room for improvement.
We chose not to implement this design as the 3rd design turned out to be much better.

Figure 5.2 is a basic logical diagram of a separate design.

5.1.3 Separate Components — Multiple Switches

The 3rd hardware design builds upon the previous “separate components” design, but in-
cludes 2 additional forms of switching. This 3rd design has both a logic box and a switch
box, also 2 wireless switches. These wireless switches essentially perform the same job as
the switch box, but instead they are smaller in size and easier to place around the house
due to the wireless connection. To send a wireless signal and communicate with these
switches, the logic box would need to have a wireless transmitter build into it. Unlike

the relay box, these wireless switches can be bought premade and they are ready to go

Chapter 5. Solution Design 20

Wired Switch - "SSR"

Logic Box
Solid 7\
State [|
Internet| . R I
Raspberry Pi eay

Remote Switch 1 - "R1"

/ \ I
|
optocouplert— \\/jreless| Remote Switch 2 - "R2"
Remote .|
/ N\ I
I

FIGURE 5.3: Separate components, multiple switches - Logical Diagram

out the box, however the wireless transmitter would take some effort to be connected
to the Raspberry Pi’s GPIO ports. This design requires an optocoupler to be connected
between the GPIO pins and the remote control circuity due to voltage differences between

the GPIO pins and the remote control.

The advantages of this design included:

e The choice of being able to switch 1-3 different loads at the same time

e The most flexibility with the physical arrangement of the logic box and the switch-

es/relay box

The disadvantages of this design include:

e Harder to demonstrate due to multiple physical components

This 3rd design is the best design out of the 3 for the purposes as it provided the most
flexibility for installation and use. Having the option of 3 switching methods means that
1-3 loads can be switched at a time. There were no real downsides with this design, the
only slight downside is that it would be harder to demonstrate, but this is very minor

considering the advantages of this design.

Chapter 5. Solution Design 21

5.2 Software — Decision Making Program

There is a lot more flexibility with the design of my software compared to flexibility with
the design of the hardware. With most programming, there are often several ways of

producing the same outcome.

5.2.1 Program Overview

The software that 1 will be developing as part of the solution will consist of a single
program that runs on the device with the sole purpose of making decisions about switching
a load on or off. The software will be written in Java and run on Raspbian Linux. This
decision-making program will be launched when the Raspberry Pi boots up as this will
allow it to initiate and run without human interaction. I am choosing to implement my
decision-making program as a command line program. There was no point making this
a GUI program as the basic decision-making algorithm needs to run discretely on the
device without displaying visual information or requiring human interaction. There is the
possibility of producing an optional GUI in the future to allow users to remotely interact
with the program, however this is not necessary for now. A command line program will
allow many optional input parameters when the program is launched. This is handy for
development and testing, but will have limited benefits as the program will be auto-run

when the device is deployed.

5.2.2 Logic Overview

The core algorithm of my program involves a sequence of steps that will repeat at certain
intervals. Initially I will set the algorithm to repeat every 30 seconds, however this can
easily be changed. The core algorithm steps to be repeated at regular time intervals

include:

[a—

. Using the API to fetch the currently power status of a solar panel system
2. Store the power status information in memory for use in the near-future

3. Logging the same power status information to a file for future use, this is done in

case the program crashes or the device is turned off

4. Using the power state information along with recently power history to make a

decision about which loads should be turned on or off

5. Send control signals via GPIO pins to turn a switch on or off

Chapter 5. Solution Design 22

6. Find how long the above steps took, subtract this time from the interval amount

(e.g. 30 seconds) and sleep for the resulting amount of time

There will also be certain calculations performed on logged data to enable it to be used
by future iterations of the core algorithm. These calculations will be performed at the

end of each day, or potentially other times when needed.

5.2.3 Solar Panel System API

The program will need to be able to use the solar panel system API in order to fetch the
power status of a system. As this is an HTTPS based API, I will need to manipulate
HTTPS queries to match the requirements of the API, this includes modifying HTTPS
headers. I will develop methods that perform these HTTPS query manipulations to
simplify the development of this program. Being able to use a single method to perform

functions like querying the status of a system will simplify the algorithm logic.

5.2.4 Power History Information

The program will need to have a way of storing recent information for later use. This
information will need to be processed to extract the important and relevant information
for future use. The program will also need to perform error checking and handling on the
data that is entered to account for connection errors and power interrupts to the Raspberry
Pi. T will choose to use CSV files rather than a SQL database to store information as
I don’t feel there is a need to set up a database for this project and it would just add

unnecessary complexity and overhead.

5.2.5 GPIO Controlling

To switch loads I will need to implement methods for operating the GPIO pins. These
methods would be called to change the state of different GPIO pins.

5.3 Software - Web Parameter Editor

Once the device is set up and running the decision making program, users will need a
relatively easy way to change load information. This information includes what switching
methods are being used, how much power each load uses, and the priority of each load. For

example if the user connects a 500W load onto a wireless switch, they would need to tell

Chapter 5. Solution Design 23

Parameter Editor

O C> X Q { http://) 6_3

Parameter Editor

Export Threshold: | 50

Priority 1 Load m Power: | S00
Priority 2 Load Power: | 350

Priority 3 Load Power: | 100

FIGURE 5.4: A rough design for the web interface

the program that they have done this. It would be too hard at this stage for the program
to detect this change automatically and accurately. The user can’t be expected to SSH
into the Raspberry Pi and edit a configuration file each time this happens. To make this
easier for the user, I have designed a simple web interface for modifying parameters on the
device. As the Raspberry Pi can easily run an Apache[17] web-server, the web interface
can be run on the device. This will allow the user to easily edit load information in a
web browser while the device is running, assuming the user is connected to the same local
network that the device on.

The actual design of this web interface will be very basic for this project. It will just
consist of a form where users can edit the priority and power-consumption of each type
of load. The web interface will be constructed using php [18] and will perform server-side
validation of entered information. I chose to use php due to being so easy to set up an
Apache [19] web server on a Raspberry Pi and run a php script.

Figure 5.4 is a rough mock-up of what the web interface for the parameter editor will look
like.

Chapter 6

Decision Making Algorithms

This chapter looks at the algorithms behind making intelligent decisions about whether

to turn loads on or off.

6.1 Overview

Making decisions about whether to turn loads on or off is an important part of my
project. In the second semester of this project, a large percentage of development time
was dedicated towards trying to implement intelligent decision logic. This was an iterative
process and several different algorithms were implemented. The goal for this algorithm is
to assign 100% of the excess power to discretionary loads if power was being exported at
a low reimbursement rate. The fourth and final algorithm that I had implemented turned
out to be the most simple, but also the most effective as it achieved the 100% assignment
goal. The earlier algorithms were focused on only switching one load on, but the final was

focused on switching multiple loads on.

6.2 First algorithm

The first algorithm consisted of 4 main conditions. If all 4 of these conditions were met,
the load would be switched on. Multiple loads were not planned to be implemented yet.
This first algorithm required logged information to be recorded on the system for future
decisions. Information like the amount of power exported each day and the amount of
solar energy generated needed to be stored. To store this information I implemented two
Java classes, named DataRecord and DayData. DayData stores information about recent

days in memory, 1 instance for each day. DataRecord holds multiple DayData objects in

24

Chapter 6. Decision Making Algorithms 25

a circular array, with the most recent data at the start of the circular array. DataRecord
generates information from several days’ worth of data (from DayData objects) for use in
decision making.

I chose to not use this algorithm due to the fact it was only assigning about 20% of the
available excess power to discretionary loads, despite the fact ample power was being
exported at a low rate during the testing of this algorithm. However, I kept the code from

my DayData and DataRecord classes and extended them for future algorithms.

6.2.1 Condition 1 — Correct Energy Control State

The first condition checked the current energy control state. If this state enabled energy
to be exported to the grid, then this condition passed. Otherwise this condition failed.

This condition compared the current state to a set of known hardcoded states

6.2.2 Condition 2 — Exported enough

The second condition checked how much power the system has exported to the grid over
the last 10 days. This information was gathered from both csv logs and memory, via the
DayData and DataRecord classes. If the system had exported power over the last 10 days
that was more than the defined threshold, then this condition passed. Otherwise this

condition failed.

6.2.3 Condition 3 — Switching won’t result in import

The third condition checked that if a load was switched on it wouldn’t result in the
system having to import power from the grid. This condition checked if the planned
discretionary load’s power was less than the current amount of power being exported.
If the discretionary load was less than the current amount of power, then the condition

passed, otherwise it failed.

6.2.4 Condition 4 — Battery will be full by sunset

The fourth and final condition checked that the battery will be filled by sunset. To make
this decision it looked at the estimated amount of power that would be generated that
day, and checked that it was greater than the amount of power needed to fill the battery.
The estimated power to be generated for the remaining hours of the day was calculated

from data that had been logged on the system over the past few days, via the DayData

Chapter 6. Decision Making Algorithms 26

and DataRecord classes. If it was estimated that the battery will be full by sunset with
the discretionary load switched on, then the condition passed. Otherwise the condition
failed.

6.3 Second Algorithm

The second algorithm for decision making was based on the first algorithm, it was designed
to expand on the first 4 set of conditions from the first algorithm. The main addition to
this second algorithm was the inclusion of state-machine simulations. These simulations
would involve simulating a system from the current point in time until the end of the
day, with the goal being to find out the amount of charge left in the battery by sunset.
I would have done 2 simulations at each time index during the day. The first simulation
was to estimate the amount of charge left in the battery if a discretionary load was to
be turned on now. The second simulation was to estimate the amount of charge left in
the battery if a discretionary load was to be turned off now. If the simulations estimated
that the system would have the same amount of battery charge level by sunset if the load
was switched on now, then a condition would have passed. This condition would have
either been included with or set to replace one of the previous 4 conditions from the first

algorithm.

To simulate a system, I needed to know which rule the system would be in at each
point in time. To know the predicted rule at each point in time, I implemented 3 classes.
These classes are known as “Rule”, “RuleSet” and “Condition”. These are all basically
data classes with a few useful methods for funding the current rule. A RuleSet object
holds multiple rules in an internal array. Each rule has at least one exit and entry Con-
dition. I reused the same Condition class for both exit and entry conditions. At each
point in time I would check which Rule is currently being used, process numerical power
information based on this rule, and finally check if any of the exit conditions of this rule
were being met. If exit conditions were being met, then I would check the entry conditions
of all the other rules in the rule set to find out which rule the system would be in next.
The numerical power information for all points in the future until sunset were based on

estimated data that was generated from logged information.

I chose to abandon this second algorithm as I found these state machine simulations
were too hard to implement. There were too many variables with the simulations that I
just couldn’t estimate or simulate. There was also behaviour going on in the system that
was being controlled from the system provider’s side, which I wasn’t aware of. The infor-

mation that was available to me was not enough to make accurate simulations. Although

Chapter 6. Decision Making Algorithms 27

I chose not to implement this algorithm, I have kept the 3 classes that I created for this
algorithm as part of my solution. These could potentially be used in the future if this

project was to be expanded upon.

6.4 Third Algorithm

For the third algorithm, I went back to the first algorithm as the state machine simulation
idea was scrapped. Ulrich and I worked on improving the first algorithm to make sure it
chose to assign more of the excess power to a discretionary load, as there was still a lot
of excess power being exported that was not being assigned to a discretionary load. This
third algorithm was based on the 4 conditions from the first algorithm, but with some
modifications to conditions 1 and 3. Conditions 2 and 4 for this third algorithm are the
same as conditions 2 and 4 from the first condition.

I chose not to implement this third algorithm as it still didn’t choose to switch on loads
enough. It was an improvement on the first algorithm as it assigned about 50% of the
excess power to a discretionary load, however there was still a lot of power being exported

that wasn’t assigned to a discretionary load.

6.4.1 Condition 1 Modifications — Correct Energy Control State

For the first algorithm, the first condition was relying purely on the name of the energy
control state to decide if it passed or not. I found that 1 particular state (that was
previously set to fail the condition) did allow export under certain circumstances. This
condition was modified to pass for that particular control state, provided the system was

also exporting power.

6.4.2 Condition 3 Modifications — Switching won’t result in import

For the first algorithm, the third condition was to make sure that the system was exporting
power to the grid than the amount of power that the discretionary load consumes. In the
first algorithm, the amount of power being exported to the grid was only based on the
amount of power being sent from the solar panels to the grid, however it is also possible
for power from the battery to be sent to the grid. This condition was modified to include

power being exported to the grid from the battery when calculating the export power.

Chapter 6. Decision Making Algorithms 28

6.5 Fourth and Final Algorithm

For the fourth algorithm, a much simpler algorithm was designed as both Ulrich and I
felt that we were previously over-complicating the algorithms. This fourth algorithm was
also developed to take multiple discretionary loads into account. I designed each load
that is configured with the system to have its own priority. In the case that there is
enough excess power to power some discretionary loads but not all the loads, the loads
are switched on in order of their priority. This algorithm consists of 2 conditions. The
first condition applies to all the loads, and this condition must pass or else no loads will
be switched on at all. The second condition applies separately to each load, and each load

that passes this second condition will be switched on.

This algorithm turned out to be the most effective as it assigns 100

6.5.1 Condition 1 — Exported Enough

The first condition for this fourth algorithm is the same as the second condition from
the first algorithm. This first condition checks how much power the system has exported
to the grid over the last 10 days. This information was gathered from both csv logs and
memory, via the DayData and DataRecord classes. If the system had exported power over
the last 10 days that was more than the defined threshold, then this condition passed.

Otherwise this condition failed.

6.5.2 Condition 2 — Switching won’t result in import

The second condition for the fourth algorithm is based on the third condition from the
first algorithm, but it is designed for multiple loads. This algorithm first calculates how
much total excess power is available to be used for discretionary loads. This value is the
sum of the amount of power currently being exported and the demand of any discretionary
loads turned on in the previous round. Once this value is worked out, each discretionary
load is checked (in order of priority) to see if it can be turned on or not. For each load, if
the power consumption of the discretionary load is lower than the amount of total excess
power available for excess loads then the load will be turned on. The total excess power
available then has the power consumption of the discretionary load subtracted from itself
to see how much remaining excess power can be used. This repeats till all the discretionary

loads have been switched on or off.

Chapter 7

Implementation

This chapter looks at the parts of the load-switching solution that have been implemented
throughout the year as part of this project.

7.1 Raspberry Pi configuration

Once I had decided to use a Raspberry Pi as the device for this project, I managed to
get a Raspberry Pi Model B, which was the latest model at the time. Since then a model
B+ came out which has currently been implemented inside the relay box. Once I had
decided to use Raspbian as the operating system on the device, I went ahead and installed
Raspbian on the Raspberry Pi. Once it was installed I didn’t have to alter the settings
much, I left most of the settings as default due to the fact it is already mostly configured
to how I want it to be. Java 7 was already pre-installed with Raspbian so there is no
need to install it. One thing I noticed was that the default DHCP configuration wasn’t
working with my network setup so I configured it with a static IP address. Once it was
connected on my network, I could use PuTTY [20] to SSH onto the device. From SSH
I am able to launch the decision making program and manipulate files. I also installed
WinSCP [21] to manipulate files over the network using a GUI as this was easier than

using the command line.

7.2 Hardware related

The hardware side of the solution was implemented by my academic supervisor, Ulrich
Speidel. This was due to the fact that the BTech (IT) degree is a software-based course and

students are not taught the skills or provided with the equipment necessary to implement

29

Chapter 7. Current Work 30

the hardware that was required for this project. There was also wiring that I would not
have legally been allowed to do. Also apart from a few basic theoretical electrical concepts,
no electrical engineering knowledge is taught as part of this degree.

Once we had decided on the separate hardware design with multiple switches, Ulrich
implemented the hardware part of the solution. The finished solution involves 4 main

components, the logic box, the relay box, and 2 wireless receiver switches.

7.2.1 Logic Box

The Logic box is where the logic and decision making occurs. The control signals for the
switches are also sent from this box. This box houses the Raspberry Pi, a USB power
supply for the Raspberry Pi, an optocoupler, wireless remote control, reset button and a
3.5mm socket. There is also a power cable on the outside. The Raspberry Pi has a USB
Wi-Fi module attached so that it can get an internet connection via a wireless router,
hence there is no need for an Ethernet connection. The GPIO pins on the Raspberry Pi
are connected to both the optocoupler and to the 3.5mm socket. The pins connected to
the optocoupler are to send control signals to the wireless remote as the optocoupler is
connected to the wireless remote. The optocoupler is needed due to the voltage difference
between the wireless remote as the GPIO pins couldn’t be directly connected to the
wireless remote. The pins connected to the 3.5mm socket are used to send control signals
to the relay box, these pins are connected directly to the socket and there is no need for
an optocoupler. The Reset button is used to reset the Raspberry Pi in the event of it
crashing as the box is hard to access.

Figure 7.1 shows the logic box when it is closed. The mains power cable for the USB
power supply is on the left, and the 3.5mm socket is on the right. Figure 7.2 shows the
logic box when it is open. The bottom section of the box is in the lower half of the picture.
This bottom section contain the USB power supply on the left, Raspberry Pi on the right,
and the reset button at the top. The top section of the box contains the optocoupler top

right, and the remote sender bottom right.

7.2.2 Relay Box (SSR)

For programming purposes, I refer to this switch/box as “SSR”, which stands for Solid
State Relay. The relay box contains a sold-state relay and a 3.5mm socket. On the out-
side of the box there is a mains power point, and a power cable. The 3.5mm socket is
connected to the control signal socket of the relay and is used to control the state of the

relay. The power cable is connected to the solid-state relay to provide it with power to

Chapter 7. Current Work

31

FIGURE 7.1: The Logic Box (Closed)

FIGURE 7.2: The Logic Box (Open)

Chapter 7. Current Work 32

FIGURE 7.3: A Remote Switch

drive a device. The relay is also connected to the mains socket. When a control signal is
sent to the relay, it will allow power to pass through the relay and it will flow from the

mains power cable to the mains socket.

7.2.3 Remote Switch (R1/R2)

For programming purposes, I refer to these switches as R1 and R2, which stand for Remote
1 and Remote 2 respectively. Unlike the logic and relay boxes, the remote switches were
bought premade. These switches simply plug into a mains socket, and the mains load
to be switched is plugged into the remote switch. These switches function similar to the
relay box, except instead of a 3.5mm cable delivering the control signal from the logic
box it is a wireless signal. These remote switches can be placed in various locations in
the house, away from the logic box. When these remote switches receive an appropriate
wireless signal, they allow power to pass through the switch and to the load. Figure 7.3

is a picture of one of the remote switches (R1/R2).

Chapter 7. Current Work 33

7.3 Software — Decision Making Program

As planned in the design chapter, I have implemented the decision making program as
a command line program in Java that runs on a Raspberry Pi (running Raspbian as the
operating system). This Raspberry Pi runs in the logic box as mentioned in the previous
section. The decision making program consists of a core logic loop that repeats every
30 seconds. This loop will repeat forever unless specified otherwise with a command line
parameter. This loop contains the main decision making logic and several objects of

different classes are interacted with.

7.3.1 Before the Loop

Before the loop begins, some one-off code runs that sets up the program to loop success-
fully. This includes setting up variables such as the current time index, loading data from
recent CSV files into memory (via a DataRecord object) and initiating an API connec-
tion (via an APIConnection object). The time index is an integer that specifies which
30-second section of the day is the current section, it ranges from 0 (0:00:00 — 0:00:29)
to 2879 (23:59:30 — 23:59:59). The connection to the API is initially created during this
pre-loop code, however this connection will be reset/re-initialised during the main loop if
there are problems, or at midnight (time index 2879). A load controller instance is also

created unless the program has been run specifically just to log information.

7.3.2 During the Loop

Once these initial parameters are set up, the main logic loop begins. At the start of every
loop iteration, parameters are loaded from the config.txt file. This is the configuration
file that the web interface produces. This contains information about load priorities, load
power consumption, load switching types, and the export threshold. The next step is to
request the status of the system using the API. I have implemented a method inside API
connection class that uses the API to request the status and if the request is successful
then it returns this information as a SystemStatus object. If there was a network or
parsing error then this status request method returns null. This request status method
uses either XML or JSON depending on the launch parameters of the program, but both

types will return an equal SystemStatus object.

If the system status request is successful then the program begins to look at decision
making. In this case the program first sends the relevant numerical data from the Sys-

temStatus object to a DataRecord object to be stored in memory. The DataRecord object

Chapter 7. Current Work 34

selects the current DayData object that is used for the current day and stores the infor-
mation in this object. This stored information will be used for future decisions. The
amount of power currently being exported is calculated from information within the Sys-
temStatus object. The program then begins the main decision-making algorithm. This
algorithm begins with getting the amount of power exported over the last 10 days via
a DataRecord object. This 10-day export value is checked against the export threshold
which was defined in the config.txt file using the web interface. If the 10-day export is
higher than the export threshold, then the next step of the decision making begins. Each
configured discretionary load that was read from the config.txt file is checked to see if the
power consumption of the discretionary load is lower than the current amount of excess
power being generated. If this is the case then that load will be set to be switched on.

All the configured discretionary loads are checked in order of their priority.

If the system status request is not successful (the object was null), the program adds
blank data to the DataRecord object. This lets the DataRecord object know that the
status request failed and that the DataRecord object should attempt to fill the recent gap
of data if possible. All the discretionary loads are also set to be turned off, regardless of

how they are configured.

Once all the switching state of all the discretionary loads have been decided, the pro-
gram begins to physically switch them via a LoadController object. This LoadController
object contains methods for controlling GPIO pins and sending the appropriate control
signals to the switching devices. Once these control signals are sent, the corresponding
loads are turned on or off. After the physical switching the next step of the program is to
log the current information to a CSV file. This logging is done via a static method that
belongs to the Logger class. The information that is logged to the CSV file includes the
time index, the current time, numerical information about the recent status request, the
10 day export amount, the amount currently being exported and the switching state of
each load. The program then checks if it is the end of the day or not by looking at the
current time index. If the current time index is 2789, then the program calls a method
on the DataRecord object that generates some statistical information based on logged
data. This statistical information can be used in the future for decisions. Finally at the
end of the loop iteration, the program decides how long to sleep for. The programs times
how long these previously mentioned steps took to execute (including network delay when
querying the server) and then sleeps for the corresponding amount of time. For example
with the default setting of looping every 30 seconds, if these steps took 2.5 seconds it
will sleep for 27.5 seconds to ensure it loops every 30 seconds. If it is the case that the
calculated sleep time is less or equal to 0 then it will just begin the next loop iteration

straight away. The program finally checks if there are still remaining loop iterations, if

Chapter 7. Current Work 35

there are remaining iterations then the program will go back to the start of the loop, if

there are no more iterations then the post-loop code will be executed.

7.3.3 After the Loop

Once the loop has finished iterating, some final code is executed. First the API is dis-
connected from using an APIConnection method called disconnect. Finally all the discre-
tionary loads are switched to turn off, regardless of their previous states or configuration.

Figure 7.4 shows a rough high-level view of the logic that is executed .

7.3.4 Solar Panel System API use

I have currently created 5 methods for using the solar panel system API. These include:

e Initiating a session with the API, this needs to be done first or else no other methods

will work

e Querying the status of a system in JSON format, I plan to use JSON as the return
format when querying the server due to reasons given earlier. This method parses the
JSON information that is returned, constructs a SystemStatus object, and returns

this object as part of the method call.

e Querying the status of a system in XML format, although I plan to use JSON as
the return format I will leave the XML code in the class for now as it may have a
future use. This method parses the XML information that is returned, constructs

a SystemStatus object, and returns this object as part of the method call.

e Obtaining rule set information about a particular rule set in XML format. I perform
a query based on a specific rule set ID and I get XML information about a rule set.
I then construct a RuleSet object from this parsed XML information and return the

RulseSet object.

e Disconnecting from the API session, this is optional but good practice

To reset a connection, I call the disconnect method, directly followed by the initiate

method.

Chapter 7. Current Work

Program Start

Initiate Variables

Load data from C5V
files into memorny

Load parameters

into memony

Request the system
status using XML or
ISOM

Successtul
request?

Save data into Tum all loads of f
memaory

Get 10 day export
amount ailed 5 times in

arow?

10 day export =
xport threshold?

Reset API

connection
Tum loads on if

possible

Log data to CSV file

Calculate sleep

duration then sleep

Loop iterations

remaining ?

Disconnect from API

Tum all loads off

Program End

FIGURE 7.4: Program Structure

Chapter 7. Current Work 37

7.3.5 GPIO output

I am currently able to successfully send a control signal using the Raspberry Pi’s GPIO
ports. I installed the Pi4j library to do this. The Raspberry Pi isn’t hooked up to a relay
yet, however I have tested the GPIO output with an LED. The LED successfully lights
up when my program wants it to. Later when the Raspberry Pi is connected to a relay, 1

will just send the same signal as I am doing currently.

7.4 Software — Web Parameter Editor

I constructed the web interface for the parameter editor using php in Notepad++ [22].
There was no point getting a php IDE installed as the size of the code was small and the
complexity was low. I have implemented 2 php files as part pf this web interface, known

as “ParameterEditor.php” and “Result.php”.

ParameterEditor.php contains the main form that the user is prompted with. This form
has fields where users can enter the export threshold, enter values for attached loads and
select the priority for the loads. There is also a password check at the bottom to stop
unwanted people editing values. Upon clicking the submit button at the bottom of the

page, the values of these input fields are validated.

Result.php contains server side validation for the inputted information. Due to time
constraints I wasn’t able to implement client side validation. This server side validation
checks all of the inputs to check they are in the correct format and that the password is
correct. If all the information was validated successfully, the corresponding information
is written to a file called config.txt. The decision making program will read this configu-
ration file and load the parameters into memory for use when switching.

Figure 7.5 is a screenshot of the web interface.

7.5 Used Classes

I currently have 7 Java classes that I have implemented and used as part of my final

submission of this project.

Chapter 7. Current Work 38

[Parameter Editor

€« > C A [localhost3080/Parametereditor.php

Enter parameters

EXPORT THRESHOLD:

Value: |50 mkWh Eg45

This value represents the threshold which the syvstem must have exported over the last 10 davs.
(Power exported over the last 10 days) = EXPORT_THRESHOLD

DISCRETIONARY LOAD(s):

Select a switching tvpe and enter a value for each discretionary load vou want to use:

Blank tvpes must NOT occur before non-blank tvpes.

Non-Blank types must be unique.

Priority 0. Switching Type: | Solid-State Relay ¥ Load: 0.5 n kW (Highest Priority)
Prionity 1. Switching Type: | Remote 1 v | Load:|0.35 mn kW

Prionity 2. Switching Type: Remote 2 ¥ | Load:|0.1 mn kW

Priority 3. Switching Type: ¥ | Load: |0 in kW (Lowest Priority)

Password:

Submit parameters

FIGURE 7.5: The Web Interface

7.5.1 DecisionMaker.java

The current DecisionMaker class consists of code from both the old DecisionMaker.java
and LoopTask.java as mentioned in the mid-year report. I ended up merging the code
from both these classes into 1 class as I realised the old DecisionMaker class only really
consisted of a main method. This main method could easily be merged with the LoopTask
code so I merged them. This class now implements Runnable.

This combined class now contains the main method of my program that is called when
the program is launched, as well as the main high level logic of the program. When the
main method is called, this method sets up some logon information about the particular
solar panel system that the program is designed to connect to. This main method also
initiates some objects like an APIConnection instance, then finally starts running the
main logic loop that loops every 30 seconds. The main logic loop implements runnable
and launches on a different thread. This provides more flexibility and control over the
main logic computation as it could be modified to finish early. At times I have noticed a
loop iteration can take more than 30 seconds to execute. In the event of this happening
the thread will not sleep at all, it will immediately being the next loop iteration. The
program keeps a track of how many loop iterations have occurred, and at which time each
iteration should sleep. By doing this the program can correct its timing and return to a
regular pattern in the event that 1 or more iterations take more than 30 seconds. This

class consists of 445 lines of code.

Chapter 7. Current Work 39

7.5.2 APIConnection.java

This class contains the 4 wrapper methods mentioned earlier for interacting with the
HTTPS based API. This class enables the LoopTask thread (where the main high-level
logic is) to interact with the API using simple methods, rather than having several lines
of manipulating and parsing HTTPS queries each time the class wants to use the API.

This class consists of 609 lines of code.

7.5.3 Logger.java

This class contains static wrapper methods for writing information to a .csv file. It was
made to simply file writing for logging. Currently the class separates its logs into 1 .csv
file per day for simplicity, in such a way that they are nicely ordered. At the moment
this class is currently being used by a LoopTask instance to log information about the
system at regular intervals. This information will be used to work on and improve my
decision-making algorithm. At the earlier stages of development I logged every possible
bit of information about power flows in case they will be required later by a decision
making algorithm. For the final version of my program I log less information as I have
finalized the current decision making algorithm. Each log entry stores information from
the XML/JSON status request, as well as some basic load information about what loads
have been turned on or off.

During the first semester, logging methods were non-static and an instance of this class
had to be created before logging methods could be used. However upon examining code I
found there was no reason to use an object as there was no state information that needed
to be kept. I then changed all the methods to static methods as this simplified code. This

class consists of 108 lines of code.

7.5.4 LoadController.java

This is a simple class that simplifies GPIO output on the Raspberry Pi. It contains meth-
ods for switching the GPIO output on or off. These methods will be used for controlling
the loads that will consume excess power. An instance of the LoopTask class will use
these methods after it has finished making a decision. This class uses one of the external
libraries that I am currently using, Pi4j, as Raspbian doesn’t include a Java library for
GPIO interfacing. Initially this class was designed around switching one load, but in the
second semester this class was modified to switch multiple loads.

This class consists of 88 lines of code.

Chapter 7. Current Work 40

7.5.5 DayData.java

This class holds data for a particular day. Every time a system status is requested, the
relevant numerical data is stored in an array, with an array for each time index of the day.
At the end of each day, relevant statistical information is generated from these arrays for
future use. The main decision logic doesn’t interact with DayData objects directly, but
instead interacts with them via the DataRecord class.

This class consists of 275 lines of code.

7.5.6 DataRecord.java

This class contains information from recent days. It contains a circular array of DayData
objects, where the most recent objects are at the start of the circular array. At the end of
each day, after the DayData calculations have been made, the DataRecord class calculates
its own data from the previously calculated data that the DayData objects had produced.
This includes information such as how much power has been exported over the last 10 or
so days, and what the average total solar power generation is per day. This data is used
for intelligent decision making, and the decision making algorithm can accesses this data
directly from a DataRecord object. This class also contains methods for loading data from
CSV files into memory and methods for adjusting CSV information for daylight savings.

This class consists of 441 lines of code.

7.5.7 SystemStatus.java

This is a simple data class that holds recently retrieved information about a system. It
is simple as the main goal of this class is to hold 2 String arrays and 1 integer array. If
Java had better support for tuples I could have done without this class.

This class consists of 71 lines of code.

7.6 Unused Classes

There were also 3 classes that I developed during this project that aren’t currently being
used. I have chosen to talk about them as I have submitted these 3 classes with my final
code submission as these classes could be used or expanded upon in the future. These
classes all work as they should, there is just no use for their functionality at this point in

time.

Chapter 7. Current Work 41

7.6.1 RuleSet.java

This class is a data class but includes some methods. A RuleSet object contains multiple
Rule objects in an internal array. I created this class when trying to implement state
machine simulations as the state machine would have obeyed one of the rules in a RuleSet
at each point in time. A RuleSet object can be created from an APIConnection object
when it fetches relevant Rule information from the API.

This class consists of 89 lines of code.

7.6.2 Rule.java

This class is also a data class that contains some methods. A rule object represents the
current rule that the system is in. I created this class when trying to implement state
machine simulations as the state machine would have obeyed a rule at each point in time.
A rule object contains at least 1 entry condition and at least 1 exit condition.

This class consists of 117 lines of code.

7.6.3 Condition.java

This class is essentially a data class but also contains a few useful methods for comparing
conditions. A Condition object can be used as either an exit or entry condition of a
rule as both these types of conditions are very similar in terms of implementation. Entry
conditions of a rule are checked to see if the system can enter a particular rule or not. Exit
conditions of a rule are checked in a similar way to see if the system can exit a particular
rule or not.

This class consists of 36 lines of code.

7.7 External Libraries

I tried to limit the amount of external Java libraries used during this project. I only
used an external library when it enabled my program to do something it couldn’t do with
standard Java libraries, or I felt the library brought significant benefits.

The .jar files for these libraries are stored in a lib folder that is added to the classpath
when the program is run. Having these files in a separate folder simplifies code as it is

easier to tell which classes I have implemented myself, and which ones are external.

Chapter 7. Current Work 42

7.7.1 GSON

GSON is a Java library for JSON parsing [23]. It is created by Google. I needed to use a
JSON parsing library as Java surprisingly doesn’t include one with the standard libraries.
I chose GSON as it is easy to use and fairly efficient when compared to other external
Java JSON libraries. This library enabled me to return data in JSON format, which uses
up less bandwidth than when compared to XML.

7.7.2 Pidj

Pi4j is a Java library for using the GPIO ports on a Raspberry Pi [24]. I needed a library
for interacting with the GPIO ports as Raspbian doesn’t include one for Java by default.
This is the only downside I have found when I chose to use Java over Python, as Raspbian
includes a simple Python GPIO library. I chose Pi4j as it is the only GPIO library I could
find for Java. Pi4j provides 3 particular methods for interacting with the GPIOs that
I have used in my code. The first two methods, high() and low(), are used to supply a
GPIO with voltage or turn it off respectively. These two methods are used on the same
pin for turning the solid-state relay on or off. The other method, pulse(), is used to supply
a pin with voltage (high) for a particular amount of time, and then turn it off (low). This
method is used for controlling the wireless switches as to turn them on I need to set a pin
to high for 1000 milliseconds, then to turn it off I need to set a different pin to high for
1000 milliseconds.

7.7.3 Joda-Time

Joda-Time is a Java date and time API [25]. It offers many useful time/date methods that
the standard Java API doesn’t offer yet. These methods can be used for manipulating
and getting information from time/dates. There were two cases when I found this API
particularly useful. The first was when dealing with the time index of the day. I defined the
time index as an integer between 0 and 2879 which represents which 30-second time slot
that the current day was in. The Joda-Time API provided a method called millisOfDay()
which showed how many seconds have passed since the start of the day. Using the result
of this method I was easily able to calculate the time index of the day by performing a
simple calculation on it. The second case of finding the Joda-Time API useful was when
dealing with log files. This API provided a method called daysBetween() which could
easily get the amount of days between two dates. This was useful when dealing with log

files as I could easily see how old log files are by getting the amount of days between the

Chapter 7. Current Work 43

date of the log and the current date. Using the Joda-Time API simplified my code as
it allowed me to easily perform certain time/date operations that would have otherwise

been much more difficult with the standard Java API.

7.8 Implementation Results

I implemented the software to drive the hardware successfully and the device runs as it
should do. The program successfully connects to the API to retrieve system statuses,
logs information to CSV files, loads information from CSV files when it needs to, stores
information in memory for later use, makes intelligent decisions about switching loads on
or off and sends appropriate control signals to switches which successfully turn devices
on and off. The information and parameters about loads can be modified using the web-
interface regardless of whether the program is running or not. This information is taken
into account upon the next iteration of the decision loop.

Loads are only turned on if 2 strict conditions are met. The first is that the amount of
power that the system has exported power over the last 10 days is greater than the export
threshold. The second condition is that there is enough power being exported such that

turning on a load won’t cause the system to bring in power.

Chapter 8

Challenges

There were many challenges that occurred during the design and implementation of this
project. This chapter is not talking about the optimisation challenge that is mentioned

in the introduction.

8.1 Daylight Savings

One challenge that I faced during this project was the fact that clocks get adjusted by 1
hour during daylight savings. This didn’t affect or occur to me in April when daylight
savings ended as I hadn’t started constructing the decision making program, however this
was a problem in September when daylight savings started. The problem was that my
logged information in CSV files became offset by an hour when daylight savings started.
At this point I was developing the 3rd decision making algorithm which relied heavily
on time-based information. When I calculated values such as the estimated amount of
solar power to be generated until sunset, the data to work with was an hour off and these
calculations produced erroneous results.

To solve this problem, I implemented an algorithm to offset previously recorded data in
CSV files to neutralise the offset of daylight savings. Initially this algorithm was just
designed to adjust data going into daylight savings (September) but I later parameterised
it to work for both the start of daylight savings and the end of daylight savings.

It turned out that once I implemented the 4th decision making algorithm, a 1 hour offset
either way made no different to the data I needed to collect from the CSV files. However

I have left this code in as it could be used in the future.

44

Chapter 8. Challenges 45

8.2 Decision Making Algorithms

As mentioned in the Decision Making Algorithm chapter, the iterative task of developing
an accurate decision making algorithm was a challenge that I faced. It was a challenge
as it was hard to get an accurate result from this algorithm that decided to switch on
loads enough. To solve this problem, Ulrich and I approached this challenge in an agile
way. With each algorithm, it was planned, implemented and then tested. After letting
the new algorithm run and be tested for a week or two, we would decide whether it was
good enough or not based on how much power it decided to assign to excess loads. Finally
by the 4th version of the algorithm it was choosing to assign an appropriate amount to
discretionary loads so I kept and finalised that 4th algorithm. As testing each version of
this algorithm took at least a week, we had to assign plenty of time to developing this

algorithm, which is why we started from the start of the second semester.

8.3 API not displaying the Current Rule

When I was attempting to implement state machine simulations as part of the 2nd decision
making algorithm, I found there was a challenge where the API didn’t tell me the current
active rule. I did however know the ID of the current rule set. To solve this problem I
implemented the APIConnection method that creates a RuleSet object based on rule set
XML information. Once I had this RuleSet object, the next task was to go through all of
the rules and find out which one was the current rule. To do this I had to iterate through
every rule in the RuleSet, comparing current information with each entry condition of
each rule. Upon doing this I would find out which rule should be the current rule being

applied in the system.

8.4 Java Classpath Configuration

Once I started using external Java libraries, a challenge occurred about configuring Java
classpaths. Classpath configuration was not a problem when I was coding the solution
as the Eclipse IDE [26] took care of that configuration for me. However the problem
occurred once I started to deploy the program on a Raspberry Pi where I had to launch
the program from a command line. Each time I wanted to launch the program I had to
configure classpaths and parameters. It would be even more of a problem when it came
to deploying the program later on. To solve this problem I implement Unix shell scripts

that had all the command line parameter information including classpath details already

Chapter 8. Challenges 46

configured. This made running the program very simple as only the script needed to be

run without parameters.

Chapter 9

Evaluation

This chapter evaluates the solution that has been implemented. It also looks at using this

solution to help answer the research question.

9.1 Testing

Due to the nature of my program, there were limited ways I could perform testing. Perfor-
mance testing wasn’t appropriate for my program as my program is not computationally
intensive. The majority of the time the program is sleeping until the next loop iteration,
or while it is awake time is mostly spent waiting for API responses or waiting during/after
sending control signals. As this program is a command line program that discreetly runs
on the Raspberry Pi, usability testing wasn’t appropriate either. Usability testing could
have been performed on the web interface, but I feel this would be unnecessary due to the
web interface being such a small part of my project. The only real testing that could be
done was checking the program ran correctly, and that it switched on loads appropriately.
The physical switching has been tested with both the remote switches (R1 and R2), al-
though I haven’t had a chance yet to use the sold state relay switch (SSR).

Throughout development I have had current versions of my program running on my own
Raspberry Pi at home. From the start of development I have been able to test the overall
stability of my program. Using my own Raspberry Pi at home has allowed me to con-
stantly test for crashes and code that broke my program. Later in development I have
also used my own device at home to log information about decision outcomes. This was
particularly useful during the development of the decision making algorithm.

I had limited opportunity to test the program on the actual hardware that Ulrich had
implemented. The logic box that housed the Raspberry Pi was only presented to me dur-
ing the last 2 weeks of the project. Upon testing my program on the Logic Box I found

47

Chapter 9. Fvaluation 43

the core of the program worked fine, however there were some problems when it came to
switching loads. Some of the problems turned out to be related to my GPIO-operating
code, and some were related to the wireless switch setup. I was able to fix up the software
problems on my side, and Ulrich fixed up the hardware problems. After these fixes the
switching worked fine, and I was even able to give a successful demonstration during my
final seminar. Apart from this brief load-switching testing, I haven’t been able to test
the load switching side of the solution much. The load-switching tests I did do though
worked correctly and as they should. These were just basic tests where given a situation
I made an assumption about which loads should be turned on. These basic tests were all
correct.

In terms of testing the accuracy of the actual decision making program, I was able to
perform these tests on the Raspberry Pi running at my home. The metric used for these
tests was how much of the excess power was assignable to discretionary loads. Provided
the system has exported more power over the last 10 days than the export threshold, all
of the excess power should be assignable to discretionary loads. Otherwise if the power
exported over the last 10 days is less than the export power, then no power should be
assignable to discretionary loads. The last iteration of the decision making algorithm (the

one I have implemented), successfully assigned all excess power to additional loads.

9.2 Answering the Research Question

The research question as defined in the first chapter is “Can the strategic use of excess
power provide additional value to the customer?” My answer is yes, but this is dependent
on the circumstances. As mentioned in the first 2 chapters, users are reimbursed by their
electricity retailer for power that their system exports back into the grid. Depending on
the retailer, this value can vary a lot [2]. Some retailers pay a fixed amount no matter
how much power is exported, and some pay a variable rate depending on how much has
been exported recently. If the current reimbursement rate is relatively low, the user will
get more value out of the power their system has generated if they can use this power
with a discretionary load inside the house. A basic but clear example of additional value
is as follows:

Say there are 2 almost identical houses, A and B, both with a 1kW electrical hot water
heating system and a solar panel system just like the one mentioned in this report. For
this example they both generate the same amount of power from solar panels, have the
same power demands in the house, and have the exact same power reimbursement plan.
Each house gets charged 20c for bringing in 1kWh from the grid, and gets paid 10c for
exporting 1kWh. However house B has a 1kW hot water pre-heater and a load switching

device as discussed in this report. For this example house B’s hot water-pre heater is just

Chapter 9. Fvaluation 49

Midday Export Evening Import Net Change
House A | 1kWh @ 10c/kWh = +10c | 1kWh @ 20c/kWh = -20c | -10c
House B | 0kWh @ 10c/kWh = +0c | 0kWh @ 20c/kWh = -0Oc | Oc

TABLE 9.1: Simple Example of Additional Value

as efficient as the standard hot water heater and the heat energy lost from this pre-heater
is negligible. At midday on a particular day there is 1TkWh of excess energy generated by
each house’s system. House A exports this power to the grid and gets paid 10c. Instead
of exporting, house B’s load making device decides to turn on 1kWh pre heater for an
hour. Later during the evening, both houses get low on hot water and 1kWh is needed to
heat the water back up. House A powers up the in-build hot water heater and is charged
20c for the 1kWh of power brought back into the grid. However for house B, the already
hot water from the pre-heater flows straight into the hot water cylinder and requires no
heating. In this case House A has spent a total of 10c (+10c -20c) for this 1kWh of power,
whereas House B has spent Oc for this 1kWh of power. Under these circumstances, house
B gets an additional 10c of value per kWh. 10c doesn’t sound a lot for this small example,
but over time this would add up and provide plenty of additional value for the customer.

Table 9.1 has a summary of the calculations performed in this example.

In theory, additional value can be added if efficient loads are switched on while export
rates are low. To perform this switching I have implemented a decision making device to
intelligently switch loads when excess power is available. This device works as it should
and in theory this device should bring additional value to a customer when paired with

efficient loads, but I haven’t been able to thoroughly test it.

Chapter 10

Future work

This chapter looks at the possible future work and ways that this project could be ex-

panded upon in the future.

10.1 Thorough Testing

Due to time constraints, I wasn’t able to test this program as much as I would have
liked to. This was due to both how the program needs to run for a long time to see get
more detailed information, and that implementation was only completed during the last
week of the semester. This implementation includes both my software, and the hardware
that Ulrich was working on. If I had more time I would like to let the device run for
weeks and/or months to examine the long term effects of the device. It would have been
interesting to look at long term trends about at what times loads are switched and how

frequently switching occurs.

10.2 Displaying Information

The decision making program that I have implemented is a command line application
which just displays basic current and recent information. This information is displayed
to the console and written to CSV files. A possible way this project could be extended
would be to work on a GUI that would display more relevant information that was more
meaningful to the general public. This GUI could be in the form of a web app, or a
smartphone app. A web app would be able to be viewed on either a PC, or a smartphone,
across many operating systems. A smartphone app would only be able to be viewed on a

specific smartphone operating system. For the purpose of displaying information to the

50

Chapter 10. Future work 51

user I feel a web app would be better as it would run on many more devices and operating
systems. I also don’t feel there would be any benefit to using a native smartphone app in
this case.

A (web) app could be used to display current and recent information to the user. It
could also display longer term information (as mentioned in the previous chapter) about
power /time trends. Information could also be displayed about power saving due to more
efficient excess power use. The functionality of the implemented php-based parameter
editor could be integrated into this (web) app to create a single app companion to the

decision making program.

10.3 Alerting and Manual Load Switching

The current solution for load switching automatically switches loads that have been pre-
configured and already plugged in. These loads are in a state where as soon as they
receive mains power they will start operating. Another method of load switching could
be to alert a user when there is excess power available, and let the user turn on a load
themselves. An example load that could be manually switched could be a clothes dryer.
A clothes dryer would not work very well being automatically switched as wet clothes
would have to wait for potentially several hours before the machine turned on, and even
then it may not be switched on for that long constantly.

To know when to manually turn on a load or not, a user could be alerted that there is
excess power available, and that it is a good time to manually turn on a load. This alert
could be done via an email, txt, or app notification. An app notification could easily be
pushed on the local network where a user would receive a notification on their smartphone
app. I feel an email would be the best choice as it targets people using either a computer
or a phone, and many people these days have a constant internet connection to their

email-capable phone.

Chapter 11

Conclusion

This small chapter is just to conclude and sum up the report.

This report has been focused around the development and evaluation of an intelligent
load switching solution that operates inside a house that has a solar panel system with
storage installed. The purpose of this device is to turn on loads at appropriate times to
make better use of excess power generated by a system. The reason for developing this
device was to answer the research question assigned to of “Can the strategic use of excess
power provide additional value to the customer?” This research question was assigned to
me by Vector to explore and answer.

I started by researching the particular system and API that Vector allowed me to work
with. I then looked into various technologies that could be used and then designed an
appropriate load-switching solution. This solution involved both hardware and software
components. I implemented the software component of the solution using Java to run on
the Raspberry Pi-based hardware that my academic supervisor, Ulrich Speidel had imple-
mented. This finished load switching solution was shown to assign all the available excess
power to discretionary loads only if 2 strict conditions were met. These 2 conditions make
sure that the system would currently export at a low rate, and that switching on a load
won’t result in unnecessary power import from the grid. The solution was also shown to
successfully be able to switch loads inside a house using a variety of switching methods.
This solution enabled me to answer the research question as it enabled loads to be switched
in an intelligent way that can provide users of the solar panel system with additional value.
My answer to the research question is yes, but only if the loads being switched are efficient

with the power that they consume.

52

Acknowledgements

I would like to thank Dr. Sathiamoorthy Manoharan (Mano) for assigning me this project
at the start of the year. I also want to thank him for organising and giving me feedback

on my seminars.

I would like to thank everyone at Vector who has helped or given feedback during this
project. I also want to thank Vector for giving me the opportunity to work on this project
in the first place and for allowing me to work with a solar panel particular system. Specif-
ically I would like to thank my academic supervisor, Steve Muscroft-Taylor for replying

promptly to my questions about the project and for attending my seminars.

Finally I would like to give a massive thanks to my academic supervisor, Dr. Ulrich
Speidel. Ulrich has been a great help during this project as he has always kept in contact
and given me appropriate advice and assistance when needed. He has also put in a lot of

work with the hardware side of this project due to this being a software-based project.

53

Bibliography

[1]
[2]

[3]

8]

[9]

Vector. Vector - about us. http://vector.co.nz/about-us.

PowerSmart Solar. What will you be paid for your excess electricity? http://

powersmartsolar.co.nz/Compare_electricity_retailers.

Natasa Vulic, Malvika Patil, Yongjie Zou, Sri Harsha Amilineni, Christiana B. Hons-
berg, and Stephen M. Goodnick. Matching ac loads to solar peak production using
thermal energy storage in building cooling systems - a case study at arizona state
university. In Photovoltaic Specialist Conference (PVSC), 2014 IEEE 40th, pages
1504-1509, June 2014. doi: 10.1109/PVSC.2014.6925200.

M. Chhabra, M. Lim, and F. Barnes. Frequency stabilization using solar smoothing,
leveling and time shifting in a hybrid renewablenetwork. In Innovative Smart Grid
Technologies - India (ISGT India), 2011 IEEE PES, pages 275-281, Dec 2011. doi:
10.1109/ISET-India.2011.6145396.

E. Matallanas, M. Castillo-Cagigal, A. Gutiérrez, F. Monasterio-Huelin, E. Caamano-
Martin, D. Masa, and J. Jiménez-Leube. Neural network controller for active demand-
side management with {PV} energy in the residential sector. Applied Energy, 91(1):90
—97, 2012. ISSN 0306-2619. doi: http://dx.doi.org/10.1016/j.apenergy.2011.09.004.

Alessandro Di Giorgio and Laura Pimpinella. An event driven smart home controller
enabling consumer economic saving and automated demand side management. Ap-
plied Energy, 96(0):92 — 103, 2012. ISSN 0306-2619. doi: http://dx.doi.org/10.1016/
j.apenergy.2012.02.024. Smart Grids.

Alessandro Di Giorgio and Francesco Liberati. Near real time load shifting control for
residential electricity prosumers under designed and market indexed pricing models.
Applied Energy, 128(0):119 — 132, 2014. ISSN 0306-2619. doi: http://dx.doi.org/10.
1016/j.apenergy.2014.04.032.

Arduino. Arduino - home. http://www.arduino.cc/.

RASPBERRY PI FOUNDATION. Raspberry pi. http://www.raspberrypi.org/,

54

http://vector.co.nz/about-us
http://powersmartsolar.co.nz/Compare_electricity_retailers
http://powersmartsolar.co.nz/Compare_electricity_retailers
http://www.arduino.cc/
http://www.raspberrypi.org/

Bibliography 55

[10]
[11]

[12]

[13]
[14]

[15]

[16]

[17]

Raspbian. Raspbian: Frontpage. http://http://www.raspbian.org/.
Pidora. Pidora - raspberry pi fedora remix. http://pidora.ca/.

Arch Linix ARM. Raspberry pi - archwiki - arch linux. https://wiki.archlinux.
org/index.php/Raspberry_Pi.

Python. About python — python.org. https://www.python.org/about/.
Oracle. Java software — oracle. https://www.oracle.com/java/.

cplusplus.com. A brief description. http://www.cplusplus.com/info/

description/.

Nurzhan Nurseitov, Michael Paulson, Randall Reynolds, and Clemente Izurieta.

Comparison of json and xml data interchange formats: A case study. 2009.

RASPBERRY PI FOUNDATION. Setting up an apache web server on a raspberry
pi. http://www.raspberrypi.org/documentation/remote-access/web-server/

apache.md, .
The PHP Group. Php: Hypertext preprocessor. http://php.net/.

The Apache Software Foundation. Welcome to the apache software foundation!

http://www.apache.org/, .

Simon Tatham. Putty: A free telnet/ssh client. http://www.chiark.greenend.
org.uk/~sgtatham/putty/.

WinSCP. Free sftp, scp and ftp client for windows. http://winscp.net/.
Notepad++. About. http://notepad-plus-plus.org/.

Google. Google-gson. https://code.google.com/p/google-gson/.

Pi4J. The pidj project. http://pidj.com/.

Joda. Joda-time - java date and time api. http://joda.org/joda-time/.

The Eclipse Foundation. Eclipse luna. https://www.eclipse.org/, .

http://http://www.raspbian.org/
http://pidora.ca/
https://wiki.archlinux.org/index.php/Raspberry_Pi
https://wiki.archlinux.org/index.php/Raspberry_Pi
https://www.python.org/about/
https://www.oracle.com/java/
http://www.cplusplus.com/info/description/
http://www.cplusplus.com/info/description/
http://www.raspberrypi.org/documentation/remote-access/web-server/apache.md
http://www.raspberrypi.org/documentation/remote-access/web-server/apache.md
http://php.net/
http://www.apache.org/
http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://winscp.net/
http://notepad-plus-plus.org/
https://code.google.com/p/google-gson/
http://pi4j.com/
http://joda.org/joda-time/
https://www.eclipse.org/

	Abstract
	Contents
	1 Project Introduction
	1.1 The Company
	1.2 The Research Question
	1.3 The Solution
	1.4 People Involved
	1.5 Report Overview

	2 Related Work
	3 Solar Panel System
	3.1 Hardware
	3.2 Software - The API

	4 Technology Research
	4.1 Device
	4.2 Raspberry Pi Operating System
	4.3 Programming languages
	4.4 Status Query Result format

	5 Solution Design
	5.1 Hardware
	5.2 Software – Decision Making Program
	5.3 Software - Web Parameter Editor

	6 Decision Making Algorithms
	6.1 Overview
	6.2 First algorithm
	6.3 Second Algorithm
	6.4 Third Algorithm
	6.5 Fourth and Final Algorithm

	7 Implementation
	7.1 Raspberry Pi configuration
	7.2 Hardware related
	7.3 Software – Decision Making Program
	7.4 Software – Web Parameter Editor
	7.5 Used Classes
	7.6 Unused Classes
	7.7 External Libraries
	7.8 Implementation Results

	8 Challenges
	8.1 Daylight Savings
	8.2 Decision Making Algorithms
	8.3 API not displaying the Current Rule
	8.4 Java Classpath Configuration

	9 Evaluation
	9.1 Testing
	9.2 Answering the Research Question

	10 Future work
	10.1 Thorough Testing
	10.2 Displaying Information
	10.3 Alerting and Manual Load Switching

	11 Conclusion

