Electronic Data Capture

Bachelor of Technology

End of Semester Report

Siyu Zeng
1255777
szen010

This report summarizes the BTech project
achievements in semester one, introduces the
project principles and discusses related topics
and problems encountered. As a milestone, it also
looks ahead in the future for possible

improvements.

Table of Contents

INEFOAUCTION ..ttt et bt et b e e bt et s bt et sbe et e st e sae e besbeeneeae 4
P2V 1=) o Loy PP OO P U PO PR TP 4
BaCKGIOUINA ...ttt et st b et r e s s r e 6
REQUITEIMENT. ...ttt ettt e be e e st e s bt e e sab e e sabeeesabeesabeesneeesareesaneens 7
Fast and Accurate Data CaptUIecocceeveerieniinie ettt ettt st sttt 7
Data Validation and Consistency Checkccoceiirveninieiinineeeceece e 8
Multiple Media SUPPOTt....ccoiiiiiiireeiesieeteetete sttt sttt e ne s 8
Data Reform and Transfer.. ..ottt sttt st see e 9
670 =Y LTSRS 10
DIESIZIN ot sttt b e h e s st n et neenrees 11
ANAroid ArChItECTUIE.viiiieiieciece ettt st s e sbe e saeesareeeeens 11
ACHVILY LIfECYCIE ..ot 12
Crash DIa@raml.......coceeiiiiiiiiiieiieeree sttt sttt st re et e e st e e sbaesaaesatesasessbeenbeeseenanes 15
DTz 0 2 =1 U B o o o) L 72U 15
TwWo Design AILEIMAtIVESccceiriiiiiiiiiieeie ettt s st te e be e sbeesaaesaeesene 16
Screen Navigation Basedccceviiriiiiiiiiiiiicecnecrese e 16
Graphical User Interface (GUI) Basedccccoveeriiniiniinnieenieeneesie e 17

XML SCREIMA ...ttt st sttt b e st e b bt e e e bt e e e 20
PrOGIESS ..ottt 20
COMCIUSION .ttt ettt s b et s b e s bt et sbe et e s bt s st enbesbeeasenbesaeenbens 21
FULUTE PIAN .ttt sttt b et b e st e e bt et e sbesbee b 21
ROAA TEMPIALES ..veereeeiiiieiieieeieesee ettt st ste e et e e st e e ste e saaesstesnsessseenseenseesseas 21
Other TEMPIATES ...covveiiiiiiecieeieeree ettt st te et e e st e e ste e saaessaesssessseenseenseesseas 21

[CTYo T (o Yor=1u [) s AR

Reference

Introduction

The appearance of Internet and rapid development of mobile applications have greatly
affected people’s everyday lives. The various roles of mobile devices have made them
not only a platform for communication, but also a tool for entertainment and business.
While traditional ways of information sharing are virtualized in many mobile

applications, data processing has been a major task for them.

This report introduces the final year BTech project of electronic data processing. It firstly
starts with an overview of the project. Afterwards, it discusses the requirements in
detail. Through this several concepts related to the project are introduced. Then we
describe our design principles and alternatives. At last, we conclude the achievements

and explore possible improvements for remaining part of the project.
Agency

New Zealand Transport Agency (NZTA) [7] was established on 1 August 2008 and has 12
offices around New Zealand. It is a Crown entity governed by NZ Transport Agency
Board and is responsible for contributing to an affordable, integrated, safe, responsive
and sustainable land transport system. This includes the planning and funding of land
transport which involves the enforcement of laws, regulations and rules, and the
collection of revenue. It also involves ensuring that New Zealanders have access to land
transport, including through building, operating and maintaining land transport systems.

This is the work it undertakes with a number of partners.

As just one part of the transport sector NZTA closely cooperates with sector agencies
and others with an interest in land transport. Its role is to provide a vital link between

government policy making and the operation of the transport sector.

It maintains close working relationships with:

transport operators and the general public, who use and interact with transport

transport committees, regional councils and territorial local authorities, which

are responsible for implementing transport projects and other activities funded

through the National Land Transport Programme

suppliers, including contractors and consultants

the NZ Police, which provides a range of road policing services

the Ministry of Transport, which is responsible for leading the development of

strategic transport policy and monitoring performance of the sector’s Crown

entities.

MINISTRY OF TRANSPORT feedback

Government
statutes, strategies
and objactives

Government policy
statemeant

Mational
perspective

Mational Land
Transport
Programme
Road Policing
Programme

Strategies

Long term council Mational
community plans delivery
Regional land = ;
transport strategies State highway
management
Advertising
Education
Audits
Licences
Crperations
. Infrastructure
Regional Assistance and advice
context
Local
delivery
Community-focused
activities
Assisting freight
mode choice
Local road
) management
Regional land))
haln— Walking and cycling
Programimes PT services
Plans Packages Activities
NZTA feedback

The NZTA's interaction with the land transport system

Land transport
system that
moves people
and freight
miore efficiently,
safely and cost
effectivaly

Outcomes

Background

Traffic crash reports (TCRs) are the forms completed by police officers at the scene of all
road crashes, including non-injury cases. They record the details of when, how and why
the crash happened. They provide essential information to many groups of professionals
in the road safety and road construction fields: (a) police officers and police intelligence
analysts (b) road controlling authority engineers and safety planners (c) traffic engineers
and consultants (d) researchers (e) central government, etc." The reports are used,
among other things, to mitigate accidents of similar nature and to build a safer travel

environment.

Currently, TCRs are paper forms. Manual entries on paper forms have several drawbacks
including entry errors and illegibility. To analyze the data collected through paper forms,
the data need to be re-entered into an electronic format. Data consistency checks are
not possible in manual data entry: for instance, a single response to a single response

guestion cannot be enforced.

The project turns up to solve these problems with the goal of developing a mobile
application as a replacement to the paper form. Such electronic data collection, while
reducing some of the issues seen with paper-based data collection, gives many other
advantages: there is no need for dual data entry; some of the information can be auto-
filled (e.g. time and location); some data can be auto-captured (e.g. driver information
from the bar-code of the driving license); some media can be attached (e.g. photos,
sketches, and audio). Thus the data collected can be transferred easily to the processing
centre. This transfer can be in a manner that lends itself to easy processing (e.g. there

may not be a need to re-code the data).

Requirement

Through the meetings with stakeholders, the requirement was explicitly confirmed.
Some data fields which reveal to be unnecessary were discarded and additional ones
such as airbag deployment were added. The key of the project is to maintain data
consistency as well as to enable accurate capture of geo-location and crash diagram.
Specifically, the requirement can be divided into four categories and should be fulfilled

respectively:
Fast and Accurate Data Capture

As one of the main purposes of this project, the data entry process for police should be
well accelerated. This relies on functionalities and user interface of the application. For
example, to take advantage of such mobile applications, some additional features such
as automatic data filling can be provided. This saves a great amount of time for police,
although inconsistent data need to be changed manually by the police sometimes.
Moreover, with the Global Positioning System (GPS) receivers on mobile devices, geo-
location can be captured automatically. At last, the design of user interface should be
carefully considered as different from paper-based TCR, mobile applications normally
end up with considerable amount of pop-ups or dialogs which brings difficulties for
users to manipulate. Think about a situation when a police has finished filling one
section of TCR and wants to move on to next section. What he will do in paper-based
TCR is to simply turn the page over. However, in the mobile application, he might found
himself annoyed by a dialog asking “the data will be saved, are you sure to move on?”.
Such behavior of the application will somehow slow down the process. Therefore,
guaranteeing the easiness of using the application for fast data entering is a critical issue

that also needs to be taken care of.

Data Validation and Consistency Check

With the current paper-based TCR, there is no way to ensure data validation while
police are filling the form. This is embodied in the manual entry errors and the
inconsistent information they are provided. It frequently happens in current TCR
recording process as there are no indications when the police have made mistakes.
Besides, the information that drivers provide can be inconsistent with the one stored in
database. In this case, it is obvious that police have no way to check and correct it,
which as a result, cause difficulties to identify the crash later on when the data are
processed by NZTA. What is worse, it could also leads to the complete discard of a TCR.
Hence, in our application, constraints must be put on some data fields to reduce manual
errors. For example, use a dropdown box for police to select the options from rather
than simply give them a textbox to fill in. A reminder can also be provided so that
whenever a police forgets to fill in some parts of the form, he will be informed of it. The
most important is to allow automatic data acquiring for some sections such as driver
information and vehicle information so that police can compare the data provided by
the drivers with the one they get from database. As a result, they can decide which
information to respect by discussing with the drivers whenever there is inconsistent

information provided.

Multiple Media Support

Despite of the automatic processing capability of mobile application, multiple media
support is another key factor that makes mobile devices to a certain extent engage
people’s everyday life. Clearly, although not the only one, an advantage of such
functionality is that it represents events or facts in a more intuitive and interactive way
than simple texts with an imaginary description that is more understandable to humans.
Since user-friendly and user-centered designs have become primary concerns in most

software, it is always important to consider a design from human’s perspective at some

points. Thus with the current mobile devices, some conventional text processing
procedures can be enhanced or even replaced with media processing. Take driver
interview as an example, normally what police do is to write down a whole paragraph
whose length can vary from 30 to 150 words. This is definitely a time consuming and
sometimes useless procedure as at the end of the day what NZTA needs is only a couple
of key words describing the driver’s status when the crash happens. With audio capture
as a replacement, this problem can be solved because the only thing police need to do is
to press the button for recording. Another example is the recording of environmental
information such as road, light and vehicle factors. Such factors can be easily captured
by taking photos as stronger evidences than words. Nevertheless, it is still the user’s
preferences that to be respected as the design decision of whether to conform to

current text processing.

Data Reform and Transfer

Another key concern is in which format the data should be stored and transmitted.
Because the TCRs completed at the scene of crashes are later passed to NZTA for
analyzing, a commonly used format for transmission must be used to produce
documentation of the reports which is both human readable and machine readable.
Extensible Markup Language (XML) is the first format that went in our sight as many
application programming interfaces (APIs) have been developed for software developers
to use to process XML data, and several schema systems exist to aid in the definition of
XML-based languages [8]. Furthermore, it is well supported by Wireless Application
Protocol (WAP) and can be used to carry picture and audio file for our purpose. What is
most important, a well defined XML schema ensures that the data represented must
conform to it so that arbitrary data structure can be formatted to enable better

management.

Goal

As mentioned before, the goal of the project is to build a prototype mobile application
to explore possibilities of such application to take place of current paper-based TCR.
While trying to stress on functionality and data consistency maintenance, the design
should also consider likely problems that might be encountered during the
implementation. This requires reasonable understanding of the project and research of
related topics. Even though at the first glance it seems that the electronic TCRs are
totally better than the old TCRs, there are still advantages that electronic ones cannot
easily inherit. For example, due to inflexibility of mobile application lifecycle, the user
might not feel that the application is completely dominated by him as normally he has
to follow the screen navigations, while on the other hand the paper-based TCRs are
quite straight forward with everything kept handy. This implies another problem, that is,
the inflexible filling order in mobile application doesn’t respect users’ manners or habits
while processing such kind of form. For instance, with current TCR the order that a
police fills in the forms may be different depends on various situations. A simple case
would be that a police might talk to the driver of vehicle two first and therefore fill in
the associated information of it before he actually starts processing information of
vehicle one. However, with the Model-View—Controller (MVC) design pattern in mobile
application, a user usually cannot perform the recording procedure for next vehicle until
he finishes the current one. This limitation can be solved by an innovative design
approach as we will discuss later. Clearly there are other issues such as backing up TCRs
for reuse and locking screen to reject careless touching events. Hence, the design should

try to maximum the scope while following the basic principles of this project.

Design

The design is based on Android operating system which is developed by the Open
Handset Alliance (OHA), led by Google, and other companies. The platform was created
by Android Inc. which was bought by Google and released as the Android Open Source
Project (AOSP) in 2007 with a group of 78 different companies forming the OHA that is
dedicated to develop and distribute Android. As an open source software system, it is
possible for a developer to code in any of the layers [6]. This openness has made

Android one of the best platforms over the world.

The Android operating system is a multi-user Linux system in which each application is a
different user [2]. Each application is assigned a different Linux user ID by the system
which is used to set permissions for ensuring unique access to its related resources. Also,
every application runs in its own process with its own virtual machine (VM) isolated

from others’. A process is only started when any part of the application’s components is
needed and shut down when the component is no longer used. These properties have
provided a secured environment which prevents resource sharing among different
applications without permissions. However, Android does allow applications to share
same user ID, to run in same process, to share same VM as well as to access device data

with permission. In this case, all permissions must be granted at install time.

Android Architecture

As shown in the figure, android architecture consists 5 different layers among which
Linux kernel is never touched by most programmers, although in theory programming

can be performed on this layer with the approval from Google.

APPLICATIONS

Contacts Phone

APPLICATION FRAMEWORK

Window Content

Activity Manager Manager Providers

Telephony Resource Location Notification

Paciage Manager Manager Manager Manager Manager

LIBRARIES ANDROID RUNTIME

Surface Manager Media SQLite Core Libraries
Framework |

OpenGL | ES FreeType WebKit Bavicvireaal

Machine

SGL SSL libe

LINUX KERNEL

Display Flash Memory Binder (IPC)
Driver Camera Driver Driver Driver

Audio Power
Keypad Driver WiFi Driver Drivers Management

Start at the bottom is the Linux kernel which directly lays on hardware and is used by
Android to manage device drivers, memory, process and networking. Above it are core
libraries and Dalvik virtual machine that runs Android applications as well as the native
libraries which are written in C/C++. Following is the application framework, which
provides a framework of services and systems for programmers including Views,
Content Providers, Resource Manager, Notification Manager and Activity Manager. At
the top are the core applications shipped by Android and other applications written by

programmers.
Activity Lifecycle

An Activity is an application component that provides a screen with which users can
interact in order to do something, such as dial the phone, take a photo, send an email,

or view a map [1]. Therefore, screen navigations in an android application mainly rely on

management of the activities’ lifecycles. The figure below shows the entire lifecycle of

an activity.

Activity
launched

'\ 4

——

onCreate()

v

onStart() _-— onRestart()

* A

User navigates

10 the activity anfiss.nme()
I-"' App process \I Activity
killed running '
- .’
S — _—

Another activity comes
into the foreground

User returns
+ to the activity
Apps with higher priority
need memory onPause()

The activity is

no longer visible
g* v User navigates

to the activity
onStop())

The activity is finishing or
being destroyed by the system

v

onDestroy()

v

| Activity
Y shut down }
- -

Typically, an Android application contains several activities and starts with the main
activity. Different activities can have different views or actions. In order to switch to
content contained in another activity, one must creates an intent specifying either the
exact activity it wants to start or the type of action it wants to perform. When a new
activity is started, the previous one is stopped and preserved on the “last in, first out”
(LIFO) “back stack” then the newly created activity is pushed on top of it. Thus whenever
user presses the Back button, the current activity is popped from the stack and

destroyed with the previous activity resuming.

Specifically, the screen navigations in our application will be controlled by different
activities bound with each other with different views as their contents. Each time the
user press a button defined in the view for navigation, the new activity is brought to
focus and its view is displayed. This always causes some causal order of the screen. For
example, pressing Next button in view one allows user continues to view two and later if
he wants to switch to view three, he has to press the Next button in view two.
Meanwhile, there is no way that he can go directly from view one to view three, despite
of the reason why he would do so. The reason why this happens is because the activities
are logically chained or cycled without a centralized activity having access to all of them.
Therefore, our first step of designing the activity lifecycles is to split TCR in several
sections with a main activity that can navigate to all of them. The following figure shows

the relationship among these screens.

‘A\\ e
- o

Crash Diagram

At the early stages of our design, quite a number of discussions are surrounding the
topic of crash diagram. Different from human’s habit of using a pen for drawing, free
sketching on a tablet doesn’t give us a relatively good appearance. Meanwhile, this kind
of free sketching doesn’t actually reduce the process time and workload for users.
Moreover, distinct drawing styles of different users leads to inconsistent appearance
even with the same object. The practical results in past TCRs have reflected this fact.
Therefore, we are left only two choices, to make use of existing map application for
capturing our road picture and draw our own template objects on it or to provide the
road template ourselves as well. After a few attempts of the former approach, we
conclude that it is difficult to embed a third party map application in our own especially
when it’s not open source. Meanwhile, although Android supports map view that
embeds GoogleMap, the zoom level is not enough for our purpose. This leads to the
adoption of second consideration in which we make our own templates for different
types of roads as well as objects. This is a significantly challenging task because we have
to implement our own methods of handling touch events such as selecting, dragging,
rotating and zooming. Also, a lot of geometric computations as well as algorithms need

to be implemented to distinguish and to perform these operations.

Data Field Priority

After we have obtained the initial blueprint for our project, the next step is to define
priorities of data fields. Clearly, there are a couple of fields which are usually not filled or
used in current TCR and a few fields that are extremely important. The statistical results
from NZTA give us the clue which fields can be discarded and which must be enforced.
Also, during the meetings with stakeholders, the decision of abandoning some fields as

well as adding extra fields is made. Enforcements on accuracy of several fields are also

stressed. By then, the amounts of data to be captured as well as their priorities in TCR

are well defined and the requirement is mostly confirmed.

Two Design Alternatives

The previous discussions imply that we have not only one design option of how to
implement TCR in our mobile application. Here we introduce two design alternatives
that we found feasible during research. Although both approaches involve form filling,

the way how application interacts with users significantly differs.

Screen Navigation Based

A direct way of interpreting current TCR in our mobile application is to let the users
navigate among screens with each screen containing corresponding view that matches
the original form. This is done by using simple logic on buttons in each view to switch
among activities. Also, as an optimization mentioned before, a main activity can be
provided as the central navigator so that the structure is no longer a ring topology but a
star topology. Even better, an Android menu can be implemented together to make it a
mesh topology. In this case, the user can have several routines to choose from and can
switch to any other routine at any time rather than to strictly follow a single routine.
This approach might be preferred by most police as it preserves the basic manner of
users while filling such forms, that is, to go from section to section. However, it appears
to be unattractive and still has some problems. Firstly, although the logical order of
completing different sections can vary, the information of each section must be filled in
sequence, that is, the user still has to follow a specific routine within a section
containing several screens even if an Android menu is provided, because each section
must have a fixed start screen and we cannot use menu for all these sub-screens. For
instance, although not exactly the case, while filling information for vehicles and drivers,
the user always has to go from first to last. The factor that causes this behavior is the
way we implement our model for storing vehicle and driver objects. These objects are

stored in collections such as Arraylists so that whenever user wants to add one, a new

instance is initialized and given the last index of collection as its ID as well as its position
in the collection. This process predefines the ID for these objects which thus follows a
numerical order. Even though this behavior can be solved by letting users enter ID
themselves, it doesn’t conform to the basic principle of this project, which is, to make
the application as much responsible as possible for maintaining data consistency. Also,
storing vehicle and driver information in separated collections doesn’t result in solid
relationship between them as the only way we can associate a driver with a vehicle is to
compare their respective index in the collection. This can cause serious problem if the
user wants to perform deletion when the operation is not correctly implemented. At last,
it is difficult for users to identify the corresponding information of a vehicle later when
they start to draw it on crash diagram. It sometimes causes mismatch between vehicle
information and crash diagram which brings a lot of trouble for NZTA. With all these
disadvantages, we look for a solution that can mostly solve these problems. This leads

us to the second approach, which is graphic based.

Graphical User Interface (GUI) Based

Regardless of how we build our application, the users always need to complete forms at
some stage of recording process. Yet, we can change the way how users interact with
the application by importing a GUI as the basis for entering all information. The concept
will be explained step by step. First, the application starts with a GUI which requires the
drawing of crash diagram that imaginarily describe the crash. After the user has finished
drawing, he can start filling in the according information. The following figure shows a

complete diagram at this point.

Now since everything has been lain down, the user can start entering information. The

way how we achieve recording of vehicle information is by popping up a dialog when
use clicks on a vehicle. The dialog is basically a form that contains all relative data fields.
To solve the driver and vehicle mismatch problem, we decided to put vehicle and driver
information altogether in a same scrollable dialog. Therefore, the user will know exactly
which driver and vehicle he’s dealing with and never be able to get it wrong. However
changing view without modifying our model cannot solve the problem as vehicle and
driver objects are still different objects. Therefore, we decided to merge our driver
object into vehicle object so that a vehicle will be a composition of driver object. By
compositing the driver object in its corresponding vehicle object, each vehicle will have
its own driver which results in indivisible relationship between them. The screenshot of

the pop-up dialog is shown below.

ing: _Make & Model:

ear: _WOF or COF: “Expiry DEYCH

Speed Before Crash: km/h Too Fast:
Passengers: Front: Rear: Other: Damage Severity:

Damage Location

With this approach, user still can enter information for other sections using the menu
we provided while the order of entering information for vehicles is completely flexible.
Each section will also be displayed as a pop-up dialog that located upon the crash
diagram. This intuitive design provides user more control over the application which at
the same time could result in unawareness of what has been done and what needs to be
done. As a result, the freedom of manipulating the application without specified routine
can make user forget to enter part of the information. Suppose a crash involving five
vehicles, the user normally will click on vehicles in a random order to process. Since we
combine vehicle and driver information altogether, there will be quite an amount of
information for each vehicle. Therefore, after filling information for several vehicles, the
user could end up with forgetting to record information for the remaining ones. To
avoid this, we need to provide a reminder telling the user whenever there is information
that has not been filled. User preference is another issue that we currently cannot
locate. As we didn’t take surveys of users’ preferences for process TCR, we cannot

conclude that this new approach will be well adopted.

XML Schema

Since our application design phase has almost come to an end, it is about time for us to
think about how to define a schema for our documents. The primary advantage of
schema languages is that descriptions in schema languages are more precise than those
in prose and that we can rely on validators rather than carrying out human inspections
[5]. There are several schema languages that have been proposed in the past, for
instance, DTD and W3C XML Schema. The reason why we prefer XML Schema than DTD
is because it aims to be more expressive than DTD and more usable by a wider variety of
applications [4]. An XML schema is a description of a type of XML document, typically
expressed in terms of constraints on the structure and content of documents of that
type, above and beyond the basic syntactical constraints imposed by XML itself [9].
Therefore, a given document can be checked against the constraints to determine
whether it is valid or not. In our project, the use of XML language is essential as it not
only consolidates data consistency but also provides a human readable description of

the captured data.

Progress

Through this semester, two meetings with stakeholders as well as several regular
project meetings are held. The requirement is confirmed at early of the semester and
right after than we start our design of the application. Junction and roundabout road
templates have been developed. The user can select the according road type with the
number of roads specified and the road is automatically drawn on the screen. Currently,
only dragging has been implemented on the roads so that user can drag a road to any
angle they want. In the future some additional feature such as rotating and zooming
might be implemented. Also, a couple of object templates are created. They include
vehicles, arrows and crash spots. Note that they are currently represented with simple

shapes which will be changed to icons in the future. As mentioned by Wilding [3], Icons

can make an interface visually more interesting and are appropriate when they
communicate better than text. Besides, we have started defining the XML Schema for

our data structure.

Conclusion

Although current crash diagram looks pretty simple and the templates are still not
completed. A series of improvements on both functionality and appearance will be
achieved in the future. The problems encountered during implementation enhance my

experience on user interface design and Android programming.

Future Plan

The first delivery of the prototype will take place in one mouth’s time. By then, a
workable application will be built and it will be capable of captured all required
information. The information will be parsed into XML files which satisfy the XML Schema

we define. This XML file is then sent out by email.

Road Templates

All types of road templates will be finished up with the functions that allows user to
move around or rotate the whole template within screen, drag separated roads and

possibly zoom it.

Other Templates

All objects will be split into four categories which are roads, vehicle, lines and others. In
this way, the whole interface functions as a toolkit which allows user to select

associated objects to draw from pop-up dialogs in these categories. Also icons will be

used as much as possible as a replacement of current simple shapes in order to provide
a better appearance. Dragging and rotating on these objects will also be available by

then.

Forms

All views of forms will be completed in a clean manner so that it is easy for user to fill in.

Also data will be captured and stored so that they can be represented later for revision.

Geo-location

Although geo-location can be easily obtained, special algorithm needs to be
implemented to ensure a more accurate result. Also we need to find a method to let use

manually correct the position of the Overlayltem on GoogleMap.

Reference

[1]Android Developers. Activities. Retrieved June 2, 2012, from

http://developer.android.com/guide/topics/fundamentals/activities.html

[2]Android Developers. Application Fundamentals. Retrieved June 2, 2012, from

http://developer.android.com/guide/topics/fundamentals.html

[3]Cliff Wilding. 1998. Practical GUI screen design: making it usable. In CHI 98 conference
summary on Human factors in computing systems (CHI '98). ACM, New York, NY, USA,
125-126.

[4]Dongwon Lee and Wesley W. Chu. 2000. Comparative analysis of six XML schema
languages. SIGMOD Rec. 29, 3 (September 2000), 76-87.

http://developer.android.com/guide/topics/fundamentals/activities.html
http://developer.android.com/guide/topics/fundamentals.html

[5]Makoto Murata, Dongwon Lee, Murali Mani, and Kohsuke Kawaguchi. 2005.
Taxonomy of XML schema languages using formal language theory. ACM Trans. Internet

Technol. 5, 4 (November 2005), 660-704.

[6]Mohsen Anvaari and Slinger Jansen. 2010. Evaluating architectural openness in
mobile software platforms. In Proceedings of the Fourth European Conference on
Software Architecture: Companion Volume (ECSA '10), Carlos E. Cuesta (Ed.). ACM, New
York, NY, USA, 85-92

[7INZTA. 2009. NZ Transport Agency. Retrieved June 2, 2012, from

http://www.nzta.govt.nz/

[8]Wikimedia Foundation, Inc. 2001. XML. Retrieved June 2, 2012, from

http://en.wikipedia.org/wiki/XML

[9]Wikimedia Foundation, Inc. 2004. XML schema. Retrieved June 2, 2012, from

http://en.wikipedia.org/wiki/XML schema

http://www.nzta.govt.nz/
http://en.wikipedia.org/wiki/XML
http://en.wikipedia.org/wiki/XML_schema

