Parallelising Kiwiplan Framework

Prabhjot Singh Jassal
ID: 3666860
Email: pjas002@aucklanduni.ac.nz

ABSTRACT

Nowadays most of the computers are coming with multi cores.
However, if the programmer wants to make their program
efficient by making use of different cores, then they need to
program in a different manner. Most of the computation
intensive tasks are being done underlying Kiwiplan Framwork.
Each task is separated into filters and each filter algorithm runs
sequentially. Kiwiplan interested in investigating how much
efficiency could be increased by making the filters algorithm
parallel, wherever possible.

I. INTRODUCTION

From the last two decades or so enormous research has been
made to solve the computational intensive problems more
efficiently. To do this computers have evolved a lot. The clock
speed of the computer is the frequency of a processor to execute
instructions. Initially, in 1970°s computers with a clock speed of
200 MHz started to come. The first sudden jump came in 2000
when Pentium introduced Intel 4 processor computer with an
initial clock speed of 1.5GHz [5]. From then on there has been
gradual increase in the clock speed, which allows programmers
to solve problems more efficiently. However, there is a limit to
which the clock speed can be increased as mentioned by Herb
Sutter in one of the most famous publications, “The Free Lunch
Is Over”, in the field of concurrency [3]. Now days most of the
computers have more than one core. However, if the
programmer writes the code in a sequential manner then multi-
core machine takes same amount of time to solve the given task
as singe code machine does. To solve important computational
intensive problems programmer needs to write their code in a
special way which makes use of the different cores of the
computer.

For more scientific and computer intensive tasks, parallel
computing has traditionally been employed with great success.
For example, design of airfoils, high-speed circuits, design of
micro-electromechanical [4].

The term concurrency is used where multiple computations are
executing simultaneously. Depending on the problem the
subtasks might need to interact with each other. The process of
solving multiple computations simultaneously can be achieved
by using multiple cores in the computer, where each core is
doing a subset of whole computation. There exist many
problems which cannot be solved efficiently without the use of
concurrency. For example, in image processing the color space
conversion and quantization are computationally intensive and

impractical to solve in sequential manner. There also exists
many problems which cannot be solved efficiently even with the
help of multiple cores. These problems are known to be in NP.
The famous NP-complete problem, decision problem of
Hamiltonian cycle, needs to check all permutations of n, where n
is order of the graph, in the worst case, to decide whether the
graph has a Hamiltonian Cycle or not. Even for a small graph of
20 nodes, the computer with around 10 million cores is needed
to solve the problem efficiently and the probability of having a
computer with these many cores is very minute yet.

Parallel programming is mainly of three types. This division is
mainly termed as multiple cores vs many cores. In multiple
cores, the code can be run in parallel by making use of the
multiple cores of the computer. In many cores programming, an
external device such as Graphics Card is used. Graphics card
usually contains many more cores than the standard computer.
However, it is just limited for the numerical computations only
and cannot do anything for the tasks running in the background.
Third type is known as cloud computing. In cloud computing,
many computers are joined together to do the computations. Big
companies like Amazon, Google etc. use this to keep their
servers efficient even when millions of people are using them at
the same time.

Due to the increasing requirements of making programs
efficient, most of the popular programming languages like C++,
Java, C# etc. provided the in-built library. The libraries make it
easier for programmer to write the code using multiple cores of
the computer. In this report, only the Java concurrency library
will be discussed.

The report is structured as follows; in section 2, brief
introduction of the company with which this project is
collaborated is mentioned. In section 3, the scope of the project
is being discussed. In section 4, 5 and 6 discusses the project
goal and scope. Section 7 discusses the filters and framework of
Kiwiplan. The framework introduction is very brief.

1. ABOUT THE COMPANY

Kiwiplan NZ Limited.

Level 3, BDO House

116 Harris Road

East Tamaki

PO Box 58-456, Botany, East Tamaki
Auckland, New Zealand


mailto:pjas002@aucklanduni.ac.nz

Phone: (09) 272 7622
Fax: (09) 272 7621
Web: www.kiwiplan.com

About Kiwiplan

Kiwiplan is a software development company that services the
corrugating and packaging industries. Typical customers include
firms that produce corrugated cardboard products such as boxes,
display stands, and other packaging products.

Kiwiplan started business in 1970’s as a small corrugating firm.
As their throughput increased they developed computer systems
to help them keep up with demand. There was considerable
interest from other packaging companies in these computerised
systems, and the IT department grew and eventually separated
from the box plant division.

With over three decades of expertise in developing innovative
software for the corrugated and packaging industry, Kiwiplan
delivers the total solution for all of your software and
Manufacturing Execution System needs.

Kiwiplan is now one of the world’s leading software suppliers to
the packaging industry. They have customers in 28 countries. All
research and development work is done from the New Zealand
offices at East Tamaki, Auckland.

Kiwiplan’s product range covers the entire business process for a
packaging firm, from order entry to shipping. The core products
relate to controlling the plant and scheduling the corrugating
machinery.

I11. Scope OF THE PROJECT

Kiwiplan displays the information to the user in the form of
tables. They are being termed as flexible tables as users can
customize it according to their requirements. Some of the
common operations which user can do are sorting, grouping,
validating user expression, add/remove columns etc. When user
does some operation, the query goes through the sequence of
filters where each filter works independently of others and does
one task only.

Due to the increasing size of the tables, some of the operations
takes too long to complete and hence freezes the GUI. This
whole application is written in Java and Kiwiplan interested in
knowing how the efficiency of the filters can be increased by
making the filter (in general framework) run in parallel.
Particularly, this needs to be done by using the features
introduced in the most recent version of Java ie. Java 7. Hence,
the primary goal of the project is to identify the bottleneck in the
application and make it run in parallel. Similarly, other filters
needs to be run in parallel, if possible. Most of the code which
can be converted to parallel code requires some of its part to run
in sequential order. So, careful investigation of the code is
needed to see whether a particular filter can be parallelized or
not and if yes, then what parts need to be run in parallel and
sequential order. So, the objective is to develop a system and

integrate it with Kiwiplan GUI application which produces the
same output for same input, but with increased performance.
Second goal of the project is to investigate how other
applications (products) of Kiwiplan can get benefit from it.

There exist many open source libraries made by 3™ party which
makes the parallel programming easier. However, company
requirement is to use standard java libraries only.

1V. PROJECT GOAL

The aim of the project is to develop an application that is

e Scalable — For example, the code should be written in
such a manner which works in a same way for four
cores computers and eight cores computers. The code
should be able to figure out itself how many cores there
are in the computer and use them as necessary. The
fork-join framework, introduced in Java 7, takes care of
this issue.

o Workable with Business Object — This is one of the
most important requirements of the project. Business
object is any object that represents something of
importance from the real world. Formally, a business
object is a “reification of some abstraction that is
important in the problem domain”.

e Easy to integrate with the Kiwiplan Products —
Initially, the code will be written as a standalone
application i.e. does not depend on the Kiwiplan GUI
framework. However, it should be written in such a
way that makes it easy to integrate with the existing
Kiwiplan Products.

e Works with the maps — This is also one of the most
important goals. The GUI object does not hold the
actual records but the mapping to the records. When
certain operation is being done, the computations are
being done not on the actual data but on the mappings
to the data.

e Explore Java 7 capabilities — Though the whole code
is written in Java, but in Java 5 and 6, programmer
explicitly needs to construct the threads and allocate
work to them. However, this is not required to be done
in Java 7. Sun’s has released the beta version of Java 7
and will be releasing the final version in September this
year. However, all the updates they wanted to introduce
for the concurrency has already been included in the
beta version. Java 7 made the parallel programming
even more easier because programmers need not to
construct threads and allocate work to them explicitly.
The fork-join framework introduced in Java 7, has
predefined functions which does the thread work
automatically for the programmer.


http://www.kiwiplan.com/

V. WHAT | HOPE TO GAIN

e Skills in analysis and design — To finish the project
well, the existing code needs to be examined carefully
to see which filters can be parallelized and then what
steps of those algorithms can be run in parallel. Of
course, each task can be decomposed in many ways
hence, the benefits of each decomposition method
needs to the evaluated.

e Practical experience with the software design — Most
of the projects | worked on are small projects. But this
project is big and will be developed through each of the
stages, from requirements to implementation.

e Increase programming skills — Writing parallel code
requires more insight to the problem than solving the
same problem in a sequential order. This project
involves the conversion of sequential code to parallel
code and hence, will improve my programming skills.

e Learning new technologies — Java 7 is one of the latest
technologies and this project requires using their feature
in detail. There will be many more features going to be
introduced in Java 8 concurrency library e.g. use of
closures. Learning new technology is always important
and enables programmer to concentrate more on design
issue and less emphasis on the implementation.

VI. FILTERS

Filters are bit low level details of the framework. The main
framework is divided into 3 layers.

1) Data Management
This layer retrieves the data from the back-end database and
populates the Java business objects.

2) Report Processing
This is where the main computation happens. This layer will be
the main focus since the goal is to parallelize the computational
intensive tasks.

3) Presentation
Once all the required computations are done, output needs to be
displayed on GUI. Making this layer more abstract, output can
be sent to GUI, to a web based application, or to some other
format such as printing, emailing etc.

The following diagram shows the 3 layers in a systematic
manner.

Presentation

Data Management

Processing

Figure 1 — 3 Main Layers [1]

Kiwiplan uses lots of important design patterns to manage their
code. One of the important one is Model-View-Controller
(MVC) pattern. In this pattern, the implementation is divided
into 3 main parts. In Model part, only the data is kept. View part
tells how to use the whole/portion of data. Controller part takes
care of any event got fired by the user for example, by clicking
button etc.

Kiwiplan termed the second layer (figure 1), Processing, as
“Table Model Filter” (I will use filters from now on). Each filter
works independently of others and does one specific task. Most
of the operations performed by the user on GUI go through
certain sequence of filters known as pipeline. Each filter receives
the data from the previous filter in the pipeline, do some
processing and pass the resulting data to the next filter.

Sorting Filter

There exist many sorting algorithms. The sorting filter
implements a shuttle sort algorithm. Shuttle sort is based on
divide and conquer strategy and is a variation of merge sort and
stable as well [2]. However, there are two important changes.

e List Cloned — Instead of creating a temporary list for
every merge operation and copying the values back to
the original list, the list gets cloned at the beginning.
Values are then shuttled between the original and
cloned list. At each recursive step, the values get shuttle
between the two copies and at the end the final values
are in the original list.

e Performance — Shuttle sort increases the performance
of the merge operation. Before merging one by one,
algorithm checks whether the maximum value of the
first list is less than the minimum value of the second
list or not. If it is, both the lists concatenated together
otherwise they merged in a same way as the merge sort.



Shuttle sort algorithm is as follows:
The ShuttleSort algorithm is as follows [1]:

shuttleSort (arrayl, array2, end) {

if (end - start < 2)

start,
return

// divide and conquer note that

// arrays are swapped around

middle = (start + end) / 2

shuttleSort (array2,arrayl, start,
middle)

shuttleSort (array2,arrayl,middle,
end)

if (max (arrayl[start..middle]) <
min (arrayl [middle..high])) {

copy arrayl[start...high] to
array?2

else {
merge arrayl[start...middle]
and arrayl[middle...end] into
array?2

}

Shuttle sort has a time complexity of O(nIn(n)). Besides having
little bit inefficient than famous Quicksort in practice, shuttle
sort has been chosen because it is in-stable in nature. However,
with slight modification in Quicksort algorithm, it can become
in-stable as well. This is one of scenario where efficiency could
be increased even though the algorithm still runs sequentially.

These types of algorithms can easily be parallelized. Most of the
algorithms usually decomposed by four techniques, namely,
recursive decomposition, data decomposition, exploratory
decomposition and speculative decomposition [4]. Recursive
decomposition is used for problems than can be solved using
divide-and-conquer strategy. Since shuttle sort is based on this
strategy, recursive decomposition technique can be used to solve
it.

Grouping Filter

The previous filter was an example where pipeline contains one
filter only. In most of the cases this is not true. Operation such as
“group the records based on some criteria” requires two filters.
Initially, the sorting filter sorts the list according to the column
we are interested in. Then the grouping filter scans the desired
column and starts a new group each time the column value
changes. A grouping filter itself groups according to a single
column; however multiple levels of grouping can be obtained by
adding more grouping filters in the pipeline.

Again, this is one of the scenarios where parallel programming.
This task can be decomposed by data decomposition technique.

VII. CONCLUSION

Some of the common filters have been explained in the report. In
particular, sorting algorithms have been discussed. As
mentioned, sorting algorithms are the place where actual
bottleneck does not likely to exists. However, due to its
simplicity it is a good place to start working. The Kiwiplan GUI
framework is also been discussed in some detailed. To
write/modify any part, programmer should have a sound
knowledge of framework structure. Some of the features
introduced in Java 7 have also been discussed. These features
helps programmer to focus more on the high level design part
and leaves the low level details to the operating system or
predefined functions. In particular, the parallel array data
structure is very simple to use and saves lot of programmer’s
effort.

VIIIl. FUTURE WORK

Lot of work and effort is required to complete the project well.
Concurrent programming is still new to me and I don’t have
much experience with the predefined libraries. Firstly, | need to
get a good knowledge of the framework and see how everything
relates together. Secondly, | need to investigate which filters
algorithm can be parallelized and find the bottleneck of the
program. Thirdly, new features introduced by Java 7 and the
fork-join framework needs to be learned as well.

IX. REFERENCES

[1] Timothy Paul Walker, B.Tech final report, ‘“Kiwiplan
Reporting Tool”.

[2] Dinneen, M., Gimel’farb G., Wilson M., “Introduction to
Algorithms, Data Structures and Formal Languages”.

[3] Sutter H., “The Free Lunch Is Over”, Dr. Dobb’s Journal,
30(3), March 2005.

[4] Grama A., Gupta A., Karypis G., Kumar V., “Introduction to
Parallel Computing” second edition, 2003.

[5] Clock speed - http://www.intel.com/technology/timeline.pdf,
retrieved on 5" June, 2010.



http://www.intel.com/technology/timeline.pdf

