
Blackhawk Testing Application

BTech 450
End of First Semester Project Report

YuFeng Deng
Department of Computer Science

University of Auckland

Supervisors

Academic Mentor:
Dr S. Manoharan

University of Auckland
NewZealand

Industrial Mentor:
Andrew Radcliffe

Blackhawk Tracking System Ltd.
NewZealand

June 2008

Abstract

The main aim of this project is designing an application that can check
whether the new produced Blackhawk units are working and update the
databases accordingly. The application will also be able to generate a report
of the testing result. It may be able to do some statistical analysis based on
the report generated. This application will be developed using C# base on
.net technology. It will be used by the factory tester.

ii

Contents

1 Introduction 1

1.1 The Company and products 1
1.2 How does Blackhawk work . 2
1.3 Motivation . 3
1.4 Project Goal . 4

2 The Blackhawk Testing Application 5

2.1 Introduction . 5
2.1.1 Factory Database . 5
2.1.2 Blackhawk Database 6

2.2 How Can We Achieve It . 6
2.2.1 Blackhawk APIs . 7
2.2.2 Unit Reports . 9
2.2.3 Checking Rules . 10

2.3 The Application Achievement 10
2.3.1 The Software Requirement 10
2.3.2 The Checking Process 11
2.3.3 Confiuration . 13
2.3.4 Generating Reports 14
2.3.5 Update Factory Database 16
2.3.6 Update Blackhawk Database 16
2.3.7 Statistic Support . 17
2.3.8 The Testing Panel . 17

2.4 Conclusion . 20

iii

Chapter 1

Introduction

This report is about the BTech project I am currently doing for Blackhawk
tracking system Ltd Company. The project is about designing an application
that can help the production staff to test the products efficiently.

1.1 The Company and products

Blackhawk Tracking Systems Ltd is a company providing tracking produc-
tion for various types of vehicles. They currently have products for cars,
trucks, motorbikes and so on. They are currently developing a new product
for personal use. The Figure 1.1 shows a Blackhawk unit for car.

Figure 1.1: The Blackhawk Unit

The Blackhawk units are base on GPS technology. Each of them has a
SIM car inside. Every Blackhawk unit is assigned a phone number, so that
we can send text message to it. A Blackhawk unit can track any vehicles
with a battery either by mobile phone or from the Blackhawk website. It
can indicate the location of your vehicle at any time. Besides reporting
geographic location of vehicles, the Blackhawk unit can do a lot of other
cool things. For example, if your vehicle moves without the system being

1

deactivated, you will be notified by text message. You can even immobilise
your vehicle by text message the next time it stops. These functionalities
are very useful if the vehicle is stolen. Sounds amazing? Blackhawk units
can also detect crash and over speed. If your children drive your car out,
you can know where they are and what speed they are driving at.

Blackhawk unit uses internal aerials so thieves will not know there is a
tracking system inside the vehicle.

1.2 How does Blackhawk work

Figure 1.2: How does Blackhawk work

It is very important to understand how Blackhawk unit work before going
to the project goal. I will not discuss how the Blackhawk’s dual immobilisers

2

immobilise your vehicle or how it detects a crash internally. Instead of that,
I will introduce how the Blackhawk unit is triggered, how it communicates
with the web server and so on. Figure 1.2 shows a example of the Blackhawk
working process.

We assume this car has a Blackhawk installed and there are several
satellites, not only one. We need at least 4 satellites to get the accurate
position. In this example, the car owner wants to know the location of
his car. He sends a text message “locate” to the Blackhawk unit in his
car. Once the Blackhawk unit gets the “locate” message, it will connect to
the web server through GPRS. It will send an http request by HTTP get
method. The query string will include the latitude and longitude that stands
for the address of the Blackhawk unit. The query string can include other
information such as vehicle speed and battery level. We call the information
included in the query string as unit report. What information is included
in the unit report will depend on what message you send to the Blackhawk
unit or what other events trigger the Blackhawk unit. Once the server gets
the request, it will search for the exact address of the Blackhawk unit in the
database based on the latitude and longitude received. Then it will send
back the information to the Blackhawk unit. The Blackhawk unit then can
send the address to the owner. The server can send TXT message directly
to the owner as well.

1.3 Motivation

After the new products are produced, we cannot take them out directly
from the factory. Because it will bring troubles and cost money if a faulty
Blackhawk unit enters the marketplace. To avoid selling faulty Blackhawk
units, we need the production staff in the factory to check whether the new
produce Blackhawk units are working properly. The checking process is
based on the unit reports sent by the Blackhawk units. It’s very inconvenient
for production staff to check the reports manually. As we produce hundreds
of Blackhawk units each time, it will take a lot of time for checking the
products. The Blackhawk tracking system Ltd has to spend lots of money
to the production staff for doing this. As the company growing, there will
be more and more products needed in the future. At that time, it will be
not possible for the production staff to check the products manually.

After checking, the faulty Blackhawk units will be returned to the fac-
tory for fixing. All the passed units will be sent to Blackhawk Company.
The Blackhawk staff also needs to add these new products to the Black-

3

hawk database manually. Large amount of Blackhawk units will cost the
Blackhawk staff a lot of time for doing this.

Due to these reasons, we need a tool to do the checking and update
the Blackhawk database efficiently. So we will still be able to manage the
production process in the future as the company grows.

1.4 Project Goal

The main goal of this project is to design an application that can assist the
production staff to do Blackhawk unit checking more efficiently. Beyond
this, we want a way to add the passed Blackhawk units to the Blackhawk
database easily.

4

Chapter 2

The Blackhawk Testing

Application

The Blackhawk testing application is designed to help the production staff
to check the reports received from new produced Blackhawk units. It can tell
whether the unit is good or bad. The checking will be based on the function
1 reports. The function 1 reports are sent by the Blackhawk units when
they are powered on. The application will be able to add passed Blackhawk
units to the Blackhawk database, generate reports of testing report and do
some statistically analysis as well.

2.1 Introduction

The Blackhawk testing application is developed by C# using Visual Studio
2005. It will be used in the factory by the production staff. It will be able to
access the factory database and the Blackhawk database outside the factory.
Figure 2.1 shows the main structure of the application running environment.

2.1.1 Factory Database

The factory has a database for managing all new produced Blackhawk units.
This database is factory’s database and has nothing to do with Blackhawk
Company. My application will connect to this database to get the basic
information of the new Blackhawk units. Factory database is also inside the
factory as the application, the application will treat it as local database.
The Blackhawk unit information in the Factory database is different from
the Blackhawk database.

5

Figure 2.1: Main structure

2.1.2 Blackhawk Database

The Blackhawk database is the database from which the application can get
the unit reports from. All the reports sent by the Blackhawk units will be
recorded in this database. The Blackhawk database is outside the factory.
The application will need internet connection to connect to the Blackhawk
database.

2.2 How Can We Achieve It

The application can find out the faulty Blackhawk units base on the reports
sent by the Blackhawk units. The application load the Blackhawk units
from the database, then get the reports sent by these Blackhawk units using
Blackhawk APIs and check the reports using the checking rules. If there are
any problems with the reports, we can say the Blackhawk units that sent
the reports are faulty. After checking, the application can add the passed

6

Blackhawk unit to the Blackhawk database using the Blackhawk APIs.

2.2.1 Blackhawk APIs

The Blackhawk Company has provided a bunch of APIs that I can use to
operate the Blackhawk database. The Blackhawk APIs are based on web
service. Here is a list of the APIs:

* BlackhawkAdminService

* BlackhawkCustomerService

* BlackhawkDeviceService

* BlackhawkEventService

* BlackhawkFactoryService

* BlackhawklnvoiceService

* BlackhawkLoginService

* BlackhawkReportService

* BlackhawkSMSService

* BlackhawkTrackService

BlackhawkLoginService

BlackhawkLoginServeice provides the Login, Logout and other methods. To
use the Blackhawk APIs, the user have to login to the Blackhawk server
within the Login method. Different users will have different access rights to
the Blackhawk database. The security will be managed by the Blackhawk
API Server, so that the application doesn’t need to worry about it.

BlackhawkEventService

BlackhawkEventService contains the most important APIs for this applica-
tion. Using these APIs, we can get all the Blackhawk events as we need.
The word “Event” here is the same meaning as report. Each time the Black-
hawk unit is triggered, we treat it as an event. Once an event happen, the

7

Figure 2.2: The BlackhawkEventService APIs

Blackhawk will send a report to the Blackhawk server. If we want to know
what kind of event it is, we can have look at the event report.

Figure 2.2 shows all the web services I can use to get Blackhawk Events.
The method FindEventsForDeviceByFunction() will be mainly used in this
application. The powering on event will cause the Blackhawk unit to send
a Function one report to the server. The application can use this method
to get all the function one report for the devices. The function code of
the report is made to indicate what kind of event is triggered. Once a
Blackhawk unit is powered on, it will be automatically reset. This will
cause the Blackhawk unit to set the function code to 1 and send the report
including other information to the Blackhawk server. So we call this report
as function one report.

8

Other Web services

Other web services are not used in the application at this stage. We may
need to use them in the future. The company may add more requirements
to the application to meet new conditions.

2.2.2 Unit Reports

Table 2.1 is a sample unit report I extracted from Blackhawk database. This
is not a function one report. We can see that this is a “Blackhawk installed”
report from the Table 2.1. I have no idea what the function code is, because
they have mapped the function code to the event name.

FIX 3
ID 30243
Date Recorded 8/06/2008 19:18
SEN 120244
IMS 5.30011E+14
LAT 3656.8163S
LON 17450.2974E
ALT 32
SPD 0
COG 63
HRS 0
BAT 12.3
SSI 0
BAL 0
BER 0
SWV 703404016
FUN Blackhawk installed
Latitude -36.9469
Longitude 174.8383
Device E10248
Address 11 Lippiatt Road, Otahuhu, Auckland City
Accuracy 0
Port 6672
Data

Table 2.1: The Blackhawk Unit Report

9

The application doesn’t need to check everything in the report, but most
of them will be checked. Some fields of this report are easy to understand, for
example, in this report the Address row gives the location of the Blackhawk
unit which is 11 Lippiatt Road, Otahuhu, Auckland City. This is very
obvious. But some fields are not that obvious, let us have a look. The FIX
should be something new added recently which I don’t really know. ID is
the event ID. Date Recorded is the time at which this report is received.
SEN is the serial number of the Blackhawk unit. IMS is the number belongs
to the SIM card. LAT is the latitude of the Blackhawk location. LON is
the Longitude of the Blackhawk location. If you look carefully, you will
find another Latitude and Longitude in this report. They also stand for the
location of the Blackhawk unit, but in different format. SPD is the speed of
the vehicle. BAT is the battery voltage and so on.

The application will check this report using the checking rules.

2.2.3 Checking Rules

Checking rules are rules we made to check the unit reports. For example,
The IMS number should be the same as the IMS number from the factory
database, the address should be the factory address. If a unit sends a report
which fails to pass any checking rule, we will treat it as a faulty unit. And
it will be return to the factory for fixing.

2.3 The Application Achievement

2.3.1 The Software Requirement

To make the goal clearer, I have specified the requirements for the applica-
tion.

* The application shall have a login panel that allows the user to login.

* The application shall have the ability to accept the input from the
scanner.

* The application shall have the ability to read and update the factory
database.

* The application shall have the ability to read the received units reports
from the Blackhawk database.

* The application shall highlight the pass units with green color.

10

* The application shall highlight the faulty units with orange color.

* The application shall highlight the units whose reports cannot be de-
tected with red color.

* The application shall be able to retest the units that are highlighted
red.

* The application shall be able to add the new pass units to the Black-
hawk database.

* The application shall be able to generate a report of the testing result.

* The Application should be able to do some statistical analysis of the
results.

* The Application should be configurable so that can be used in different
conditions.

2.3.2 The Checking Process

To make life easier, we want the application to do as much as it can. We
don’t want the production staff to waste any time on testing the Blackhawk
units. Figure 2.3 shows how easy will be for the production staff with the
help of the application.

Form the diagram we can see that the tester only needs to do two things.
One: run the application. Two: Scan and power on all the units. All other
things will be done by the application automatically. How does the tester
do the job? The tester run the application and does some setting if needed.
Then navigate to the testing panel. The tester then uses a scanner to scan
the barcode of the Blackhawk unit to the application and put the Blackhawk
unit one by one into a tray which can supply power. Then the last thing,
simply click the “start” button in the application. Now the tester can sit
down and have a cup of coffee waiting the application to give testing results.
After 15 (can be configured to other value) minutes, the tester come back
to the application, find out the faulty units if any and return them to the
factory for fixing. All the passed units then will be packed by the tester
and ready to be sent to the Blackhawk Company. When the Blackhawk
Company receives these new products, all of them are ready for sell, because
all the information of these new products has been updated to the Blackhawk
database by the application.

11

Figure 2.3: The Testing Process

You may be interested in what the application did in the background. Let
me explain this diagram a little bit. When the tester scans the Blackhawk
units, the application will load information of the Blackhawk units from
the factory database. After clicking the “start” button, the application will
get and check the units reports from the Blackhawk database every two
minutes. The units that sent problem reports will be highlighted orange.
The units that sent fine reports will be highlighted green. Other units whose
reports cannot be received after time out will be highlighted red. Then,
the application adds the passed units to the Blackhawk database. The
application will need to generate report of testing result as well. We may
upload the testing report to the Blackhawk database in the future. The
application may be able to do some statistical analysis.

Why every two minutes

Once the tester put a Blackhawk unit in the tray and power on, the Black-
hawk unit will be reset. Then it will send a function one report to the
Blackhawk server. This process will take some time. Because the Black-

12

hawk unit has to warm up and gather all the information that needs to be
sent, such as Latitude and Longitude. The latitude and longitude are got
from the GPS satellites. If the GPS signal is too week, it take longer time
for the Blackhawk unit to get the latitude and longitude. If there is not GPS
signal, the testing cannot be done. The Blackhawk Company is planning
to set up a GPS magnifier in the factory to avoid any GPS signal problem.
Once all the information is gathered, the Blackhawk unit will connect to the
Blackhawk server through GPRS. As GPRS is a kind of slow protocol, it
also takes time to send the report to the Blackhawk server. Beyond that, we
need to consider the GPRS signal as well. For this reason, the Blackhawk
server will not get the units reports immediately after the units are powered
on. Some reports may be received earlier; some reports may be received
later. To make sure we can get all the sent reports, we set a polling interval
which is two minutes. Also, we set a time out interval to avoid the applica-
tion keeping polling Blackhawk APIs for getting reports forever. Both the
polling interval and time out interval are configurable.

2.3.3 Confiuration

To make the application more flexible, we need to add the configurability
to the application. For example, if we have a good GPS signal and GPRS
signal, we may want to reduce the time out interval. The application does
supply a setting panel for configuration. But we still need somewhere to
save the change. I’m using a XML file to save the configuration.

<!file name: bta.exe.config-->

<?xml version="1.0" encoding="utf-8"?>

<configuration>

<appSettings>

<add key="TimeOut" value="15" />

<add key="FactoryAddress" value="Auckland University" />

<add key= "Interval" value="2" />

<add key= "Lat_Min" value="0" />

<add key= "Lon_Min" value="0" />

..

</appSettings>

</configuration>

In this example, the timeout interval is set to 15 minutes. The factory
address is set to Auckland University.

13

The advantage of using this format is that c# supports it very well. c#
provides a ConfigReader class that can read this format easily. Although I
have never tried to write the configuration programmatically, I believe there
will be a way to do it. As this is a well format xml file, I can write my own
ConfigWriter using XMLWriter if ConfigWriter is not provided.

It’s possible to write the settings to a plain text ini file. But I may need
to write a complicate ConfigReader and ConfigWriter by myself. Although
the plain text file may be easier for human to read, I don’t want to implement
in this way.

The third way to save the settings is saving the setting into the windows
registry. I didn’t try to read and write windows registry before in a program.
But I don’t think that it’s difficult. I know how to read and write windows
registry using the windows command reg.exe. I believe that there is a c#
library which can do similar thing as reg.exe. I chose not to use registry
because I want to make the application portable. So it can be copied to any
computer in the factory including the settings. An advantage of using the
registry is that different user can use different settings if we save the settings
in the CURRENT USER node in the registry. But in our application, we
don’t really need personalised settings.

2.3.4 Generating Reports

For debugging purpose, the application should be able to generating reports
for the checking result. Then the technician can use this report to debug
the faulty Blackhawk units. Although the application can show the prob-
lem of the Blackhawk units, but the information shown on the application
panel is not printable and not convenient to read directly from the monitor.
Generated text format file will be easy to read and can be printed out easily.

It will be easy to write the result report in a plain text file. But the
plain text file has no ability to highlighted text which we want to emphasis.
For example, I want to highlight the error value in red, so the technician
can found the problem more quickly. I chose to generate the report in
XML format because I can easily convert the XML format to other human
readable format such as html.

<!--report_1-1-2008.xml-->

<Testing Results>

<Unit>

<Number>1</Number>

<Serial No>123456</Serial No>

14

<IMS>123456789012345</IMS>

<Phone No>0211234567</Phone No>

<Status>Unknown</Status>

<Location>X</Location>

...

</Unit>

<Unit>

<Number>2</Number>

<Serial No>123456</Serial No>

<IMS>123456789012345</IMS>

<Phone No>0211234567</Phone No>

<Status>Faulty</Status>

<Faulty_Location>Sydney</Faulty_Location>

<Faulty_IMS>987654321012345</Faulty_IMS>

...

</Unit>

<Unit>

<Number>3</Number>

<Serial No>123456</Serial No>

<IMS>123456789012345</IMS>

<Phone No>0211234567</Phone No>

<Status>Pass</Status>

<Location>Auckland University</Location>

...

</Unit>

...

</Testing Results>

The faulty items will be recorded as an element with a name start with
Faulty This XML file is not that straight forward for human. But it can
be converted to other file format easily. Figure 2.4 is a example of HTML
format.

In this html format, passed units are highlighted green, faulty units
are highlighted yellow. Other units whose report cannot be received are
highlighted red. The faulty values are highlighted pink and displayed be-
low the yellow lines. For example, the third row has an IMS number
which is 123456789012345, but the unit report has a different value which is
987654321012345. The faulty IMS is displayed below line 3 and has a pink
color.

To convert XML format to HTML format, I can either use a XSLT

15

Figure 2.4: The sample HTML format

file to do the transfer or use the XmlReader and StreamWriter to generate
manually. I would like to write a XSLT file to do this, but the first thing
is learning XSLT file first. I am still lack of knowledge about XSLT, I am
keen to learn it in the future. Converting XML file to other format is also
possible.

2.3.5 Update Factory Database

The Factory also needs to manage the Blackhawk units as well. They need
to know what Blackhawk units are activated. The factory database is much
simple comparing to Blackhawk database. It has only 9 columns. They are
ID, QCID, BHID, SIMSERIALNO, WO, TIME, USER, ACTIVATION and
GPS. After checking the report, the application should set the Activation
and GPS columns of passed units to true.

2.3.6 Update Blackhawk Database

Before the Blackhawk units can be used, the information of the Blackhawk
units should be added to the “Devices” table of the Blackhawk database.
This table will manage all the functionality of the Blackhawk units. For
example, this table controls whether the Alarm Alert is enable, whether
the Lock Door Control is enable and so on. To add the new Blackhawk
units into the “Devices” table, we need to use the UploadDevicesFromCSV()
API under the FactoryService. This method will read a CSV file and add
the Blackhawk units in this file to the Blackhawk database. Before the
application can update the Blackhawk database, it needs to generate a CSV
file first.

16

2.3.7 Statistic Support

The statistic support of the application is still in thinking. I don’t really
know how to do it.

2.3.8 The Testing Panel

To make sure the production staff can easily find out the faulty units, we
designed a testing panel which can indicate the unit location in the tray.
Figure 2.5 shows the old implement of the testing panel.

Figure 2.5: The old Design

In the old implementation, we remove all the passed Blackhawk units,
so the tester can easily see the faulty reports. But the tester can only know
the serial number of the faulty units other than the location. Because the
application doesn’t show the location of the faulty units in the tray, the
tester have to check all the serial number printed on the Blackhawk units
in order to find out the faulty ones. If the Blackhawk units are sorted by
serial number, the tester may find out the faulty units easier. But it takes
time to sort the Blackhawk units in the tray and sorted Blackhawk units
still require the tester to check the serial number.

The solution is making a testing panel that can tell the location. Fig-
ure 2.6 shows the new designed testing panel that can do the task.

17

In this implementation, we use buttons to stand for Blackhawk units.
Each button stands for a Blackhawk units. The location of buttons in the
testing panel will be the same as the location of real Blackhawk units in the
tray. How can we do this? The tester randomly picks up a Blackhawk unit,
scans into the application, and puts it in the first holder of the tray. Then,
the tester picks up the second Blackhawk unit, scans it into the application
and puts it in the second holder of the tray and keep going. The first scan
will activate the first button in the panel and moves the focus to the second
button; the second scan will activate the second button in the panel and
moves the focus to the third button and so on. If there is anything wrong
with the scanning, the tester can click the button with problem and scan
again. The focus then moves to next button. In this implementation, the
tester doesn’t need to care about the serial number at all. The location
of button will tell the Blackhawk unit location in the tray. For example,
if the second button in the second row goes to red, we can know that the
second Blackhawk in the second row of the tray is faulty; the tester can go
directly to pick up the faulty unit without thinking. If the tester wants to
see any details about the faulty unit, he or she can just click that button on
the testing panel. Then the unit information with faults highlighted will be
popped up.

For the scanning part, we may add the setting so that we can choose
which button to focus after rescanning. For example, after scanning ten
units, the tester finds out that the fifth Blackhawk unit has been tested
before. Then the tester clicks the fifth button and scans another Blackhawk
unit then replaces the fifth Blackhawk unit by this unit. After this scanning,
should the application move the focus to the sixth button or just move
directly back to the first inactivated button? I would like to add a setting
for this, so that the tester can choose which way to move the focus.

In current implementation, the application can only start checking after
all the buttons are activated. This does make the application less flexible.
If we have only one unit remaining for testing, the application will not able
to do it. In the future implementation, I will remove this limitation, so
that the application will be able to test any number (fewer than default) of
Blackhawk units.

Another improper implementation so far is that the Blackhawk units
can only be scanned and put into the tray in order. For example, the first
scanned Blackhawk can be only put into the first holder of the tray. I
would like to change this a little bit. I may enable the tester to put the
Blackhawk unit to any holder of the tray. What the tester needs to do are
clicking the corresponding button in the testing panel and scanning the unit

18

Figure 2.6: The testing panel

before putting the unit into the holder. For example, if we needs to test two
Blackhawk units, and we want to put the first unit into the first holder and
put the second unit into the last holder. How can we do this? Just click
the first button to scan the first Blackhawk unit, and click the last button
to scan the second unit. Then put the first unit into the first holder in the
tray. Put the second unit into the last holder in the tray.

We may make the application more flexible if we can drag a button to
another button to swap the location and drag the button out of the form
to drop the scanned data. If I have enough time, I would like to implement
this functionality.

19

2.4 Conclusion

During the first half part of the project, I have specified most of the ap-
plication requirements and the way to implement this application in the
specification. The spec also defined the formats of the configuration file
and report of testing report. So far, the application can login to Blackhawk
server to poll the Blackhawk APIs. It can get the data from the Factory
database and Blackhawk database can do some checking.

The next step I need to implement these functionalities:

* Take input from scanner: So that the tester can scan the barcode to
input the Blackhawk serial number.

* Add other two layers: Make the application can deal with three-layer
tray.

* Finish the validation code: Finish the checking rules so that the ap-
plication can give a correct feedback.

* Generate report: Generate report of testing results.

* Update Blackhawk database: Add the passed units into the Blackhawk
database.

* The settings: Finish the settings panel, so that the tester can configure
the application as needed.

20

Acknowledgements

I would like to say thanks to my Academic Mentor Dr S. Manoharan for
providing lots information and advices on this project.

And I would like to thank my Industry Mentor Andrew Radcliffe for
giving me many useful advices and a sample program I can work on.

21

