
Parallelising Kiwiplan GUI 
Framework

Mid Semester Presentation

Student – Prabhjot Singh



Overview

• Introduction

• Requirements

• Filter Details

• Parallelising basic filters

• Questions



Introduction

• Kiwiplan displays the information to users in
the form of tables. User can customize the
tables as per their requirements.

• When the user makes some operation on GUI,
the data goes through certain sequence of
filters.



Introduction

• Each filter does one particular task. Some of the
common filters are sorting filters, grouping filters.

• There are around 40 different filters and each 
filter is independent of other filters.

• For some operations, the data goes through a
series of filters. The order of filters are important
to get the desired output.



Requirements

• All of the algorithms inside filters are being coded
normally (Sequential programming).

• Due to the increasing size of tables, some of the
operations take too long to complete and hence
slows down GUI.

• Requirement is to investigate what steps of the
algorithms can be done parallely. That can lead to
enormous speed ups.



Surprising Results

• In one of my other paper CS773 we were
given 500 pairs of images and had to
implement stereo matching algorithm.

• The sequential algorithm took 12500 seconds
(3h 28m 20 sec) to run while when the same
algorithm implemented parallely it took only
750 seconds (0h 12m 30 sec).



Filter Details

• One of the most basic filter is the Sorting 
Filter.

• Shuttle sort is used to do the Sorting. It is a 
recursive algorithm.

• Sorts the items in a very similar way as Quick 
sort does, but shuttle sort is in-stable.



Sorting Filter

• Since Shuttle sort is based on divide-and-
conquer nature, it can easily be parallelized.

• However, it is little bit better to sort the items
using Quick sort and can be made stable
depending on how the pivot is being handled.

• Sequential Quick sort is faster than Shuttle
sort.



Sorting Filter

• Parallelising Quick sort does not require any
synchronization. New thread starts as soon as a
sub list is available.

• One thread works independently of other threads
and does not need to communicate with others.

• Experimental results shown that parallelised
version of Quick sort is indeed very efficient and 
can possibly replace Shuttle sort.



Other Filters

• Some of the other filters like Grouping filters,
user expression validation filters algorithms
also have some steps in which parallel
programming can be used.

• Grand total filters does the task of computing
the addition of various items. Again this is
something which can be parallelised as well.



Current Status

• Hand in the Project plan to Hao.

• Decided the scope of the project.

• Finished reading some of the key concepts in parallel 
programming.

• Wrote couple of basic programs in parallel to see how 
much efficiency difference can be made. 

• Did some research on the features introduced in Java 7.



Future Plan

• Immediate future plan is to parallelise the basic filters 
first. 

• Plan is to make a standalone application which works 
independent of Kiwiplan Framework. 

• Integrate them with the existing Kiwiplan products and 
thoroughly test it.

• Explore the new features of parallel computing in more 
detail introduced in Java 7.



Conclusion

• The progress is quite slow, but expected to speed up during 
holidays.

• Some experiments showed positive signs and it is indeed 
better to incorporate the features of parallel programming.

• Sticking to simple requirements makes the project more 
manageable.

• Parallel programming seems to be the future of 
programming.



Questions?


