

Parallelising Kiwiplan Framework

Prabhjot Singh Jassal

ID: 3666860

Email: pjas002@aucklanduni.ac.nz

 ABSTRACT

Nowadays most of the computers are coming with multi cores.

However, if the programmer wants to make their program

efficient by making use of different cores, then they need to

program in a different manner. Most of the computation

intensive tasks are being done underlying Kiwiplan Framwork.

Each task is separated into filters and each filter algorithm runs

sequentially. Kiwiplan interested in investigating how much

efficiency could be increased by making the filters algorithm

parallel, wherever possible.

I. INTRODUCTION

From the last two decades or so enormous research has been

made to solve the computational intensive problems more

efficiently. To do this computers have evolved a lot. The clock

speed of the computer is the frequency of a processor to execute

instructions. Initially, in 1970’s computers with a clock speed of

200 MHz started to come. The first sudden jump came in 2000

when Pentium introduced Intel 4 processor computer with an

initial clock speed of 1.5GHz [5]. From then on there has been

gradual increase in the clock speed, which allows programmers

to solve problems more efficiently. However, there is a limit to

which the clock speed can be increased as mentioned by Herb

Sutter in one of the most famous publications, “The Free Lunch

Is Over”, in the field of concurrency [3]. Now days most of the

computers have more than one core. However, if the

programmer writes the code in a sequential manner then multi-

core machine takes same amount of time to solve the given task

as singe code machine does. To solve important computational

intensive problems programmer needs to write their code in a

special way which makes use of the different cores of the

computer.

For more scientific and computer intensive tasks, parallel

computing has traditionally been employed with great success.

For example, design of airfoils, high-speed circuits, design of

micro-electromechanical [4].

The term concurrency is used where multiple computations are

executing simultaneously. Depending on the problem the

subtasks might need to interact with each other. The process of

solving multiple computations simultaneously can be achieved

by using multiple cores in the computer, where each core is

doing a subset of whole computation. There exist many

problems which cannot be solved efficiently without the use of

concurrency. For example, in image processing the color space

conversion and quantization are computationally intensive and

impractical to solve in sequential manner. There also exists

many problems which cannot be solved efficiently even with the

help of multiple cores. These problems are known to be in NP.

The famous NP-complete problem, decision problem of

Hamiltonian cycle, needs to check all permutations of n, where n

is order of the graph, in the worst case, to decide whether the

graph has a Hamiltonian Cycle or not. Even for a small graph of

20 nodes, the computer with around 10 million cores is needed

to solve the problem efficiently and the probability of having a

computer with these many cores is very minute yet.

Parallel programming is mainly of three types. This division is

mainly termed as multiple cores vs many cores. In multiple

cores, the code can be run in parallel by making use of the

multiple cores of the computer. In many cores programming, an

external device such as Graphics Card is used. Graphics card

usually contains many more cores than the standard computer.

However, it is just limited for the numerical computations only

and cannot do anything for the tasks running in the background.

Third type is known as cloud computing. In cloud computing,

many computers are joined together to do the computations. Big

companies like Amazon, Google etc. use this to keep their

servers efficient even when millions of people are using them at

the same time.

Due to the increasing requirements of making programs

efficient, most of the popular programming languages like C++,

Java, C# etc. provided the in-built library. The libraries make it

easier for programmer to write the code using multiple cores of

the computer. In this report, only the Java concurrency library

will be discussed.

The report is structured as follows; in section 2, brief

introduction of the company with which this project is

collaborated is mentioned. In section 3, the scope of the project

is being discussed. In section 4, 5 and 6 discusses the project

goal and scope. Section 7 discusses the filters and framework of

Kiwiplan. The framework introduction is very brief.

II. ABOUT THE COMPANY

Kiwiplan NZ Limited.

Level 3, BDO House

116 Harris Road

East Tamaki

PO Box 58-456, Botany, East Tamaki

Auckland, New Zealand

mailto:pjas002@aucklanduni.ac.nz

Phone: (09) 272 7622

Fax: (09) 272 7621

Web: www.kiwiplan.com

About Kiwiplan

Kiwiplan is a software development company that services the

corrugating and packaging industries. Typical customers include

firms that produce corrugated cardboard products such as boxes,

display stands, and other packaging products.

Kiwiplan started business in 1970’s as a small corrugating firm.

As their throughput increased they developed computer systems

to help them keep up with demand. There was considerable

interest from other packaging companies in these computerised

systems, and the IT department grew and eventually separated

from the box plant division.

With over three decades of expertise in developing innovative

software for the corrugated and packaging industry, Kiwiplan

delivers the total solution for all of your software and

Manufacturing Execution System needs.

Kiwiplan is now one of the world’s leading software suppliers to

the packaging industry. They have customers in 28 countries. All

research and development work is done from the New Zealand

offices at East Tamaki, Auckland.

Kiwiplan’s product range covers the entire business process for a

packaging firm, from order entry to shipping. The core products

relate to controlling the plant and scheduling the corrugating

machinery.

III. SCOPE OF THE PROJECT

Kiwiplan displays the information to the user in the form of

tables. They are being termed as flexible tables as users can

customize it according to their requirements. Some of the

common operations which user can do are sorting, grouping,

validating user expression, add/remove columns etc. When user

does some operation, the query goes through the sequence of

filters where each filter works independently of others and does

one task only.

Due to the increasing size of the tables, some of the operations

takes too long to complete and hence freezes the GUI. This

whole application is written in Java and Kiwiplan interested in

knowing how the efficiency of the filters can be increased by

making the filter (in general framework) run in parallel.

Particularly, this needs to be done by using the features

introduced in the most recent version of Java ie. Java 7. Hence,

the primary goal of the project is to identify the bottleneck in the

application and make it run in parallel. Similarly, other filters

needs to be run in parallel, if possible. Most of the code which

can be converted to parallel code requires some of its part to run

in sequential order. So, careful investigation of the code is

needed to see whether a particular filter can be parallelized or

not and if yes, then what parts need to be run in parallel and

sequential order. So, the objective is to develop a system and

integrate it with Kiwiplan GUI application which produces the

same output for same input, but with increased performance.

Second goal of the project is to investigate how other

applications (products) of Kiwiplan can get benefit from it.

There exist many open source libraries made by 3
rd

 party which

makes the parallel programming easier. However, company

requirement is to use standard java libraries only.

IV. PROJECT GOAL

The aim of the project is to develop an application that is

 Scalable – For example, the code should be written in

such a manner which works in a same way for four

cores computers and eight cores computers. The code

should be able to figure out itself how many cores there

are in the computer and use them as necessary. The

fork-join framework, introduced in Java 7, takes care of

this issue.

 Workable with Business Object – This is one of the

most important requirements of the project. Business

object is any object that represents something of

importance from the real world. Formally, a business

object is a “reification of some abstraction that is

important in the problem domain”.

 Easy to integrate with the Kiwiplan Products –

Initially, the code will be written as a standalone

application i.e. does not depend on the Kiwiplan GUI

framework. However, it should be written in such a

way that makes it easy to integrate with the existing

Kiwiplan Products.

 Works with the maps – This is also one of the most

important goals. The GUI object does not hold the

actual records but the mapping to the records. When

certain operation is being done, the computations are

being done not on the actual data but on the mappings

to the data.

 Explore Java 7 capabilities – Though the whole code

is written in Java, but in Java 5 and 6, programmer

explicitly needs to construct the threads and allocate

work to them. However, this is not required to be done

in Java 7. Sun’s has released the beta version of Java 7

and will be releasing the final version in September this

year. However, all the updates they wanted to introduce

for the concurrency has already been included in the

beta version. Java 7 made the parallel programming

even more easier because programmers need not to

construct threads and allocate work to them explicitly.

The fork-join framework introduced in Java 7, has

predefined functions which does the thread work

automatically for the programmer.

http://www.kiwiplan.com/

V. WHAT I HOPE TO GAIN

 Skills in analysis and design – To finish the project

well, the existing code needs to be examined carefully

to see which filters can be parallelized and then what

steps of those algorithms can be run in parallel. Of

course, each task can be decomposed in many ways

hence, the benefits of each decomposition method

needs to the evaluated.

 Practical experience with the software design – Most

of the projects I worked on are small projects. But this

project is big and will be developed through each of the

stages, from requirements to implementation.

 Increase programming skills – Writing parallel code

requires more insight to the problem than solving the

same problem in a sequential order. This project

involves the conversion of sequential code to parallel

code and hence, will improve my programming skills.

 Learning new technologies – Java 7 is one of the latest

technologies and this project requires using their feature

in detail. There will be many more features going to be

introduced in Java 8 concurrency library e.g. use of

closures. Learning new technology is always important

and enables programmer to concentrate more on design

issue and less emphasis on the implementation.

VI. FILTERS

Filters are bit low level details of the framework. The main

framework is divided into 3 layers.

1) Data Management

This layer retrieves the data from the back-end database and

populates the Java business objects.

2) Report Processing

This is where the main computation happens. This layer will be

the main focus since the goal is to parallelize the computational

intensive tasks.

3) Presentation

Once all the required computations are done, output needs to be

displayed on GUI. Making this layer more abstract, output can

be sent to GUI, to a web based application, or to some other

format such as printing, emailing etc.

The following diagram shows the 3 layers in a systematic

manner.

 Figure 1 – 3 Main Layers [1]

Kiwiplan uses lots of important design patterns to manage their

code. One of the important one is Model-View-Controller

(MVC) pattern. In this pattern, the implementation is divided

into 3 main parts. In Model part, only the data is kept. View part

tells how to use the whole/portion of data. Controller part takes

care of any event got fired by the user for example, by clicking

button etc.

Kiwiplan termed the second layer (figure 1), Processing, as

“Table Model Filter” (I will use filters from now on). Each filter

works independently of others and does one specific task. Most

of the operations performed by the user on GUI go through

certain sequence of filters known as pipeline. Each filter receives

the data from the previous filter in the pipeline, do some

processing and pass the resulting data to the next filter.

Sorting Filter

There exist many sorting algorithms. The sorting filter

implements a shuttle sort algorithm. Shuttle sort is based on

divide and conquer strategy and is a variation of merge sort and

stable as well [2]. However, there are two important changes.

 List Cloned – Instead of creating a temporary list for

every merge operation and copying the values back to

the original list, the list gets cloned at the beginning.

Values are then shuttled between the original and

cloned list. At each recursive step, the values get shuttle

between the two copies and at the end the final values

are in the original list.

 Performance – Shuttle sort increases the performance

of the merge operation. Before merging one by one,

algorithm checks whether the maximum value of the

first list is less than the minimum value of the second

list or not. If it is, both the lists concatenated together

otherwise they merged in a same way as the merge sort.

Shuttle sort algorithm is as follows:

The ShuttleSort algorithm is as follows [1]:

shuttleSort(array1, array2, start, end) {

 if (end – start < 2) return

// divide and conquer ... note that

// arrays are swapped around

 middle = (start + end) / 2

shuttleSort(array2,array1,start,

 middle)

 shuttleSort(array2,array1,middle,

 end)

if(max(array1[start…middle]) <

 min(array1[middle…high])) {

 copy array1[start...high] to

 array2

 else {

 merge array1[start...middle]

 and array1[middle...end] into

 array2

}

}

Shuttle sort has a time complexity of O(nln(n)). Besides having

little bit inefficient than famous Quicksort in practice, shuttle

sort has been chosen because it is in-stable in nature. However,

with slight modification in Quicksort algorithm, it can become

in-stable as well. This is one of scenario where efficiency could

be increased even though the algorithm still runs sequentially.

These types of algorithms can easily be parallelized. Most of the

algorithms usually decomposed by four techniques, namely,

recursive decomposition, data decomposition, exploratory

decomposition and speculative decomposition [4]. Recursive

decomposition is used for problems than can be solved using

divide-and-conquer strategy. Since shuttle sort is based on this

strategy, recursive decomposition technique can be used to solve

it.

Grouping Filter

The previous filter was an example where pipeline contains one

filter only. In most of the cases this is not true. Operation such as

“group the records based on some criteria” requires two filters.

Initially, the sorting filter sorts the list according to the column

we are interested in. Then the grouping filter scans the desired

column and starts a new group each time the column value

changes. A grouping filter itself groups according to a single

column; however multiple levels of grouping can be obtained by

adding more grouping filters in the pipeline.

 Again, this is one of the scenarios where parallel programming.

This task can be decomposed by data decomposition technique.

VII. CONCLUSION

Some of the common filters have been explained in the report. In

particular, sorting algorithms have been discussed. As

mentioned, sorting algorithms are the place where actual

bottleneck does not likely to exists. However, due to its

simplicity it is a good place to start working. The Kiwiplan GUI

framework is also been discussed in some detailed. To

write/modify any part, programmer should have a sound

knowledge of framework structure. Some of the features

introduced in Java 7 have also been discussed. These features

helps programmer to focus more on the high level design part

and leaves the low level details to the operating system or

predefined functions. In particular, the parallel array data

structure is very simple to use and saves lot of programmer’s

effort.

VIII. FUTURE WORK

Lot of work and effort is required to complete the project well.

Concurrent programming is still new to me and I don’t have

much experience with the predefined libraries. Firstly, I need to

get a good knowledge of the framework and see how everything

relates together. Secondly, I need to investigate which filters

algorithm can be parallelized and find the bottleneck of the

program. Thirdly, new features introduced by Java 7 and the

fork-join framework needs to be learned as well.

IX. REFERENCES

[1] Timothy Paul Walker, B.Tech final report, “Kiwiplan

Reporting Tool”.

[2] Dinneen, M., Gimel’farb G., Wilson M., “Introduction to

Algorithms, Data Structures and Formal Languages”.

[3] Sutter H., “The Free Lunch Is Over”, Dr. Dobb’s Journal,

30(3), March 2005.

[4] Grama A., Gupta A., Karypis G., Kumar V., “Introduction to

Parallel Computing” second edition, 2003.

[5] Clock speed - http://www.intel.com/technology/timeline.pdf,

retrieved on 5
th

 June, 2010.

http://www.intel.com/technology/timeline.pdf

