

Electronic Data Capture

Bachelor of Technology

End of Semester Report

Siyu Zeng

1255777

szen010

This report summarizes the BTech project

achievements in semester one, introduces the

project principles and discusses related topics

and problems encountered. As a milestone, it also

looks ahead in the future for possible

improvements.

Table of Contents

Introduction ... 4

Agency... 4

Background .. 6

Requirement ... 7

Fast and Accurate Data Capture ... 7

Data Validation and Consistency Check ... 8

Multiple Media Support ... 8

Data Reform and Transfer ... 9

Goal ... 10

Design ... 11

Android Architecture ... 11

Activity Lifecycle .. 12

Crash Diagram .. 15

Data Field Priority .. 15

Two Design Alternatives ... 16

Screen Navigation Based ... 16

Graphical User Interface (GUI) Based .. 17

XML Schema ... 20

Progress .. 20

Conclusion .. 21

Future Plan ... 21

Road Templates ... 21

Other Templates .. 21

Forms .. 22

Geo-location ... 22

Reference .. 22

Introduction

The appearance of Internet and rapid development of mobile applications have greatly

affected people’s everyday lives. The various roles of mobile devices have made them

not only a platform for communication, but also a tool for entertainment and business.

While traditional ways of information sharing are virtualized in many mobile

applications, data processing has been a major task for them.

This report introduces the final year BTech project of electronic data processing. It firstly

starts with an overview of the project. Afterwards, it discusses the requirements in

detail. Through this several concepts related to the project are introduced. Then we

describe our design principles and alternatives. At last, we conclude the achievements

and explore possible improvements for remaining part of the project.

Agency

New Zealand Transport Agency (NZTA) [7] was established on 1 August 2008 and has 12

offices around New Zealand. It is a Crown entity governed by NZ Transport Agency

Board and is responsible for contributing to an affordable, integrated, safe, responsive

and sustainable land transport system. This includes the planning and funding of land

transport which involves the enforcement of laws, regulations and rules, and the

collection of revenue. It also involves ensuring that New Zealanders have access to land

transport, including through building, operating and maintaining land transport systems.

This is the work it undertakes with a number of partners.

As just one part of the transport sector NZTA closely cooperates with sector agencies

and others with an interest in land transport. Its role is to provide a vital link between

government policy making and the operation of the transport sector.

It maintains close working relationships with:

 transport operators and the general public, who use and interact with transport

 transport committees, regional councils and territorial local authorities, which

are responsible for implementing transport projects and other activities funded

through the National Land Transport Programme

 suppliers, including contractors and consultants

 the NZ Police, which provides a range of road policing services

 the Ministry of Transport, which is responsible for leading the development of

strategic transport policy and monitoring performance of the sector’s Crown

entities.

The NZTA's interaction with the land transport system

Background

Traffic crash reports (TCRs) are the forms completed by police officers at the scene of all

road crashes, including non-injury cases. They record the details of when, how and why

the crash happened. They provide essential information to many groups of professionals

in the road safety and road construction fields: (a) police officers and police intelligence

analysts (b) road controlling authority engineers and safety planners (c) traffic engineers

and consultants (d) researchers (e) central government, etc." The reports are used,

among other things, to mitigate accidents of similar nature and to build a safer travel

environment.

Currently, TCRs are paper forms. Manual entries on paper forms have several drawbacks

including entry errors and illegibility. To analyze the data collected through paper forms,

the data need to be re-entered into an electronic format. Data consistency checks are

not possible in manual data entry: for instance, a single response to a single response

question cannot be enforced.

The project turns up to solve these problems with the goal of developing a mobile

application as a replacement to the paper form. Such electronic data collection, while

reducing some of the issues seen with paper-based data collection, gives many other

advantages: there is no need for dual data entry; some of the information can be auto-

filled (e.g. time and location); some data can be auto-captured (e.g. driver information

from the bar-code of the driving license); some media can be attached (e.g. photos,

sketches, and audio). Thus the data collected can be transferred easily to the processing

centre. This transfer can be in a manner that lends itself to easy processing (e.g. there

may not be a need to re-code the data).

Requirement

Through the meetings with stakeholders, the requirement was explicitly confirmed.

Some data fields which reveal to be unnecessary were discarded and additional ones

such as airbag deployment were added. The key of the project is to maintain data

consistency as well as to enable accurate capture of geo-location and crash diagram.

Specifically, the requirement can be divided into four categories and should be fulfilled

respectively:

Fast and Accurate Data Capture

As one of the main purposes of this project, the data entry process for police should be

well accelerated. This relies on functionalities and user interface of the application. For

example, to take advantage of such mobile applications, some additional features such

as automatic data filling can be provided. This saves a great amount of time for police,

although inconsistent data need to be changed manually by the police sometimes.

Moreover, with the Global Positioning System (GPS) receivers on mobile devices, geo-

location can be captured automatically. At last, the design of user interface should be

carefully considered as different from paper-based TCR, mobile applications normally

end up with considerable amount of pop-ups or dialogs which brings difficulties for

users to manipulate. Think about a situation when a police has finished filling one

section of TCR and wants to move on to next section. What he will do in paper-based

TCR is to simply turn the page over. However, in the mobile application, he might found

himself annoyed by a dialog asking “the data will be saved, are you sure to move on?”.

Such behavior of the application will somehow slow down the process. Therefore,

guaranteeing the easiness of using the application for fast data entering is a critical issue

that also needs to be taken care of.

Data Validation and Consistency Check

With the current paper-based TCR, there is no way to ensure data validation while

police are filling the form. This is embodied in the manual entry errors and the

inconsistent information they are provided. It frequently happens in current TCR

recording process as there are no indications when the police have made mistakes.

Besides, the information that drivers provide can be inconsistent with the one stored in

database. In this case, it is obvious that police have no way to check and correct it,

which as a result, cause difficulties to identify the crash later on when the data are

processed by NZTA. What is worse, it could also leads to the complete discard of a TCR.

Hence, in our application, constraints must be put on some data fields to reduce manual

errors. For example, use a dropdown box for police to select the options from rather

than simply give them a textbox to fill in. A reminder can also be provided so that

whenever a police forgets to fill in some parts of the form, he will be informed of it. The

most important is to allow automatic data acquiring for some sections such as driver

information and vehicle information so that police can compare the data provided by

the drivers with the one they get from database. As a result, they can decide which

information to respect by discussing with the drivers whenever there is inconsistent

information provided.

Multiple Media Support

Despite of the automatic processing capability of mobile application, multiple media

support is another key factor that makes mobile devices to a certain extent engage

people’s everyday life. Clearly, although not the only one, an advantage of such

functionality is that it represents events or facts in a more intuitive and interactive way

than simple texts with an imaginary description that is more understandable to humans.

Since user-friendly and user-centered designs have become primary concerns in most

software, it is always important to consider a design from human’s perspective at some

points. Thus with the current mobile devices, some conventional text processing

procedures can be enhanced or even replaced with media processing. Take driver

interview as an example, normally what police do is to write down a whole paragraph

whose length can vary from 30 to 150 words. This is definitely a time consuming and

sometimes useless procedure as at the end of the day what NZTA needs is only a couple

of key words describing the driver’s status when the crash happens. With audio capture

as a replacement, this problem can be solved because the only thing police need to do is

to press the button for recording. Another example is the recording of environmental

information such as road, light and vehicle factors. Such factors can be easily captured

by taking photos as stronger evidences than words. Nevertheless, it is still the user’s

preferences that to be respected as the design decision of whether to conform to

current text processing.

Data Reform and Transfer

Another key concern is in which format the data should be stored and transmitted.

Because the TCRs completed at the scene of crashes are later passed to NZTA for

analyzing, a commonly used format for transmission must be used to produce

documentation of the reports which is both human readable and machine readable.

Extensible Markup Language (XML) is the first format that went in our sight as many

application programming interfaces (APIs) have been developed for software developers

to use to process XML data, and several schema systems exist to aid in the definition of

XML-based languages [8]. Furthermore, it is well supported by Wireless Application

Protocol (WAP) and can be used to carry picture and audio file for our purpose. What is

most important, a well defined XML schema ensures that the data represented must

conform to it so that arbitrary data structure can be formatted to enable better

management.

Goal

As mentioned before, the goal of the project is to build a prototype mobile application

to explore possibilities of such application to take place of current paper-based TCR.

While trying to stress on functionality and data consistency maintenance, the design

should also consider likely problems that might be encountered during the

implementation. This requires reasonable understanding of the project and research of

related topics. Even though at the first glance it seems that the electronic TCRs are

totally better than the old TCRs, there are still advantages that electronic ones cannot

easily inherit. For example, due to inflexibility of mobile application lifecycle, the user

might not feel that the application is completely dominated by him as normally he has

to follow the screen navigations, while on the other hand the paper-based TCRs are

quite straight forward with everything kept handy. This implies another problem, that is,

the inflexible filling order in mobile application doesn’t respect users’ manners or habits

while processing such kind of form. For instance, with current TCR the order that a

police fills in the forms may be different depends on various situations. A simple case

would be that a police might talk to the driver of vehicle two first and therefore fill in

the associated information of it before he actually starts processing information of

vehicle one. However, with the Model–View–Controller (MVC) design pattern in mobile

application, a user usually cannot perform the recording procedure for next vehicle until

he finishes the current one. This limitation can be solved by an innovative design

approach as we will discuss later. Clearly there are other issues such as backing up TCRs

for reuse and locking screen to reject careless touching events. Hence, the design should

try to maximum the scope while following the basic principles of this project.

Design

The design is based on Android operating system which is developed by the Open

Handset Alliance (OHA), led by Google, and other companies. The platform was created

by Android Inc. which was bought by Google and released as the Android Open Source

Project (AOSP) in 2007 with a group of 78 different companies forming the OHA that is

dedicated to develop and distribute Android. As an open source software system, it is

possible for a developer to code in any of the layers [6]. This openness has made

Android one of the best platforms over the world.

The Android operating system is a multi-user Linux system in which each application is a

different user [2]. Each application is assigned a different Linux user ID by the system

which is used to set permissions for ensuring unique access to its related resources. Also,

every application runs in its own process with its own virtual machine (VM) isolated

from others’. A process is only started when any part of the application’s components is

needed and shut down when the component is no longer used. These properties have

provided a secured environment which prevents resource sharing among different

applications without permissions. However, Android does allow applications to share

same user ID, to run in same process, to share same VM as well as to access device data

with permission. In this case, all permissions must be granted at install time.

Android Architecture

As shown in the figure, android architecture consists 5 different layers among which

Linux kernel is never touched by most programmers, although in theory programming

can be performed on this layer with the approval from Google.

Start at the bottom is the Linux kernel which directly lays on hardware and is used by

Android to manage device drivers, memory, process and networking. Above it are core

libraries and Dalvik virtual machine that runs Android applications as well as the native

libraries which are written in C/C++. Following is the application framework, which

provides a framework of services and systems for programmers including Views,

Content Providers, Resource Manager, Notification Manager and Activity Manager. At

the top are the core applications shipped by Android and other applications written by

programmers.

Activity Lifecycle

An Activity is an application component that provides a screen with which users can

interact in order to do something, such as dial the phone, take a photo, send an email,

or view a map [1]. Therefore, screen navigations in an android application mainly rely on

management of the activities’ lifecycles. The figure below shows the entire lifecycle of

an activity.

Typically, an Android application contains several activities and starts with the main

activity. Different activities can have different views or actions. In order to switch to

content contained in another activity, one must creates an intent specifying either the

exact activity it wants to start or the type of action it wants to perform. When a new

activity is started, the previous one is stopped and preserved on the “last in, first out”

(LIFO) “back stack” then the newly created activity is pushed on top of it. Thus whenever

user presses the Back button, the current activity is popped from the stack and

destroyed with the previous activity resuming.

Specifically, the screen navigations in our application will be controlled by different

activities bound with each other with different views as their contents. Each time the

user press a button defined in the view for navigation, the new activity is brought to

focus and its view is displayed. This always causes some causal order of the screen. For

example, pressing Next button in view one allows user continues to view two and later if

he wants to switch to view three, he has to press the Next button in view two.

Meanwhile, there is no way that he can go directly from view one to view three, despite

of the reason why he would do so. The reason why this happens is because the activities

are logically chained or cycled without a centralized activity having access to all of them.

Therefore, our first step of designing the activity lifecycles is to split TCR in several

sections with a main activity that can navigate to all of them. The following figure shows

the relationship among these screens.

Main Activity

General

Information

Vehicle 1

Information

Driver 1

Information

Environmental

Information

Crash Diagram

Driver 2

Information ...

Vehicle 2

Information

...

Crash Diagram

At the early stages of our design, quite a number of discussions are surrounding the

topic of crash diagram. Different from human’s habit of using a pen for drawing, free

sketching on a tablet doesn’t give us a relatively good appearance. Meanwhile, this kind

of free sketching doesn’t actually reduce the process time and workload for users.

Moreover, distinct drawing styles of different users leads to inconsistent appearance

even with the same object. The practical results in past TCRs have reflected this fact.

Therefore, we are left only two choices, to make use of existing map application for

capturing our road picture and draw our own template objects on it or to provide the

road template ourselves as well. After a few attempts of the former approach, we

conclude that it is difficult to embed a third party map application in our own especially

when it’s not open source. Meanwhile, although Android supports map view that

embeds GoogleMap, the zoom level is not enough for our purpose. This leads to the

adoption of second consideration in which we make our own templates for different

types of roads as well as objects. This is a significantly challenging task because we have

to implement our own methods of handling touch events such as selecting, dragging,

rotating and zooming. Also, a lot of geometric computations as well as algorithms need

to be implemented to distinguish and to perform these operations.

Data Field Priority

After we have obtained the initial blueprint for our project, the next step is to define

priorities of data fields. Clearly, there are a couple of fields which are usually not filled or

used in current TCR and a few fields that are extremely important. The statistical results

from NZTA give us the clue which fields can be discarded and which must be enforced.

Also, during the meetings with stakeholders, the decision of abandoning some fields as

well as adding extra fields is made. Enforcements on accuracy of several fields are also

stressed. By then, the amounts of data to be captured as well as their priorities in TCR

are well defined and the requirement is mostly confirmed.

Two Design Alternatives

The previous discussions imply that we have not only one design option of how to

implement TCR in our mobile application. Here we introduce two design alternatives

that we found feasible during research. Although both approaches involve form filling,

the way how application interacts with users significantly differs.

Screen Navigation Based

A direct way of interpreting current TCR in our mobile application is to let the users

navigate among screens with each screen containing corresponding view that matches

the original form. This is done by using simple logic on buttons in each view to switch

among activities. Also, as an optimization mentioned before, a main activity can be

provided as the central navigator so that the structure is no longer a ring topology but a

star topology. Even better, an Android menu can be implemented together to make it a

mesh topology. In this case, the user can have several routines to choose from and can

switch to any other routine at any time rather than to strictly follow a single routine.

This approach might be preferred by most police as it preserves the basic manner of

users while filling such forms, that is, to go from section to section. However, it appears

to be unattractive and still has some problems. Firstly, although the logical order of

completing different sections can vary, the information of each section must be filled in

sequence, that is, the user still has to follow a specific routine within a section

containing several screens even if an Android menu is provided, because each section

must have a fixed start screen and we cannot use menu for all these sub-screens. For

instance, although not exactly the case, while filling information for vehicles and drivers,

the user always has to go from first to last. The factor that causes this behavior is the

way we implement our model for storing vehicle and driver objects. These objects are

stored in collections such as Arraylists so that whenever user wants to add one, a new

instance is initialized and given the last index of collection as its ID as well as its position

in the collection. This process predefines the ID for these objects which thus follows a

numerical order. Even though this behavior can be solved by letting users enter ID

themselves, it doesn’t conform to the basic principle of this project, which is, to make

the application as much responsible as possible for maintaining data consistency. Also,

storing vehicle and driver information in separated collections doesn’t result in solid

relationship between them as the only way we can associate a driver with a vehicle is to

compare their respective index in the collection. This can cause serious problem if the

user wants to perform deletion when the operation is not correctly implemented. At last,

it is difficult for users to identify the corresponding information of a vehicle later when

they start to draw it on crash diagram. It sometimes causes mismatch between vehicle

information and crash diagram which brings a lot of trouble for NZTA. With all these

disadvantages, we look for a solution that can mostly solve these problems. This leads

us to the second approach, which is graphic based.

Graphical User Interface (GUI) Based

Regardless of how we build our application, the users always need to complete forms at

some stage of recording process. Yet, we can change the way how users interact with

the application by importing a GUI as the basis for entering all information. The concept

will be explained step by step. First, the application starts with a GUI which requires the

drawing of crash diagram that imaginarily describe the crash. After the user has finished

drawing, he can start filling in the according information. The following figure shows a

complete diagram at this point.

Now since everything has been lain down, the user can start entering information. The

way how we achieve recording of vehicle information is by popping up a dialog when

use clicks on a vehicle. The dialog is basically a form that contains all relative data fields.

To solve the driver and vehicle mismatch problem, we decided to put vehicle and driver

information altogether in a same scrollable dialog. Therefore, the user will know exactly

which driver and vehicle he’s dealing with and never be able to get it wrong. However

changing view without modifying our model cannot solve the problem as vehicle and

driver objects are still different objects. Therefore, we decided to merge our driver

object into vehicle object so that a vehicle will be a composition of driver object. By

compositing the driver object in its corresponding vehicle object, each vehicle will have

its own driver which results in indivisible relationship between them. The screenshot of

the pop-up dialog is shown below.

With this approach, user still can enter information for other sections using the menu

we provided while the order of entering information for vehicles is completely flexible.

Each section will also be displayed as a pop-up dialog that located upon the crash

diagram. This intuitive design provides user more control over the application which at

the same time could result in unawareness of what has been done and what needs to be

done. As a result, the freedom of manipulating the application without specified routine

can make user forget to enter part of the information. Suppose a crash involving five

vehicles, the user normally will click on vehicles in a random order to process. Since we

combine vehicle and driver information altogether, there will be quite an amount of

information for each vehicle. Therefore, after filling information for several vehicles, the

user could end up with forgetting to record information for the remaining ones. To

avoid this, we need to provide a reminder telling the user whenever there is information

that has not been filled. User preference is another issue that we currently cannot

locate. As we didn’t take surveys of users’ preferences for process TCR, we cannot

conclude that this new approach will be well adopted.

XML Schema

Since our application design phase has almost come to an end, it is about time for us to

think about how to define a schema for our documents. The primary advantage of

schema languages is that descriptions in schema languages are more precise than those

in prose and that we can rely on validators rather than carrying out human inspections

[5]. There are several schema languages that have been proposed in the past, for

instance, DTD and W3C XML Schema. The reason why we prefer XML Schema than DTD

is because it aims to be more expressive than DTD and more usable by a wider variety of

applications [4]. An XML schema is a description of a type of XML document, typically

expressed in terms of constraints on the structure and content of documents of that

type, above and beyond the basic syntactical constraints imposed by XML itself [9].

Therefore, a given document can be checked against the constraints to determine

whether it is valid or not. In our project, the use of XML language is essential as it not

only consolidates data consistency but also provides a human readable description of

the captured data.

Progress

Through this semester, two meetings with stakeholders as well as several regular

project meetings are held. The requirement is confirmed at early of the semester and

right after than we start our design of the application. Junction and roundabout road

templates have been developed. The user can select the according road type with the

number of roads specified and the road is automatically drawn on the screen. Currently,

only dragging has been implemented on the roads so that user can drag a road to any

angle they want. In the future some additional feature such as rotating and zooming

might be implemented. Also, a couple of object templates are created. They include

vehicles, arrows and crash spots. Note that they are currently represented with simple

shapes which will be changed to icons in the future. As mentioned by Wilding [3], Icons

can make an interface visually more interesting and are appropriate when they

communicate better than text. Besides, we have started defining the XML Schema for

our data structure.

Conclusion

Although current crash diagram looks pretty simple and the templates are still not

completed. A series of improvements on both functionality and appearance will be

achieved in the future. The problems encountered during implementation enhance my

experience on user interface design and Android programming.

Future Plan

The first delivery of the prototype will take place in one mouth’s time. By then, a

workable application will be built and it will be capable of captured all required

information. The information will be parsed into XML files which satisfy the XML Schema

we define. This XML file is then sent out by email.

Road Templates

All types of road templates will be finished up with the functions that allows user to

move around or rotate the whole template within screen, drag separated roads and

possibly zoom it.

Other Templates

All objects will be split into four categories which are roads, vehicle, lines and others. In

this way, the whole interface functions as a toolkit which allows user to select

associated objects to draw from pop-up dialogs in these categories. Also icons will be

used as much as possible as a replacement of current simple shapes in order to provide

a better appearance. Dragging and rotating on these objects will also be available by

then.

Forms

 All views of forms will be completed in a clean manner so that it is easy for user to fill in.

Also data will be captured and stored so that they can be represented later for revision.

Geo-location

Although geo-location can be easily obtained, special algorithm needs to be

implemented to ensure a more accurate result. Also we need to find a method to let use

manually correct the position of the OverlayItem on GoogleMap.

Reference

[1]Android Developers. Activities. Retrieved June 2, 2012, from

http://developer.android.com/guide/topics/fundamentals/activities.html

[2]Android Developers. Application Fundamentals. Retrieved June 2, 2012, from

http://developer.android.com/guide/topics/fundamentals.html

[3]Cliff Wilding. 1998. Practical GUI screen design: making it usable. In CHI 98 conference

summary on Human factors in computing systems (CHI '98). ACM, New York, NY, USA,

125-126.

[4]Dongwon Lee and Wesley W. Chu. 2000. Comparative analysis of six XML schema

languages. SIGMOD Rec. 29, 3 (September 2000), 76-87.

http://developer.android.com/guide/topics/fundamentals/activities.html
http://developer.android.com/guide/topics/fundamentals.html

[5]Makoto Murata, Dongwon Lee, Murali Mani, and Kohsuke Kawaguchi. 2005.

Taxonomy of XML schema languages using formal language theory. ACM Trans. Internet

Technol. 5, 4 (November 2005), 660-704.

[6]Mohsen Anvaari and Slinger Jansen. 2010. Evaluating architectural openness in

mobile software platforms. In Proceedings of the Fourth European Conference on

Software Architecture: Companion Volume (ECSA '10), Carlos E. Cuesta (Ed.). ACM, New

York, NY, USA, 85-92

[7]NZTA. 2009. NZ Transport Agency. Retrieved June 2, 2012, from

http://www.nzta.govt.nz/

[8]Wikimedia Foundation, Inc. 2001. XML. Retrieved June 2, 2012, from

http://en.wikipedia.org/wiki/XML

[9]Wikimedia Foundation, Inc. 2004. XML schema. Retrieved June 2, 2012, from

http://en.wikipedia.org/wiki/XML_schema

http://www.nzta.govt.nz/
http://en.wikipedia.org/wiki/XML
http://en.wikipedia.org/wiki/XML_schema

