
### **VIDEO SURVEILLANCE**

Differences between IP Camera and Analogue Camera

### Overview



### Introduction

This presentation demonstrates the differences between IP Camera and Analogue Camera in terms of technical and optical features.





#### **Optical**

- Physical structure
- Lens and sensors
- Sensitivity

#### **Technical**

- Physical features
- Image processing
- Functionalities and software

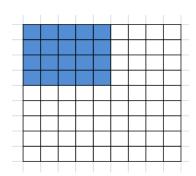
# Background Knowledge

#### Camera – a device records images

#### Basic components:

- A lens / a few lenses
- A sensor
- Signal-processing chips

#### How?


Light passes through the lens then project onto an image sensor. Image sensor 'converts' light (photons) to voltages and then produces signals.

# Background Knowledge

#### Quality of images/videos

#### Key aspects:

- Focal length how far the object can be captured. A short lens with less mm (12 for example) provides a very wide angle of view.
- Sensors
  - CCD Charge-coupled device. Every pixel's charge istransferred through one output node to be converted to voltage.
  - CMOS Conversion is performed individually for each pixel.
    Often includes a ADC.
- Chips efficiency
  - High-end cameras have powerful chips. More functions.



### What is IP Camera?

A digital camera uses Internet protocol to transmit captured videos over network.

It has built-in software.



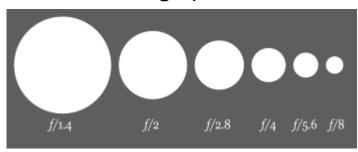


## What is Analogue Camera?

Transmits captured videos through specific coaxial cable.

It has no built-in software.




## Optical analysis of Analogue Camera

#### Focal length – ~10mm, normally fixed

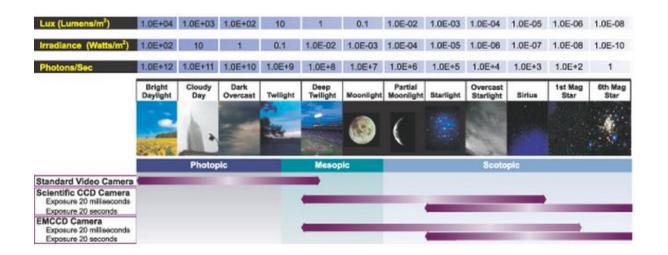
a very wide angle of view

#### Aperture – F1.6 (normally)

 It determines the cone angle of a bundle of rays that come to a focus in the image plane.



wide aperture - fast shutter speed


# Optical analysis of Analogue Camera

#### Sensor – CCD (Charge-coupled device)

- High fidelity
- Great light sensitivity
- It could capture a high quality image, but sensor is slow.
  Because of physical implementation.
  So not good at on capturing moving-pictures.
- Sensitivity: some products could achevie zero lux.
- What is Lux?

## Optical analysis of Analogue Camera

Darker background – low lux



So analogue cameras have a great sensitivity, which means it has wide dynamic range due to greater ability to deal with different light condition such as low light or high light situation!

## Optical analysis of IP Camera

#### Focal length – ~3-12mm, variable

a very wide angle of view, a variable would be more flexible

#### Aperture – F1.4 (normally)

- Wider than analogue camera
- wider aperture faster shutter speed





Focal length 12 and 55 mm

## Optical analysis of IP Camera

Sensor – CMOS (Complementary metal–oxide–semiconductor)

- Digital hardware system
- synchronized light- electric signal conversion, so sensor is fast.
- Amplified and noise-correction for each pixel.
- ADC at end
- It could capture images quickly, but image quality is lower.
  Because of physical implementation.

### Optical analysis of IP Camera

- Sensitivity: some products could have 0.05 lux, some are ~1.0
  lux
- No problems on day time, not as useful as analogue camera under low lightsource situations.
- WDR (wide dynamic range) technology solve problems
  - Scans the same frame twice once by slow sensor, then high speed sensor.
  - Processing two frames together and result in single frame.
  - Clear and low noise image.

# Technical analysis of Analogue Camera

- Uses 12V DC power supply
- Working environment: -5 ~ 60 degrees
- Not flexiable, some products only allow 20 degrees tilting adjustment.
- Automatic background lighting compensation, but it has less choice of modes.
- Conversion from analogue to digital for image processing, then back to analogue for transmission.

# Technical analysis of Analogue Camera

#### Specifications

#### NTSC

60 hz refresh rate (30fps) resolution :510\*492

#### PAL

50 hz refresh rate (25fps) resolution :500\*582

The refresh rate is usually determined by the control system e.g. DVR (usually lower than the specifications)

### Technical analysis of IP Camera

- Uses 12V DC power supply or PoE (power over Ethernet)
- Working environment:
  - -30 ~ 50 degrees 12 V
  - -5 ~ 50 degrees PoE
- Function of view angle adjustment.
  - 360 degrees on panning and rotating, 180 degrees on tilting
- Advanced technology WDR, many modes for background lighting compensation.
- Conversion from analogue to digital for image processing, then sends out the signal.

### Technical analysis of IP Camera

- Specifications for resolutions:
  - SXGA 1280\*1024
  - 720p 1280\*720
  - VGA 640\*480
- 30 fps with VGA, but 8 fps with SXGA
  - Because of huge amount of information processing
  - Could have better fps with powerful chips.

### Technical analysis of IP Camera

#### Advanced functions in IP camera

- Audio input/output
- Video compression (includes audio) with H.264/MP3, MPEG4 compression standards.
- Almost supports all higher level protocols.
  - Such as TCP, DHCP, 3GPP
  - Easy to build a centre control system with remote control.
- SDKs, APIs are available
  - So user can program infinite many functions
  - Motion detections, camera password protection.

## Advantages of Analogue Camera

Low hardware cost

Large variety of design

Higher dynamic range

# Advantages of IP Camera

Full digital technology

Better resolution

PoE

Remote

Two way audio

Secured system

More functions

Angle adjustment

### Disadvantages of Analogue Camera

Low video resolution

Limited functions

Remote control is hard to achieve

## Disadvantages of IP Camera

High cost of cameras

Compatibility problems

Internet security problems Lower dynamic range

# Choose Analogue or IP Cameras

#### Analogue Camera

Low cost is attractive. It provides a not bad image quality, at least the control centre knows what happens to the monitored objects.

It has a built-in higher dynamic range features.

#### IP Camera

High resolution and/or high fps are the advantages. Even image is zoomed, quality is still good. IP camera could be consider as a simple programmable PC – SDK&API allows programmer develops many functions.

### Conclusions

- IP camera has better features than Analogue camera
- They have different sensor, hence they could be more suitable under different situations.
- IP camera has better resolutions and refresh rate, it is powerful under condition that has enough light incident.
- Resolution is important for evidence purpose monitoring. Jerkiness is important for security monitoring.

Home

### ThankYou

#### Questions?

