
Blackhawk Production Test

BTech 450
Final Project Report

YuFeng Deng
Department of Computer Science

University of Auckland

Supervisors

Academic Mentor:
Dr S. Manoharan

University of Auckland
NewZealand

Industrial Mentor:
Andrew Radcliffe

Blackhawk Tracking System Ltd.
NewZealand

October 2008

Abstract

The main goal of this project is designing an application that can check
whether the new produced Blackhawk units are working and update the
databases accordingly. The application will also be able to generate a report
of the testing result. It may be able to do some statistical analysis based on
the report generated. This application will be developed using C# based
on .net technology. It will be used by the Production staff.

ii

Contents

1 Introduction 1
1.1 The Company and products 1
1.2 How does Blackhawk work . 2
1.3 Motivation . 4

1.3.1 Faulty products entering the market costs us. 4
1.3.2 There is not an efficient way to test products. 4
1.3.3 It costs a lot for testing so many products. 4
1.3.4 The production procedure 4

1.4 Project Goal . 5

2 The Solution 7
2.1 The way to test . 7

2.1.1 Unit Reports . 7
2.1.2 Checking Rules . 8

2.2 The Architecture . 9
2.2.1 Factory Database . 9
2.2.2 Blackhawk Database 10

3 The Application Implementation 11
3.1 How Can We Achieve It . 11

3.1.1 Blackhawk APIs . 11
3.2 Three steps . 13

3.2.1 Importing . 14
3.2.2 Testing . 15
3.2.3 Exporting . 18

3.3 Other functionailties . 19
3.3.1 Confiuration . 19
3.3.2 Generating Reports 21
3.3.3 Statistic Support . 23

iii

4 Manage the project 24
4.1 Version Control . 24
4.2 Software Distribution . 24

5 Conclusion 27
5.1 Further work . 27
5.2 Learning outcomes . 27

5.2.1 Writing Software Specification 27
5.2.2 Think about the usability 27
5.2.3 Great skill improvement on developing in visual studio. 28
5.2.4 Learn to use APIs. 28
5.2.5 Use subvertion . 28
5.2.6 Make setup package 28

Bibliography 30

iv

Chapter 1

Introduction

This report is about the BTech 450 project I have almost done for Blackhawk
tracking system Ltd Company. The project is about designing an application
that can help the production staff to test the products efficiently. This
chapter gives a introduction to the background.

1.1 The Company and products

Blackhawk is a company that focuses on developing vehicle tracking systems.
They have products for cars, motorbikes and other type of vehicles. They are
associated with AA and some insurance companies such as swann insurance
[1]. Their business is expanding to Australia recently. They have also being
developing a new product for personal use. For more information, visit
http://www.theblackhawk.co.nz. Figure 1.1 is the a logo of Blackhawk.

Figure 1.1: The Company logo

The Figure 1.2 shows a Blackhawk unit for car use.

1

Figure 1.2: A Blackhawk Unit

The Blackhawk units are based on GPS [2] technology. Each of them has
a SIM card [3] installed. Every Blackhawk unit is assigned a phone number,
so that they are able to receive text message. A Blackhawk unit can track
any kind of motor vehicles either by mobile phone or from the Blackhawk
website. It can indicate the location of your vehicle at any time as long as
it has the GPS signal (The GPRS [4] and GSM [5] signals are required too).
Besides reporting geographic location of vehicles, the Blackhawk unit can
do a lot of other cool things. For instance, if your vehicle moves without
the system being deactivated, you will be notified by text message. You can
even immobilise your vehicle by text message the next time it stops. These
functionalities are very useful if the vehicle is stolen. Blackhawk unit uses
internal aerials so thieves will not know there is a tracking system inside the
vehicle. Sounds amazing? Blackhawk units can also detect crash and over
speed. If your children take your car, you can know where they are and
what speed they are driving at.

1.2 How does Blackhawk work

It is very important to understand how Blackhawk unit works before going
to the project details. I’m not going to discuss how the Blackhawk’s dual
immobilisers immobilise your vehicle or how it detects a crash internally.
They are not parts of the project. Instead of that, I will introduce how the
Blackhawk unit is triggered, how it communicates with the web server and
so on. Figure 1.3 shows a example of the Blackhawk working process.

We assume this car has a Blackhawk installed and there are several
satellites, not only one. We need at least 4 satellites to get the accurate

2

Figure 1.3: How does Blackhawk work

position [6]. In this example, the car owner wants to know the location of
his car. He sends a text message “locate” to the Blackhawk unit in his car.
The Blackhawk units can response to a lot of events, such as over speed. In
this example, the unit is triggered by a txt message. Once the Blackhawk
unit gets the “locate” message, it will connect to the web server through
GPRS. It then sends an http request by HTTP get method [7]. The query
string will include the latitude and longitude that stands for the address
of the Blackhawk unit (same as the car). The query string can include
other information such as vehicle speed and battery level. The data sent to
server is called unit report. What information is included in the unit report
depends on the message you send to the Blackhawk unit or other events
trigger the Blackhawk unit. In this case, once the server gets the request, it
finds that the command is “locate”. It then searches for the exact address
of the Blackhawk unit in the database based on the latitude and longitude
received. Then the server sends back the address to the Blackhawk unit.
The Blackhawk unit then sends the address to the owner. The owner now
knows where his car is. The server can send TXT message directly to the

3

owner as well.

1.3 Motivation

There are three reasons motivate the company to do this project.

1.3.1 Faulty products entering the market costs us.

It’s a very bad thing if a faulty product enters the market. Bad products
will impress our customers negatively. And our technicians have to reinstall
fine units to replace the bad ones. Both of these cost us.

1.3.2 There is not an efficient way to test products.

To avoid selling faulty Blackhawk units, we need the production staff in
the factory to check whether the new produce Blackhawk units are working
properly. The checking process is based on the unit reports sent by the
Blackhawk units. It’s very inconvenient for production staff to check the
reports manually.

1.3.3 It costs a lot for testing so many products.

As we produce hundreds of Blackhawk units each time, it will take a lot of
time for checking the products. The Blackhawk tracking system Ltd has to
spend lots of money to the production staff for doing this. As the company
growing, there will be more and more products needed in the future. At that
time, it will be not possible for the production staff to check the products
manually.

1.3.4 The production procedure

Figure 1.4 shows the current production line. Once the products are made,
the production staff needs to test them before packing, The products that
failed the test will be sent back for reparing, the passed products will be
packed and delivered to us, then we need to enter the data of the new
products to the database. Both testing products and entering data are time
consuming. The main problem is the testing part. There are a bunch of
products need to be tested each time, and we don’t have a good way to test
them. Testing the products one by one will cost too much time, we have to
find a way to help the testing staff to do their job easily and quickly.

4

Figure 1.4: The current testing procedure

Due to these reasons, we need a tool to do the checking and update
the Blackhawk database efficiently. So we will still be able to manage the
production process in the future as the company grows.

1.4 Project Goal

The main goal of this project is to design an application that can assist the
production staff to do Blackhawk unit checking more efficiently. Beyond
this, we want a way to add the pass Blackhawk units to the Blackhawk
database easily as well. Figure 1.5 is the new production line we want it
to be. With the help of our application, the testing section becomes a very
easy job. And we don’t need Blackhawk staff to enter the new products’
data any more.

5

Figure 1.5: What we want it to be

6

Chapter 2

The Solution

2.1 The way to test

To solve the testing problem, we need to develop a software program to
do the testing for human. How can an application test the product? This
is the main problem we have to solve. The application cannot see any
physical devices. But it can see the data in the database. We can check
the unit reports sent by the Blackhawk units to the database server. From
checking the Blackhawk unit reports, we can tell if they are working properly.
Figure 2.1 demonstrates the testing way we have. We make the Blackhawk
unit get geography data from the satellites and send this data with some
other information to our server, then we check the data in the server.

2.1.1 Unit Reports

Figure 2.2 is a sample unit report I extracted from Blackhawk database.
This is not a function one report (The application only checks function
one report), but the data fields are the same. We can see that this is a
“Blackhawk installed” report from the Figure 2.2.

Not everything in the report will be checked, so far, we have to check 6
fields, FIX, Battery voltage, SSI, Software version, Function code, Latitude
and Longitude. If all of these fields are correct, the unit passes the test. In
this way, not all the functionalities of the Blackhawk units will be tested. But
it’s able to filter out most of the faulty units. And other functionalities will
be checked by the installers when the Blackhawks are being installed. That’s
not a part of this topic. Some fields of this report are easy to understand, for
example, in this report the Address row gives the location of the Blackhawk
unit which is 11 Lippiatt Road, Otahuhu, Auckland City. This is very

7

Figure 2.1: The way we can test the product

obvious. But some fields are not that obvious, let us have a look. The FIX
should be something new added recently which I don’t really know. ID is
the event ID. Date Recorded is the time at which this report is received.
SEN is the serial number of the Blackhawk unit. IMS is the number belongs
to the SIM card. LAT is the latitude of the Blackhawk location. LON is
the Longitude of the Blackhawk location. If you look carefully, you will
find another Latitude and Longitude in this report. They also stand for the
location of the Blackhawk unit, but in different format. SPD is the speed of
the vehicle. BAT is the battery voltage and so on.

The application will check this report using the checking rules.

2.1.2 Checking Rules

Checking rules are rules we made to check the unit reports. For example,
The IMS number should be the same as the IMS number from the factory
database, the address should be the factory address. For example, if the fac-
tory is on 110 Queen Street, the addresses of the units that are in the factory
are 110 Queen Street as well. The report should return “110 Queen Street”
in the address field or the corresponding longitude and latitude range. If
the report returns an address other than 110 Queen Street, the unit which
sent this report has problem. If a unit sends a report which fails to pass any
checking rule, we will treat it as a faulty unit. And it will be return to the
factory for fixing.

8

Figure 2.2: The unit report

2.2 The Architecture

This application will be used by the factory staff in the factory. Figure 2.3
give a simple introduction of the Architecture. On the Factory side, we have
Blackhawk units, testing program, production staff and factory database.
The Blackhawk units can get GPS signal from satellites and communicate
with Blackhawk server. The Application can access the factory database
and communicate with the Blackhawk server. The production staff are the
people who using the application to test the products.

2.2.1 Factory Database

The factory has a database for managing all new produced Blackhawk units.
This database is factory’s database and has nothing to do with Blackhawk
Company. The application will connect to this database to get the basic
information of the new Blackhawk units. Because factory database is also
located in the factory as the application, the application will treat it as
local database. The Blackhawk unit information in the Factory database is
different from the Blackhawk database.

9

Figure 2.3: The Solution Architecture

2.2.2 Blackhawk Database

The Blackhawk database is the database from which the application can get
the unit reports. All the reports sent by the Blackhawk units will be recorded
in this database. The Blackhawk database is outside the factory. The
application needs internet connection to access to the Blackhawk database.

10

Chapter 3

The Application
Implementation

3.1 How Can We Achieve It

To check the unit report sent by the Blackhawk units, we have to get the
reports from Blackhawk server first. How can we read the data from Black-
hawk server? We can write SQL query to do that. But this may bring
security problem, a cracker can modify the query string to execute mali-
cious commands [8]. To solve this problem, Blackhawk provides Blackhawk
APIs. The Blackhawk APIs are based on .net Web Service [9]. These APIs
provide a very easy way for the client to communicate with the server. To
use this APIs, the user have to login. We can constraint what APIs the user
can use, so that they can only read and write some tables of the database.

3.1.1 Blackhawk APIs

The Blackhawk Company has provided a bunch of APIs that I can use to
operate the Blackhawk database. The Blackhawk APIs are based on web
service. Here is a list of the APIs:

* BlackhawkAdminService

* BlackhawkCustomerService

* BlackhawkDeviceService

* BlackhawkEventService

11

* BlackhawkFactoryService

* BlackhawklnvoiceService

* BlackhawkLoginService

* BlackhawkReportService

* BlackhawkSMSService

* BlackhawkTrackService

BlackhawkLoginService

BlackhawkLoginServeice provides the Login, Logout and other methods. To
use the Blackhawk APIs, the user have to login to the Blackhawk server
within the Login method. Different users will have different access rights to
the Blackhawk database. The security will be managed by the Blackhawk
API Server, so that the application doesn’t need to worry about it.

BlackhawkEventService

BlackhawkEventService contains the most important APIs for this applica-
tion. Using these APIs, we can get all the Blackhawk events as we need.
The word “Event” here is the same meaning as report. Each time the Black-
hawk unit is triggered, we treat it as an event. Once an event happen, the
Blackhawk will send a report to the Blackhawk server. If we want to know
what kind of event it is, we can have look at the event report.

Figure 3.1 shows all the web services I can use to get Blackhawk Events.
The method FindEventsForDeviceByFunction() was mainly used in this ap-
plication. But Blackhawk provided a new API GetDeviceStatus() which is
easier to use. The powering on event will cause the Blackhawk unit to send
a Function one report to the server. The application can use this method
to get all the function one report for the devices. The function code of the
report is made to indicate what kind of event is triggered. Once a Black-
hawk unit is powered on, it will be automatically reset. This will cause the
Blackhawk unit to set the function code to 1 and send the report including
other information to the Blackhawk server. So we call this report as function
one report.

12

Figure 3.1: The BlackhawkEventService APIs

BlackhawkFactoryService

BlackhawkFactoryService has a method we can import the csv file which
contains Blackhawk units data to the Blackhawk server.

Other Web services

Other web services are not used in the application at this stage. We may
need to use them in the future. Some of the Blackhawk APIs are used by
other Companies that associated with Blackhawk Tracking System Ltd.

3.2 Three steps

Using the application, the production staff only needs three steps to do their
job, Importing, Testing and Exporting.

13

3.2.1 Importing

The task of importing is entering the product’s data into the Blackhawk
database. This was done by the Blackhawk staff when the products are de-
livered to the company. But as we want the new products to be able to send
unit reports to the server, we have to enter the data before testing. Due to
the security and other reasons, the Blackhawk server will reject any reports
sent by unauthorized units. If the server does not have the information of
the new units, the sent reports will not be saved in the Blackhawk server,
and our application will have nothing to check.

Firgure 3.2 shows how the production staff can import the new products.
It’s very simple. What they need to do is clicking the “import” button and
select the corresponding file. All the others will be done by the application.

Figure 3.2: The importing procedure

What’s in the back of importing? The application will check all the fields
of the importing file. If there is anything wrong with the file (such as wrong
file format), the application will stop importing and pop up a Message Box

14

to show the error. If the file is fine, the application will poll the Blackhawk
API to upload the data. After uploading, the application will read the
imported data from the database and compare it with the importing file. If
there is any mismatch, error message will be shown.

The application can accept two type of files, excel and csv. The produc-
tion staff will be provided an excel or csv file that contains all the information
of the units before importing. Figure 3.3 is an example of the excel file. Be-
cause the excel file has many columns and very wide, this figure only shows
a parts of the excel file. The csv file is very similar to the excel file, but it
has fewer information and can be edited using any text editor.

Figure 3.3: The sample excel file

3.2.2 Testing

Testing is divided to two sub steps, Scan and Test.

Scan

Scan is the way we enter the serial numbers of the Blackhawk units. Obvi-
ously, using scanner to read the serious number is much faster than using
keyboard, especially when the testing person is two-finger typer who is not
good at typing. Entering the serial numbers is not the only thing we do
at this step. We need to trigger the Blackhawk units to send data to the
Blackhawk server. Blackhawk units can be triggered by many ways; the
simplest way is powering it on. To trigger the units, the testing staff scans

15

a unit and puts it in one holder of the tray, and powers it on, and then
scan the next one till finish. To track the location of the faulty units, we
designed the testing panel this way (see Figure 3.4), so that we can record
the location of all the Blackhawk units. Each button on the testing panel
stands for one unit. The button location on the testing panel is the same as
the unit location in the tray.

Figure 3.4: Scan Blackhawk units into application

Initially, the current focus is on the first button. When the testing
person scans the first unit and puts it in the tray, the first button on the
application testing panel will become black, and the scanned serial number
will be displayed on the first button. The current focus will go to the second
button. The application now is waiting for the second serial number to be
scanned in. In this case, you can see that the last button of the second row
is pink, which means the last Blackhawk unit in the second row of the tray
cannot be scanned successfully. The testing staff has to remove it and place
another one. The reason of failed scanning can be varied. The Blackhawk
unit may not be activated in the factory database or not enabled in the
Blackhawk database. Or, the Blackhawk unit is not in Blackhawk database
at all (is not imported).

The current focus can be changed by clicking any button on the testing
panel. For example, if you want to replace the second Blackhawk unit in the
tray, you can click the second button on the testing panel, then remove the
second Blackhawk unit from the tray and scan a new one. The serail number

16

displayed on the second button will be changed to the serial number of the
new Blackhawk unit. You can delete any serial number using the context
menu by right click on the button.

Test

After scanning, we go to test section. In the Scan section, the production
staff does a lot and the application do a little. But in the test section, the
situation reverses. In this section, the testing staff clicks the “Test” button
then leave. All the testing stuff will be handled by the application.

You may be interested in what the application did in the background. Let
me explain it a little bit. After clicking the “start” button, the application
will get and check the units reports from the Blackhawk database every
30 seconds. The units that sent problem reports will be highlighted orange.
The units that sent fine reports will be highlighted green. Other units whose
reports cannot be received will be highlighted red after clicking stop button.

Figure 3.5: Test and wait

Why every 30 seconds

Once the tester put a Blackhawk unit in the tray and power it on, the
Blackhawk unit will be reset. Then it will send a function one report to the
Blackhawk server. This process will take some time. Because the Blackhawk
unit has to warm up and gather all the information that needs to be sent,

17

such as Latitude and Longitude. The latitude and longitude are got from
the GPS satellites. This procedure does take a long time. If the GPS signal
is too week, it take longer time for the Blackhawk unit to get the latitude
and longitude. If there is not GPS signal, the testing cannot be done. The
Blackhawk Company is planning to set up a GPS magnifier in the factory
to avoid any GPS signal problem. Once all the information is gathered, the
Blackhawk unit will connect to the Blackhawk server through GPRS. As
GPRS is a kind of slow connection, it also takes time to send the report to
the Blackhawk server. Beyond that, we need to consider the GPRS signal as
well. For these reasons, the Blackhawk server will not get the units reports
immediately after the units are powered on. Some reports may be received
earlier; some reports may be received later. To make sure we can get all the
sent reports, we set a polling interval which is 30 seconds (can be changed).

3.2.3 Exporting

Exporting is not real exporting; we use this word to make the application
more understandable. It includes two steps, update Blackhawk database
and update factory database.

Update Blackhawk Database

Exporting is the step we make the new products usable. The imported units
are put in the factory device set; a device set is a group of Blackhawk units
in Blackhawk database. Units in factory device set are ready to be tested.
The units in Blackhawk device set are ready to use. What Exporting do is
moving the units from factory device set to Blackhawk device set. Figure 3.6
shows a example of exporting. Unit 141013 has passed the test and exported,
it will be packed and delivered to the Blackhawk Company. It’s ready for
use once it’s delivered to Blackhawk.

Update Factory Database

The Factory also needs to manage the Blackhawk units as well. They need
to know what Blackhawk units are activated. The factory database is much
simple comparing to Blackhawk database. It has only 9 columns. They are
ID, QCID, BHID, SIMSERIALNO, WO, TIME, USER, ACTIVATION and
GPS. After checking the report, the application should set the Activation
and GPS columns of passed units to true.

18

Figure 3.6: Export Blackhawk units to Blackhawk dataset.

3.3 Other functionailties

3.3.1 Confiuration

To make the application more flexible, we need to add the configurability
to the application. For example, if we rent another production line from
other factory, we can configure the latitude and longitude range accordingly.
The application does supply a setting panel for configuration. Figure 3.7 is
the options panel we have currently. I’m using a XML [10] file to save
the configuration. The setting can be change by editing the configure file
directly.

<BlackhawkSettings>
<Options>

<FUN Type="String" Value="1" />
<Min_LAT Type="String" Value="" />
<Max_LAT Type="String" Value="" />
<Min_LON Type="String" Value="" />
<Max_LON Type="String" Value="" />
<Min_Bettery Type="String" Value="12.0V" />
<Max_Bettery Type="String" Value="12.0V" />
<Min_FIX Type="String" Value="3" />

19

Figure 3.7: The option panel

<SWV Type="String" Value="703404009" />
<Min_SSI Type="String" Value="9" />
<Min_Battery Type="String" Value="12.0" />
<Max_Battery Type="String" Value="15" />
<Database Type="String" Value="E:\stuff\UOA\2008S2\BTech450\app\6-oct-2008\Factory Tester\bin\Debug\BlackHawk.mdb" />
<ChkFactoryDB Type="Boolean" Value="True" />
<Max_Units Type="Int32" Value="2" />

</Options>
<Setup>

<WebServiceUrl Type="String" Value="http://www.bhtrack.net/BlackhawkAPI/" />
</Setup>
<Login>

<Username Type="String" Value="fengd" />
<Password Type="String" Value="password" />
<RememberMe Type="Boolean" Value="True" />

</Login>
<Appearance>

<WindowIsMaximized Type="Boolean" Value="False" />
<WindowTop Type="Int32" Value="102" />
<WindowLeft Type="Int32" Value="247" />
<WindowWidth Type="Int32" Value="800" />
<WindowHeight Type="Int32" Value="600" />

20

</Appearance>
</BlackhawkSettings>

C# provide a XMLSettings Class which we can use to read and write
this XML file easily. For example, if I want to read the Login username, use
following code.

// Create a XMLSettings Object
public XMLSettings Settings = new XMLSettings("BlackhawkSettings");
// Load the XML file.
Settings.Load("blackhawkSettings.xml");
// Read the attribute values.
Settings.GetString("Login\tUsername");

Before I knowing this XMLSettings Class, I used ConfigReader to read
the XML file. Although the ConfigReader is not convenient as XMLSettings,
it is also easy to use as well. The main problem is that it can only read the
XML file but not write. It requires a ConfigWriter to do the writing which
is not that convenient.

The other way to save the settings is saving the setting into the windows
registry. I didn’t try to read and write windows registry before in a program.
But I don’t think that it’s difficult. I know how to read and write windows
registry using the windows command reg.exe. I believe that there is a c#
library which can do similar thing as reg.exe. I chose not to use registry
because I want to make the application portable. So it can be copied to any
computer in the factory including the settings. An advantage of using the
registry is that different user can use different settings if we save the settings
in the CURRENT USER node in the registry. But in our application, we
don’t really need personalised settings.

3.3.2 Generating Reports

For debugging purpose, the application should be able to generating reports
for the checking result. Then the technician can use this report to debug
the faulty Blackhawk units. Although the application can show the prob-
lems of the Blackhawk units, but the information shown on the application
panel is not printable and not convenient to read directly from the monitor.
Generated text format file will be easy to read and can be printed out easily.

It will be easy to write the result report in a plain text file. But the
plain text file has no ability to highlighted text which we want to emphasis.

21

For example, I want to highlight the error value in red, so the technician
can found the problem more quickly. I chose to generate the report in
XML format because I can easily convert the XML format to other human
readable format such as html.

<!--report_1-1-2008.xml-->
<Testing Results>
<Unit>
<Number>1</Number>
<Serial No>123456</Serial No>
<IMS>123456789012345</IMS>
<Phone No>0211234567</Phone No>
<Status>Unknown</Status>
<Location>X</Location>
...
</Unit>
<Unit>
<Number>2</Number>
<Serial No>123456</Serial No>
<IMS>123456789012345</IMS>
<Phone No>0211234567</Phone No>
<Status>Faulty</Status>
<Faulty_Location>Sydney</Faulty_Location>
<Faulty_IMS>987654321012345</Faulty_IMS>
...
</Unit>
<Unit>
<Number>3</Number>
<Serial No>123456</Serial No>
<IMS>123456789012345</IMS>
<Phone No>0211234567</Phone No>
<Status>Pass</Status>
<Location>Auckland University</Location>
...
</Unit>
...
</Testing Results>

The faulty items will be recorded as an element with a name start with
Faulty This XML file is not that straight forward for human. But it can

22

be converted to other file format easily. Figure 3.8 is a example of HTML
format.

Figure 3.8: The sample HTML format

In this html format, passed units are highlighted green, faulty units
are highlighted yellow. Other units whose report cannot be received are
highlighted red. The faulty values are highlighted pink and displayed be-
low the yellow lines. For example, the third row has an IMS number
which is 123456789012345, but the unit report has a different value which is
987654321012345. The faulty IMS is displayed below line 3 and has a pink
color.

To convert XML format to HTML format, I can either use a XSLT
file to do the transfer or use the XmlReader and StreamWriter to generate
manually. I would like to write a XSLT file to do this, but the first thing
is learning XSLT file first. I am still lack of knowledge about XSLT, I am
keen to learn it in the future. Converting XML file to other format is also
possible. This functionality has not been implemented yet.

3.3.3 Statistic Support

We have not implemented anything about statistical analysis yet. This is
an extra functionality which is not very important. We may implement it
in the future if necessary.

23

Chapter 4

Manage the project

4.1 Version Control

To avoid losing of work, we use Subversion (SVN) [11] to backup the project.
After doing a lot of change to the program, I commit the new version of the
program to the Blackhawk subversion server. The client we use is Tortois-
eSVN [12]. SVN is a very good solution for backup. Before using SVN, I had
to duplicate the whole project folder to do the backup. This way consumes
a lot of disk space. And, this way is not safe enough, because it does not
protect from losing of computer or hard drive damage. SVN is intelligent, it
knows which files are modified and which files are not. When you commit a
new version, it will only upload the modified files. Normally, these are some
C# code files that are very small. So, using SVN to do a backup is very
fast.

If you have made your code messy, and want your old version back, you
can use “SVN update” to get your latest version on the SVN server. You
can get any version back by specify the version number if you want.

Figure 4.1 is a snap shot of the TortoiseSVN client. TortoiseSVN is
embedded to the context menu. Right click a folder or a file to pop up the
context menu, then you can use svn commit you upload the new version to
the server, or use svn update to update the local file from the svn server.
TortoiseSVN menu gives more functionality if you need.

4.2 Software Distribution

To make our application easy to install, we have to pack the application to
a setup package. So the factory staff can install the application by follow-

24

Figure 4.1: The svn client

ing the setup wizard. I know the two most popular distribution software,
installshield and wiseInstall. But I didn’t know that the visual studio has
this kind of tool as well. Actually, we don’t need to use any third-party soft-
ware. Visual studio can do this for us [13]. To build a setup package, start
visual studio, create a new project, double click “Other project types”, then
click “Setup and Deployment”. Then click the ‘Setup Project” on the right
window. In the Setup project, you can customize the application folder,
the desktop shortcut, the registry and so on. Press F6 to build the project,
there will be two setup files generated, one is exe file, and the other one is
MSI file.

25

Figure 4.2: The setup project

26

Chapter 5

Conclusion

5.1 Further work

The program is almost done. But it has not been used in the real situation.
I tested it with dummy data and keyboard. It works well in the lab. As
we didn’t test it in real world, there should be some bugs we didn’t find.
We will test the program in real situation and fix bugs found; improve
usability, performance and tidy the code. I do think that we can make
this program better and easier to use. For example, we can add a drag
and drop functionality so that we can swap the Blackhawk location easily.
The program still cannot generate report nor do any statistical analysis, if
necessary, we will implement these later.

5.2 Learning outcomes

5.2.1 Writing Software Specification

I wrote a software specification for the project. I didn’t do it well. I found
that it’s very important to write a good software specification before coding.
Otherwise, you may code something useless.

5.2.2 Think about the usability

The usability is essential for a application. I have been developing this
application, so that the program is obvious to me. I can use it without any
problem. But it doesn’t mean that the application is obvious to the factory
user as well. We have to make the software interface as simple as possible.
So everyone can use it without doubt.

27

5.2.3 Great skill improvement on developing in visual studio.

At the beginning of the project, I was not good at using visual studio. I had
troubles with the layouts, events, debugging and so on. I can now deal with
visual studio well. I didn’t like developing using visual studio before, being
using visual studio for one year, I changed my mind, visual studio is quite
good a developing environment.

5.2.4 Learn to use APIs.

Blackhawk has many APIs. This APIs provide a way that other companies
can cooperate with us easily. APIs also secure the access from outside of
the Company.

5.2.5 Use subvertion

SVN is a very good way to backup and track the old version of the project.
I found it very useful.

5.2.6 Make setup package

Visual studio is able to make setup package, we don’t need any other third
party application to do this. Make good use of Visual studio :).

28

Acknowledgements

I would like to say thanks to my Academic Mentor Dr S. Manoharan for
providing lots information and advices on this project.

And I would like to thank my Industry Mentor Andrew Radcliffe for
giving me this opportunity. He also gave many useful advices and a sample
program I can work on. I also would like to thank Michael for his help on
using Blackhawk APIs.

29

Bibliography

[1] The Blackhawk Website: http://www.theblackhawk.co.nz/. Last visit: 22 Oct
2008.

[2] Yunck, T. P., W. G. Melbourne, et al. (1985). “GPS-Based Satellite Tracking
System for Precise Positioning.” IEEE Transactions on Geoscience and Remote
Sensing: 450-457.

[3] The Sim card: http://en.wikipedia.org/wiki/Sim card. Last visit: 22 Oct 2008.

[4] Cai, J. and D. J. Goodman (1997). “General packet radio service in GSM.”
Communications Magazine, IEEE 35(10): 122-131.

[5] Rahnema, M. (1993). “Overview of the GSM system and protocol architec-
ture.” Communications Magazine, IEEE 31(4): 92-100.

[6] Kihara, M. and Y. Nat. Defense Acad. (1994). “Study of a GPS satellite se-
lection policy to improve positioningaccuracy.” 267-273.

[7] The Http Get method: http://www.w3.org/Protocols/rfc2616/rfc2616-
sec9.html. Last visit: 22 Oct 2008.

[8] Anley, C. (2002). “Advanced SQL Injection In SQL Server Applications.”
White paper, Next Generation Security Software Ltd.

[9] Möller, B. and C. Dahlin (2006). A First Look at the HLA Evolved Web Service
API.

[10] Bray, T., J. Paoli, et al. (2000). “Extensible Markup Language (XML) 1.0.”
W3C Recommendation 6. Last visit: 22 Oct 2008.

[11] Collins-Sussman, B., B. W. Fitzpatrick, et al. (2004). Version Control with
Subversion, O’Reilly Media, Inc.

[12] Küng, S., L. Onken, et al. (2008). TortoiseSVN A Subversion client for Win-
dows.

[13] How to create a Setup package by using Visual Studio .NET:
http://support.microsoft.com/kb/307353. Last visit: 22 Oct 2008.

30

