Kiwiplan Framework and Sorting Filter

Prabhjot Singh Jassal
Department of Computer Science
University of Auckland

July 20, 2010

1 Framework

Kiwiplan framework uses many design patterns to
minimize the code duplication. Design patterns are par-
ticularly useful when designing large size applications.
Designing large size application requires considering
issues that may not be visible until later in the im-
plementation. Using design patterns helps preventing
many problems. One of the pattern being used in the
Kiwiplan framework is Model-View-Controller (MVC)
pattern. This pattern separates the logic in 3 different
parts, where wview keeps track of how to display the
information, controller keeps track of the mouse and
keyboard inputs from the user, and model manages the
data and behaviour of the application domain. This
pattern is particularly useful for large size applications.

One of the biggest advantage of using this pattern
is that, it allows us to represent data in various forms
independent of how the data is being stored. The
view component takes care of this and also allow the
user to act on that data. No real processing is being
done on this component. On the other hand, most of
the processing is being done on the model component.
This componet stores all the business rules. The model
component helps in reducing code duplication because
the data returned by the model is neutral to how it
will be displayed on GUI. This allows us to reuse the
same model for different views. Lastly, the controller
componenet sits in the middle of other two components.
No real processing is being done on this component
controller interprets mouse click or keyboard input from
the user and calls necessary methods of view and model
component to get the desired result. For example, if
the user clicks on some button on the interface, then
instead of doing the actual processing, it simply decides
which model component needs to be called and how the
resulted data will be formated.

Another pattern being used in the framework is
the Singleton pattern. This pattern ensures that a
class has only one instance and provides a global access
to it. This pattern is useful when most of the time
is being used in creating a different instances of the
same class. Object creation takes time and slows down
the performance of the whole application. Instead of
creating a seperate object everytime, it is better to use
mutator methods to set the values of the variable. This
saves time by not creating unwanted objects and hence
improves the performance of the whole application.

Following diagram shows the basic structure of the
framework

TableModel
Filter

/ "\.

|

AbstractTableModelFilter

.h.

T

DefaultTable CachingTable| |RefiectiveTable| |ExpressionTable| | RowMappingTable| | GroupingTable
ModelFilter ModelFilter ModelFilter ModelFilter ModelFilter ModelFilter
."‘"'\
SortingTable CriteriaTable
ModelFilter ModelFilter

Figure 1: UML Class Diagram of TableModelFilter class
hierarchy

The two immediate filter that have been
investigated are SortingTableModelFilter and
CriteriaTableModelFilter. Both of these filters have been
briefly discussed in the next section.

2 Sorting Filter

Whenever the user clicks on the column header, the
column items gets sorted. The first time user clicks on
the header, the items will become sorted in an ascending
order. Second click on the column header results the
items to be sorted in descending order. Every time user
clicks on the column header will result the items to be
alternate between ascending and descending order.

Each row on the interface represents omne record.
This record represents some Business object of some
type. A business object is a '"reification of some
abstraction that is important in the problem domain".
As mentioned, in the mid-semester report that the
sorting is being done on the mapping of the instances
of business object rather than on the actual data itself.
The following figure make things more clear:

Name Mappings Name
Joe LBV(3) 1mapsto3 | _gV(1) Bob
Fred) 2 maps to 2 K Fred
Bob “Bob” | 3mapsto1l “Bob” | Joe
Mary i 4 maps to 4 | Mary

Figure 2: Demonstration of Sorting Mechanism

Thus, to display the first element in the sorted
list, getValueAt(1) (gV is its abbreviation) will be called.
This method then checks in the mapping that which
position does 1 maps to. In our example, it maps to 3
and hence, the call getValueAt(8) has been made. This
returns "Bob" to the filter, which returns it back to the
view to display it on GUIL.

2.1 Sort Algorithm

Algorithm 1 Shuttle Sort pseudocode

shuttleSort(arrayl, array2, low, high)
if (high — low) == 1 then
return
else
middle = (low + high) / 2
//please note the arrays have been swapped
shuttleSort(array2, arrayl, 0, middle)
shuttleSort(array2, arrayl, middle, high)
/ /merge step
if maz(arrayl) < min(array2) then
concatenate arrayl and array?2
else
merge both arrays by comparing one element at a
time
end if
end if

Shuttle sort has been used to sort the elements.
Shuttle sort is based on Divide and Conquer strategy
and is a variation of standard Merge sort algorithm.
The time when the framework was getting developed, it
was decided to use Shuttlesort ahead of Quicksort, even
though Quicksort runs faster. This is because Shuttlesort
is stable, while Quicksort is not'. It is easy to understand
by the following example, as to why the stable sort is
necessary. Let’s say that if the list contains these two
rows:

Name Age
Bob 35
Bob 50

Figure 3: Demonstration of Sorting Mechanism

Let’s say, the user has already sorted the table
according to the "Age" column. Now, the user also
wants to sort the table according to the "Name" column.

1Quicksort can be made stable by keeping track of the indexes
of the items having equal value. However, this project is not
just about sorting, that is why, the shuttle sort itself became
parallelized.

If the sorting algorithm is not stable, then the ordering
of the two rows could be changed. Hence, it is important
for an algorithm to be stable. Since, shuttle sort is just
a variation of merge sort, their time-complexities are
same ©(n - log(n)).

The algorithm makes two recursive calls and divides
the array in two halves. It is easier to parallelize recursive
methods, because each array can be sorted independently
of other. The fork/join framework introduced in
Java 7 especially makes the parallel programming of
"Recursive" algorithms easier To parallelise shuttle sort
algorithm, the class needs to extends a predefined class
class RecursiveAction. There is another class which
can be extended, is RecursiveTask. One should extend
RecursiveTask if the method returns some value. For
example, if we would have been interested in parallelising
a method which returns the maximum of the given array,
then our class should extend RecursiveTask. On the
other hand, if the method does not return any value,
as is the case with our sorting algorithm, then we
should extend RecursiveAction class. Whether we extend
RecursiveAction or RecursiveTask, the abstract method
compute() needs to be implemented. Basically, the whole
sequential code for the sorting will go in this method with
slight modifications. The method invokeAll will be used
which basically tells thread, that "get up and work on
this partition of the array”.

Algorithm 2 Shuttle Sort in parallel pseudocode

class ShuttleSort extends RecursiveAction
compute()
if (high — low) == 1 then
return
else
middle = (low + high) / 2
/ /please note the arrays have been swapped
invokeAll(new ShuttleSort(array2, arrayl, 0, mid-
dle), new ShuttleSort(array2, arrayl, middle, high))
/ /merge step
if maz(arrayl) < min(array2) then
concatenate arrayl and array?2
else
merge both arrays by comparing one element at a
time
end if
end if

There is also another way which can be used to sort
the elements in parallel. Java 7 has also introduced a new
data structure called ParallelArray. This data structure
has an inbuilt sort() method, which does the sorting in
parallel. However, to use this class, one needs to have
an actual data. In our case, instead of having an actual
data, mappings to the data have been used, that’s why
we stick to the standard invokeAll() method.

3 RowVisibility Filter

Imagine the record of all computer science students is
displayed on GUI. The staff member might be interested

in displaying only those students whose have achieved an
average gpa of 7 and above. Basically, in the background
we are checking one by one that whether the student has
fullfiled the required criteria or not. If yes, then display
it on GUI otherwise discard it. Since, the decision of
keeping one row is independent of another rows, this can
be done in parallel.

