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e Kiwiplan displays the information to the user in the form of
2D tables.

e Users can customize the table according to their requirements.

e Some of the common operations - Sorting, filter out certain
rows, group the table.
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e When the user perform certain operation on the interface, the
request is passed on to the pipeline.

Criteria Filter User Expression
Filter

—

Query
Result




Parallelise Kiwiplan Framework
Project Goal

Project Goal

e Each of the filter algorithm is being written as a single
threaded program.



Parallelise Kiwiplan Framework
Project Goal

Project Goal

e Each of the filter algorithm is being written as a single
threaded program.

e Goal is to make the algorithm to use multi-cores of the
computer, if possible.



Parallelise Kiwiplan Framework
Project Goal

Project Goal

e Each of the filter algorithm is being written as a single
threaded program.

e Goal is to make the algorithm to use multi-cores of the
computer, if possible.

e Focuses mainly on the new Fork/Join framework.
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Issue with Threads

e Let's consider one simple example.

e int value = 0;
public int getNext() {
return ++value;

}

e Works perfectly fine in a single-threaded application, but not
in multi-threaded application.
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Issue with Threads
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Issue with Threads

A [Value=4 4+1=5 Value=5

g — JValue=4 4+1=5 Value=5

e This can be fixed by adding “synchronized” keyword in the
method heading.
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Parallel Programming in Java

e Developers need to keep track of nitty-gritty details when
working directly with threads.

e Language designers want programmers to write parallel
programs without mastering these low level details.

e New concurrency libraries were added with JDK 5, 6 and 7.
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Fork/Join Framework

e The framework is designed to make divide-and-conquer
algorithms easy to parallelize.

Result solve (Problem problem) {
if (problem is small)
directly solve problem
else {
split problem into independent parts
fork new subtasks to solve each part
join all subtasks

compose result from subresults
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Fork/Join Framework

e The class should either extends RecursiveAction (result-less)
or RecursiveTask (result-bearing) class to enable it to use
ForkJoin framework. (Other options discussed in report)

e Use fork() method to divide the task and join() method to
wait for the other thread to finish their task.
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Fork/Join Example

class Fibonacci extends RecursiveTask<Integer> {
final int n;
Fibonacci(int n) { this.n = n; }
Integer compute () {
if (n <= 1)
recurn n;
Fibonacci f1 = new Fibonacci(n - 1):
fl.fork():
Fibonacci f£2 = new Fibonacci(n - 2):
return f2.compute() + f£l.join():



Parallelise Kiwiplan Framework
Fork/Join Framework

Fork/Join Concept

e Thread A finished with its work queue. What to do now 77



Parallelise Kiwiplan Framework
Fork/Join Framework

Fork/Join Concept

e Thread A finished with its work queue. What to do now 77

e There still exists some work that needs to be done.



Parallelise Kiwiplan Framework
Fork/Join Framework

Fork/Join Concept

e Thread A finished with its work queue. What to do now 77

e There still exists some work that needs to be done.

e Thread A takes the task exist in other threads work queue -
Work Stealing.
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Parallel Array

e For common operations such as Sorting, Searching,
Aggregation etc. JDK 7 provides an easier way - ParallelArray
classes.

e This provides an in-built method which does the task in
parallel and returns the result.
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Parallel Array Example

parallelarray<student> students = new Parallelarray<Student=(fjrool, data);
double bestGpa = students.withrFilter(issenior)

-withMapping(selectcpa)

.max();

public class student {
string name;
int graduationyear;
double gpa;

}

static final ops.Predicate<student> issenior = new Ops.Predicate<student>() {
public boolean op(student s) {
return s.graduationyear == Student.THIS_YEAR;

I
static final ops.objectTobouble<student> selectGpa = new Ops.oObjectTobouble<student>() {
public double op(Student student) {
return student.gpa;

h
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Kiwiplan Framework

e Let's look at how the Kiwiplan framework is being structured.

e One of the major pattern used in the framework is the MVC
pattern.

e This pattern separates the modeling of the domain, the
presentation, and the event handling.
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Kiwiplan Framework

e The request made by the user goes through the pipeline in the
bottom up fashion.

e The request flows up the chain, and when each method
returns the data flows back down.

e Due to MVC pattern, the actual algorithms work with the
pointer to the data but not with the actual data.
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RowVisibility Filter

e Sometimes the users are interested in viewing only those
records which satisfy certain criteria.

e Mapping from it" row index of the interface to the jt row in
the database.

Name ~|Age  ~[City v
Bob 25|Auckland 1--->1
Alice 20| Wellington 2--->2
Samuel 37|Napier 3--->3
John 27|Auckland 4--->4

Kathy 29|Auckland | 5--->5
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RowVisibility Filter

e We only want to view those rows where the age of the person
is between 25 and 30 (incl.)

Name | v |Age |~ |City " Name v Age v Qty v

Bob 25|Auckland
Alice 20| Wellington ‘ Bob 25|Auckland
Samuel 37|Napier John 27|Auckland
John 27|Auckland

Kathy 29| Auckland Kathy 29|Auckland
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RowVisibility Filter
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RowVisibility Sequential Algorithm

private void sequentialRecursiveTaskNoMerge(int low, int high, RowMapper mapper) {
if (high - low <= STOP DIVIDING) {
for (int i = low; i <= high; i++)
if (shouldDisplayRow(i)) {
mapper.setRowMapping (mapper.size(), 1);

}
return;

}

int middle = (high 4 low) / 2:
sequentialRecursiveTaskNoMerge (low, middle, mapper);
sequentialRecursiveTaskNoMerge (middle+l, high, mapper);
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RowVisibility Parallel Algorithm

class FilterTaskNoMerge extends Recursivedction |
int
int

TaskNoMerge{int low, int

hy; RowMapper mapper) {

{int i
if | isplayRow (i
synchronized (this. {
.setRowMapping (mapper

for

mapE

]

return;
}
int middle =
invokeAll (new

+ low) / 2;

askNoMerge (low, middle, m ), new FilterTaskNoMerge

1, mapper));
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Row Visibility Analysis

e Time is measured in milliseconds and results are on dual core

computer.
Problem Size | ~ |Sequential Running Tim: = | Parallel Running Time | =
100 0 29
1000 2 28
10000 4 35
100000 22 76
1000000 450 112
2000000 1312 765
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Sorting Filter

e One of the most common operation used by the users.

Last Name [ First NamenAgeﬂCiw 1l ——=5371
Paykel Bob 28 Auckland 5l mmni7)
William Kyle 23 Wellington 353
McCullum  Nathan 27 Auckland

Martin  Robin 22 Napier 4--->4
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Sorting Example

e Let's say we want to sort the table based on Last name. The
table itself won’t change.

Last Name First Name Age City 1--->4

Martin  Robin 22 Napier 2--->3
McCullum Nathan 27 Auckland

Paykel  Bob Baukand | 21
William Kyl 23 Wellington| 4--->2
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Sorting Algorithm

e Must be stable. Why?

Name Age
Bob 35
Bob 50

e Let's say the table has already been sorted according to “Age”
column. Now, if we sort the table according to “Name”
column, the order of the rows should remain the same.
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Sorting Algorithm Sequentially

private void sequentialMergeSortWithTwoRowMapper(int low. int high., RowMapper from, RowMapper to} {
if fhigh - low <= INSERTION_SCRT_THRESHLD) {

insertionSortRowMapper(low, high, to);

return;

)

int middle = (low + high) /
equentialMerqeSortWithTwoRowMapper (low, middle, to, from):
equentialMergeSortWithTwoRowMapper (middle + 1. high, to. from):

oy

if (array[from.mapRow(middle)].compareTo(array[ fron. mapRow(middle+1)]) <= 1) {
for (int 1 = low: 1 <= highs i++) {
to.setRowMapping(i, from.mapRow(i)):
}
return;

}
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Sorting Algorithm Parallel

@verride
protected RowMapper compute{) {
if (high - low <= SEQUENTIAL_THRESHOLD) {
RowMapper mapper = new RowMapper (high+1);
sequentialMergeSortWithOneRowMapper (low, high, mapper):
return mapper;
}

int middle = (low + high) 7 Z;
ParallelSortTask leftTask = new ParallelSortTask(low, middle);

leftTask. fork();
ParallelSortTask rightTask = new ParallelSortTask(middle + 1, high);

RowMapper right = rightTask.compute():
RowMapper left = leftTask.join();
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Sorting Filter Analysis

e Time is measured in milliseconds and results are on dual core

computer.
Problem Size | ~ |Sequential Running Tim: = | Parallel Running Time | =
100 2 31
1000 7 34
10000 23 36
100000 213 285
1000000 3500 2630
1500000 5328 3743
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Future Work

e Still lots of work needs to be done.

o Refactor all the filter code which can possibly be run in
parallel.

e In-dept knowledge of Java 7 once it will be released officially.
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e QUESTIONS
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