Parallelise Kiwiplan Framework

Parallelise Kiwiplan Framework

Prabhjot Singh

October 20, 2010

Parallelise Kiwiplan Framework

Agenda

@ Background

® Project Goal

© Issue with Threads
@ Fork/Join Framework
@ Parallel Array

0 Kiwiplan Framework
@ RowVisibility Filter
® Sorting Filter

©® Future Work

Parallelise Kiwiplan Framework
Background

Background

e Kiwiplan displays the information to the user in the form of
2D tables.

Parallelise Kiwiplan Framework
Background

Background

e Kiwiplan displays the information to the user in the form of
2D tables.

e Users can customize the table according to their requirements.

Parallelise Kiwiplan Framework
Background

Background

e Kiwiplan displays the information to the user in the form of
2D tables.

e Users can customize the table according to their requirements.

e Some of the common operations - Sorting, filter out certain
rows, group the table.

Parallelise Kiwiplan Framework
Background

Background

Test table

Average GPA | Supervisor | Course
18Y xozbn) Y » 18
a7V ninkk ¥ > a7
107 riMsGUH ¥ » 107
20V Fwlwnke ¥ » 39
64Y grcum ¥ » 64
92\ wQluswz | » 92
21Y xenqQ » 21
27‘ hBnvr S 27
101 xmvfwe ¥ »101
31Y ubvahay ¥ » 31

Parallelise Kiwiplan Framework
Background

Background

e When the user perform certain operation on the interface, the
request is passed on to the pipeline.

Criteria Filter User Expression
Filter

—

Query
Result

Parallelise Kiwiplan Framework
Project Goal

Project Goal

e Each of the filter algorithm is being written as a single
threaded program.

Parallelise Kiwiplan Framework
Project Goal

Project Goal

e Each of the filter algorithm is being written as a single
threaded program.

e Goal is to make the algorithm to use multi-cores of the
computer, if possible.

Parallelise Kiwiplan Framework
Project Goal

Project Goal

e Each of the filter algorithm is being written as a single
threaded program.

e Goal is to make the algorithm to use multi-cores of the
computer, if possible.

e Focuses mainly on the new Fork/Join framework.

Parallelise Kiwiplan Framework
Project Goal

Free Lunch is Over

10,000,000
Dual-Core Itanium 2] /
1,000,000 =
]
Intel CPU Trends [
{sources: Intel, Wikipedia, K. Olukotun) R
100,000
10,000
1,000
100
10
a &
[y A L]
:/b-gc_‘_
4 Y + | Transistors (©00)
1 ../.' T /v A e
LY .. & Power (W)
@ Pert fOiock OLP)
0

1970 1975 1980 1985 1990 1995 2000 2005 2010

Parallelise Kiwiplan Framework
Issue with Threads

Issue with Threads

e Let's consider one simple example.

Parallelise Kiwiplan Framework
Issue with Threads

Issue with Threads

e Let's consider one simple example.

e int value = 0;
public int getNext() {
return +-+value;

}

Parallelise Kiwiplan Framework
Issue with Threads

Issue with Threads

e Let's consider one simple example.

e int value = 0;
public int getNext() {
return ++value;

}

e Works perfectly fine in a single-threaded application, but not
in multi-threaded application.

Parallelise Kiwiplan Framework
Issue with Threads

Issue with Threads

A [Value=4

4+1=5

Value=5

g — Value=4

4+1=5

Value=5

Parallelise Kiwiplan Framework
Issue with Threads

Issue with Threads

A [Value=4 4+1=5 Value=5

g — JValue=4 4+1=5 Value=5

e This can be fixed by adding “synchronized” keyword in the
method heading.

Parallelise Kiwiplan Framework
Issue with Threads

Parallel Programming in Java

e Developers need to keep track of nitty-gritty details when
working directly with threads.

Parallelise Kiwiplan Framework
Issue with Threads

Parallel Programming in Java

e Developers need to keep track of nitty-gritty details when
working directly with threads.

e Language designers want programmers to write parallel
programs without mastering these low level details.

Parallelise Kiwiplan Framework
Issue with Threads

Parallel Programming in Java

e Developers need to keep track of nitty-gritty details when
working directly with threads.

e Language designers want programmers to write parallel
programs without mastering these low level details.

e New concurrency libraries were added with JDK 5, 6 and 7.

Parallelise Kiwiplan Framework
Fork/Join Framework

Fork/Join Framework

e The framework is designed to make divide-and-conquer
algorithms easy to parallelize.

Parallelise Kiwiplan Framework
Fork/Join Framework

Fork/Join Framework

e The framework is designed to make divide-and-conquer
algorithms easy to parallelize.

Result solve (Problem problem) {
if (problem is small)
directly solve problem
else {
split problem into independent parts
fork new subtasks to solve each part
join all subtasks

compose result from subresults

Parallelise Kiwiplan Framework
Fork/Join Framework

Fork/Join Framework

e The class should either extends RecursiveAction (result-less)
or RecursiveTask (result-bearing) class to enable it to use
ForkJoin framework. (Other options discussed in report)

Parallelise Kiwiplan Framework
Fork/Join Framework

Fork/Join Framework

e The class should either extends RecursiveAction (result-less)
or RecursiveTask (result-bearing) class to enable it to use
ForkJoin framework. (Other options discussed in report)

e Use fork() method to divide the task and join() method to
wait for the other thread to finish their task.

Parallelise Kiwiplan Framework
Fork/Join Framework

Fork/Join Example

class Fibonacci extends RecursiveTask<Integer> {
final int n;
Fibonacci(int n) { this.n = n; }
Integer compute () {
if (n <= 1)
recurn n;
Fibonacci f1 = new Fibonacci(n - 1):
fl.fork():
Fibonacci f£2 = new Fibonacci(n - 2):
return f2.compute() + f£l.join():

Parallelise Kiwiplan Framework
Fork/Join Framework

Fork/Join Concept

e Thread A finished with its work queue. What to do now 77

Parallelise Kiwiplan Framework
Fork/Join Framework

Fork/Join Concept

e Thread A finished with its work queue. What to do now 77

e There still exists some work that needs to be done.

Parallelise Kiwiplan Framework
Fork/Join Framework

Fork/Join Concept

e Thread A finished with its work queue. What to do now 77

e There still exists some work that needs to be done.

e Thread A takes the task exist in other threads work queue -
Work Stealing.

Parallelise Kiwiplan Framework
Parallel Array

Parallel Array

e For common operations such as Sorting, Searching,
Aggregation etc. JDK 7 provides an easier way - ParallelArray
classes.

Parallelise Kiwiplan Framework
Parallel Array

Parallel Array

e For common operations such as Sorting, Searching,
Aggregation etc. JDK 7 provides an easier way - ParallelArray
classes.

e This provides an in-built method which does the task in
parallel and returns the result.

Parallelise Kiwiplan Framework
Parallel Array

Parallel Array Example

parallelarray<student> students = new Parallelarray<Student=(fjrool, data);
double bestGpa = students.withrFilter(issenior)

-withMapping(selectcpa)

.max();

public class student {
string name;
int graduationyear;
double gpa;

}

static final ops.Predicate<student> issenior = new Ops.Predicate<student>() {
public boolean op(student s) {
return s.graduationyear == Student.THIS_YEAR;

I
static final ops.objectTobouble<student> selectGpa = new Ops.oObjectTobouble<student>() {
public double op(Student student) {
return student.gpa;

h

Parallelise Kiwiplan Framework

Kiwiplan Framework

Kiwiplan Framework

e Let's look at how the Kiwiplan framework is being structured.

Parallelise Kiwiplan Framework

Kiwiplan Framework

Kiwiplan Framework

e Let's look at how the Kiwiplan framework is being structured.

e One of the major pattern used in the framework is the MVC
pattern.

Parallelise Kiwiplan Framework

Kiwiplan Framework

Kiwiplan Framework

e Let's look at how the Kiwiplan framework is being structured.

e One of the major pattern used in the framework is the MVC
pattern.

e This pattern separates the modeling of the domain, the
presentation, and the event handling.

Parallelise Kiwiplan Framework

Kiwiplan Framework

Kiwiplan Framework

e The request made by the user goes through the pipeline in the
bottom up fashion.

Parallelise Kiwiplan Framework

Kiwiplan Framework

Kiwiplan Framework

e The request made by the user goes through the pipeline in the
bottom up fashion.

e The request flows up the chain, and when each method
returns the data flows back down.

Parallelise Kiwiplan Framework

Kiwiplan Framework

Kiwiplan Framework

e The request made by the user goes through the pipeline in the
bottom up fashion.

e The request flows up the chain, and when each method
returns the data flows back down.

e Due to MVC pattern, the actual algorithms work with the
pointer to the data but not with the actual data.

Parallelise Kiwiplan Framework
RowVisibility Filter

RowVisibility Filter

e Sometimes the users are interested in viewing only those
records which satisfy certain criteria.

Parallelise Kiwiplan Framework
RowVisibility Filter

RowVisibility Filter

e Sometimes the users are interested in viewing only those
records which satisfy certain criteria.

e Mapping from it" row index of the interface to the jt row in
the database.

Name ~|Age ~[City v
Bob 25|Auckland 1--->1
Alice 20| Wellington 2--->2
Samuel 37|Napier 3--->3
John 27|Auckland 4--->4

Kathy 29|Auckland | 5--->5

Parallelise Kiwiplan Framework
RowVisibility Filter

RowVisibility Filter

e We only want to view those rows where the age of the person
is between 25 and 30 (incl.)

Name | v |Age |~ |City " Name v Age v Qty v

Bob 25|Auckland
Alice 20| Wellington ‘ Bob 25|Auckland
Samuel 37|Napier John 27|Auckland
John 27|Auckland

Kathy 29| Auckland Kathy 29|Auckland

Parallelise Kiwiplan Framework
RowVisibility Filter

RowVisibility Filter

2--->2 ==l
T |) > >a
4--->4
S | 3---->5

- = a

Parallelise Kiwiplan Framework
RowVisibility Filter

RowVisibility Sequential Algorithm

private void sequentialRecursiveTaskNoMerge(int low, int high, RowMapper mapper) {
if (high - low <= STOP DIVIDING) {
for (int i = low; i <= high; i++)
if (shouldDisplayRow(i)) {
mapper.setRowMapping (mapper.size(), 1);

}
return;

}

int middle = (high 4 low) / 2:
sequentialRecursiveTaskNoMerge (low, middle, mapper);
sequentialRecursiveTaskNoMerge (middle+l, high, mapper);

Parallelise Kiwiplan Framework
RowVisibility Filter

RowVisibility Parallel Algorithm

class FilterTaskNoMerge extends Recursivedction |
int
int

TaskNoMerge{int low, int

hy; RowMapper mapper) {

{int i
if | isplayRow (i
synchronized (this. {
.setRowMapping (mapper

for

mapE

]

return;
}
int middle =
invokeAll (new

+ low) / 2;

askNoMerge (low, middle, m), new FilterTaskNoMerge

1, mapper));

Parallelise Kiwiplan Framework
RowVisibility Filter

Row Visibility Analysis

e Time is measured in milliseconds and results are on dual core

computer.
Problem Size | ~ |Sequential Running Tim: = | Parallel Running Time | =
100 0 29
1000 2 28
10000 4 35
100000 22 76
1000000 450 112
2000000 1312 765

Parallelise Kiwiplan Framework
Sorting Filter

Sorting Filter

e One of the most common operation used by the users.

Last Name [First NamenAgeﬂCiw 1l ——=5371
Paykel Bob 28 Auckland 5l mmni7)
William Kyle 23 Wellington 353
McCullum Nathan 27 Auckland

Martin Robin 22 Napier 4--->4

Parallelise Kiwiplan Framework
Sorting Filter

Sorting Example

e Let's say we want to sort the table based on Last name. The
table itself won’t change.

Last Name First Name Age City 1--->4

Martin Robin 22 Napier 2--->3
McCullum Nathan 27 Auckland

Paykel Bob Baukand | 21
William Kyl 23 Wellington| 4--->2

Parallelise Kiwiplan Framework
Sorting Filter

Sorting Algorithm

e Must be stable. Why?

Parallelise Kiwiplan Framework
Sorting Filter

Sorting Algorithm

e Must be stable. Why?

Name Age
Bob 35
Bob 50

e Let's say the table has already been sorted according to “Age”
column. Now, if we sort the table according to “Name”
column, the order of the rows should remain the same.

Parallelise Kiwiplan Framework
Sorting Filter

Sorting Algorithm Sequentially

private void sequentialMergeSortWithTwoRowMapper(int low. int high., RowMapper from, RowMapper to} {
if fhigh - low <= INSERTION_SCRT_THRESHLD) {

insertionSortRowMapper(low, high, to);

return;

)

int middle = (low + high) /
equentialMerqeSortWithTwoRowMapper (low, middle, to, from):
equentialMergeSortWithTwoRowMapper (middle + 1. high, to. from):

oy

if (array[from.mapRow(middle)].compareTo(array[fron. mapRow(middle+1)]) <= 1) {
for (int 1 = low: 1 <= highs i++) {
to.setRowMapping(i, from.mapRow(i)):
}
return;

}

Parallelise Kiwiplan Framework
Sorting Filter

Sorting Algorithm Parallel

@verride
protected RowMapper compute{) {
if (high - low <= SEQUENTIAL_THRESHOLD) {
RowMapper mapper = new RowMapper (high+1);
sequentialMergeSortWithOneRowMapper (low, high, mapper):
return mapper;
}

int middle = (low + high) 7 Z;
ParallelSortTask leftTask = new ParallelSortTask(low, middle);

leftTask. fork();
ParallelSortTask rightTask = new ParallelSortTask(middle + 1, high);

RowMapper right = rightTask.compute():
RowMapper left = leftTask.join();

Parallelise Kiwiplan Framework
Sorting Filter

Sorting Filter Analysis

e Time is measured in milliseconds and results are on dual core

computer.
Problem Size | ~ |Sequential Running Tim: = | Parallel Running Time | =
100 2 31
1000 7 34
10000 23 36
100000 213 285
1000000 3500 2630
1500000 5328 3743

Parallelise Kiwiplan Framework
Future Work

Future Work

e Still lots of work needs to be done.

o Refactor all the filter code which can possibly be run in
parallel.

e In-dept knowledge of Java 7 once it will be released officially.

Parallelise Kiwiplan Framework
Future Work

Questions

e QUESTIONS

	Background
	Project Goal
	Issue with Threads
	Fork/Join Framework
	Parallel Array
	Kiwiplan Framework
	RowVisibility Filter
	Sorting Filter
	Future Work

