A DATA SOURCE DEFINITION TOOL FOR
REPORTING TOOLS

Final Report

for
Bachelor of Technology
(Information Technology)

Haoxiang Zhu
Department of Computer Science
University Of Auckland

New Zealand

October, 2007

Supervisors:
Gareth Cronin (Industrial) Dr. Xinfeng Ye (Academic)
Development Team Leader Department of Computer Science
Kiwiplan Ltd. University Of Auckland

New Zealand New Zealand

ABSTRACT

Kiwiplan GUI framework provides a crystal reports style report designer that uses
Kiwiplan's flexible table system as its data source. Everyday users are able to create
reports based on existing customizable tables within application user interfaces.
However, power users in organizations often wish to report on custom data sources.
Traditionally power user reporting tools allow the definition of an SQL query and
then reports are built on the resultset from this query.

In this project, we are going to build a Data Source Definition Tool which allows the
users to link together business objects in a SQL join style fashion to achieve custom
data sources based on the business objects, rather than just a SQL query on the
database backend. We are also going to enhance the original reporting facility by
building in a more powerful sub report facility in to the system.

Data Source Definition Tool -1- Haoxiang Zhu

Contents

1. INTRODUCTION . it e s s bbb e e e e s s s s bbb a b e e e s e s s st b ebeeaseeeas -3-
1.1. THE COMPANY ..ottt ettt e et e e e e e e et e e e e e s eessaaateeeeessesnaeseeeeeessannaseeeeeesansnnees -3-
1.2. 1V [I A/ 1] TP -3-
1.3. [O N | =l B €10)Y HR RO -4-

2. HIGH LEVEL SYSTEM OVERVIEW. ...ttt -5-

3. INVESTIGATING IREPORT AND JASPERREPORTS ...ttt -7-

4., SYSTEM REQUIREMENTS SPECIFICATIONccoiiiiiiiiie et -10 -

5. INTEGRATE IREPORT INTO THE SYSTEM ..ottt -13-
5.1 DATA SOURCE SERVICE V.S. DATA SOURCEccooouuviiiieeiieiiieeeeeeeeeeeiaeeeeeeeeeeeiaereeeeeeeeeaanneeeees -13-
5.2 IDATASOURCESERVICEPROVIDERccccuuvviiiiieiiiiiiirieeeeeeeeiiareeeeeeeeesisseeeeeeeeesnssssreseseeennsssneeeees -14 -
5.3 USING JRDATASOURCEccooiutreiieeeeeeeiieeeeee e e ettt e e e e eeesaaeeeeeeeeeesaaaereeeeeeeseataereseseeennarereeeees -15-
5.4 USING IREPORTCONNECTIONceiieiiiiiitiiereeeeeeeieitaereeeeeeeeesasreeeeeeeeesisssereseseeesssrssesesesemnssrseeeees -16 -
5.5 WORKING WITH FLEXIBLETABLE IN KIWIPLAN FRAMEWORKccuuiieiiiiiiiiiiieeeeeeieiiieeeeeeeeens -17-

6. SUPPORT FOR SUB-REPORTS ...ttt eaaabae s -19-
6.1 MASTER REPORT AND SUB REPORT DATA SOURCEccoiviuurrieiieeieeciiieeeeeeeeeeeirereeeeeeeeeivvneeeees -19-
6.2 SETTING UP JRPARAMETERSuvvtviieiiiiiitiereeeeeeeietereeeeeeeeesaareeeseeeeesasseseseeeeenssssreseseeennassreeenes -21-
6.3 BUILDING A SUB REPORT MANUALLY IN IREPORTcccciiiiiiitiirieieeeeieiiireeeeeeeeeeeirrereeeeeeeenannneeeees -22-
6.4 DATA SOURCE EXPRESSIONuuviiiieiiiiiiiieeeeeeeeeieiueeeeeeeeeeesaareeeeeeseesissssseseseessssssreseseeennssrseeeees -24 -
6.5 SUB REPORT PARAMETERSuuvvviviieeieeiiitiereeeeeeeeeiiueeeeeeeeseesaaseeeeeeseesissseseseseessnssssseseeesennansreeeees -26-
6.6 OBJECT LEVEL JOIN FOR MULTIPLE DATA SOURCES.......ccootiuuteeieeeeeeiirreeeeeeeeeeeirereeeeeeeeeinnneeeees -26-

7. AUTOMATING BUILDING SUB-REPORTS ...ttt -30 -
7.1 THE WORKFLOWuuvviviiiieeieeiittreeeeeeeeeeetaeeeeeeeeeeetaaseeeeeeseessaaseeeseeeeesssaereseseesantssreseseeeansreneeeees -30-
7.2 IMPLEMENTATION OF AUTOMATION PROCESS.......uuvtviiiiiiiiiiiireeeeeeeeeeiieeeeeeeeeeeiiaereeeeeeeeeiaaneeeees -33-

8. FUTURE WORKS ...t e e r e e s s abrbaae s -39 -

O, CONCLUSIONS ... r e e s s s r e e e e s s s bbb baee s -40 -

10. ACKNOWLEDGEMENTSooii e bbaa e -41 -

11, REFERENCES ... et r e e e e s a b e e e e e e aas -42 -

Data Source Definition Tool -2- Haoxiang Zhu

1. Introduction

This report documents the outcomes from the final year Bachelor of Technology
project. In this section, I am going to briefly introduce the company which offers this
project, followed by the motivation and the final goal of this project.

1.1. The company

Kiwiplan is a software development company that services the corrugating and
packaging industries. Typical customers include firms that produce corrugated
cardboard products such as boxes, display stands, and other packaging products.

Their product range covers the entire business process for a packaging firm, from
order entry to shipping. The core products relate to controlling the plant and
scheduling the corrugating machinery. These products communicate with the
equipment on the factory floor to control production and collect data.

In the 1970's, Kiwiplan was starting business as a small corrugating firm. As their
throughput increased they developed computer systems to help them keep up with
demand. There was considerable interest in these computerised systems from other
packaging companies, and the IT department grew and eventually separated from the
box plant division.

Kiwiplan is now one of the world’s leading software suppliers to the packaging
industry. They have customers in 28 countries and four international offices. All
research and development work is done in New Zealand.

1.2. Motivation

e Currently, Kiwiplan uses DataVision as the reporting tool. This type of reporting
tool only supports reports to be built from a single data source. There is no way of
combining data that obtained from different data stores (e.g. different databases)
together to produce the desired reports. However, power-users in organizations
often wish to report across multiple data sources, this is typically the case, for big
organization such as Kiwiplan, where a report may require data stored at different
database servers located in different counties (e.g. US office and NZ office).

e Sub-reports are widely used in many organizations. A sub-report is an entire
report that is placed in the detail area of another report. Its main purpose is to
display data from data sources linked in a set using one-to-many links at the same
level. The existing reporting facility in Kiwiplan does not have the build-in
support for creating a sub-report. Having the ability of producing sub-reports not
only make the resulting report more visually understandable, it also saves time

Data Source Definition Tool -3- Haoxiang Zhu

and effort for technical staffs to prepare lots of complicated reports.

1.3. Project Goal

The goal of this project is to enhance the existing reporting facility in Kiwiplan, so
that:

e Report user can use multiple data sources to create a single report.

e Report user can design the desired report using an easy-to-use tool.

e Sub-report should be supported.

A key difference between this reporting facility and the traditional reporting facility is
that the tool works on-object-basis.

Traditional reporting tool usually has a connection to a back-end database, and the
report is generated from the resultset of executing some query languages, e.g. SQL. In
this tool, we do not have a back-end database connection. All the data sources that the
reporting tool works with are on object level. An example of such objects can be a
collection of JavaBean objects.

In the next section, a high level view of the proposed system is to be shown to get us
familiar with the proposed system.

Data Source Definition Tool -4- Haoxiang Zhu

2. High Level System Overview

In this section, we are going to have a general structure of the proposed system, and
also have some ideas of how the system can achieve the goals that I specified in the

project goal.

There are a few very important components in this system, let us now look at them
one by one:

Raw Data Source: The raw data source is the place where the data that we
use in the report is originated. This can typically be some relational
databases.

Custom Data Source: As mentioned earlier, report users typically want some
kind of custom data source(s) for the report, and therefore, the custom data
source here, will be the data source(s) that the reporting tool makes use of.
The custom data source in this case, can typically be a collection of java
objects, since our proposed tool works on object level.

Reporting Tool: A tool that allows the users to design the report using the
supplied data source(s).

Report: The result the system should produce. Note that the content of the
report may come from different raw data source(s).

Having explained these important components, let us have a look at how our proposed
system links them all together, and achieve our goal:

Data Source Definition Tool

/-Raw Data Sources—\

Reporting Tool Database B

Database A

& J

Produces

Produces

Report Custom Data Source(s)

Figure 2.1 High level overview of data source definition tool

As we can see from Figure 2.1, the Data Source Definition Tool has linked all the
important components together. This can be further explained by the following
workflow:

The Data Source Definition Tool accesses some raw data sources.

2. The Data Source Definition Tool produces some custom data source(s). Note that
there may be multiple custom data sources produced.

1.

Data Source Definition Tool -5- Haoxiang Zhu

3. The reporting tool uses the custom data source(s) produced by the tool.
4. Areport is generated based on the custom data source(s).

We can also notice that the reporting tool is actually part of the Data Source
Definition Tool. This means that in order to develop such a reporting facility, we
either have to develop a reporting tool of our own, or we have to use one of the
existing reporting tools that are publicly available, which can be easily embedded into
our system. There are many reporting tools that are publicly available, such as
DataVision, iReport, and BIRT (as an Eclipse plug-in). They all have very similar
functionalities, but in this particular project, iReport has been chosen as our
underlying reporting tool, due to the fact that it is better suited to this project. The
following table shows a comparison between iReport and DataVision on some
selected features (Note that new version of DataVision may have some more features,
this comparison is done based on the DataVision version that Kiwiplan uses.):

Tools iReport DataVision

Features
Drag-n-drop report design \ \
Language Java Java
Custom Data Source Very well supported Supported, but limited
Embeddability \ v
Sub report \ No
Report Parameters V \
Complexity Heavy-weighted Relatively light-weighted
Databases Any with JDBC driver Any with JDBC driver

defined defined
Report Engine Jasperreports Build-in

Figure 2.2 Comparison between iReport and DataVision

As we can see from Figure 2.2, although the major functionality of these two
reporting tools are quite similar, iReport is a better option due to its sub-report and
custom data source support, hence, I have chosen iReport as the reporting tool for this
project.

It is also shown in the table that iReport uses JasperReports as its report engine, in

next section, we are going to look at the connection between iReport and
JasperReports, and how they are combined together to produce an end-user report.

Data Source Definition Tool -6- Haoxiang Zhu

3. Investigating iReport and JasperReports

JasperReports and iReport are two widely used open source software developed by
JasperSoft. They are purely written in Java, and their existences have made reporting
in Java applications. In this section, we are going to look how JapserReports and
iReport work.

JasperReports is an open-source Java class library designed to aid developers with the
task of adding reporting capabilities to Java applications. Since it is not a standalone
tool, it cannot be installed on its own. Instead, it is embedded into Java applications
by including its library in the application's CLASSPATH. JasperReports is a Java
class library, and is not meant for end users, but rather is targeted towards Java
developers who need to add reporting capabilities to their applications.

JasperReports takes in a report design as an XML file (jrxml file), and compile into a
jasper report file (jasper file). Through a JasperFillManager, a report print is produced
for the end report users. The following diagram shows the work flow of how
JasperReports work.

| JasperPrintManager |

.
| JasperFillManager ‘ Pt
parse compile
| JasperDesign I—,rhl JasperReport I—:’I'I—hl JasperPrint |
1
expon
HTML
JRXmilLoader | JRCompiler |
h A XML
JasperCompileManager | JasperExportManager |

Figure 3.1 Work flow for JasperReports

(www.hisp.info/confluence/download/attachments/3330/seminar.ppt)

iReport, on the other hand, provides a front-end Graphical User Interface, for the end
report users to define the design of a report, unlike JasperReports, iReport is targeted
towards any report users, i.e. not necessary Java developers. The primary job of
iReport is to produce the jrxml file for JasperReports to use. Hence, we can see
iReport has JasperReports build-in as its report engine. The following diagram
illustrates how iReport and JasperReports work together to produce a report for the
end report users:

Data Source Definition Tool -7- Haoxiang Zhu

http://www.hisp.info/confluence/download/attachments/3330/seminar.ppt

=5 w AL

[\ R

I {?ﬁr_l?" =2 \ Eosore
s

ﬁ '.Jzﬁ{‘é-l‘:’_'_
L EEPoOTilea

JRMTABQUEEE M A e

7 IReport

Figure 3.2 iReport and JasperReports
(http://ireport.sourceforge.net/cap3.html)

In Figure 3.2, report users define a report structure using iReport. The result that
iReport provides is a jrxml file (in the diagram, it is shown as TEST.XML). Then this
jrxml file is passed alone to JasperReports, it compiles the design of the report into
a jasper file (in the diagram above, it is shown as TEST.JASPER). This compiled
report design is combined with a JRDataSource, to produce a final report (RESULT in
the diagram), also known as a jasper-print. It is not hard to see that in JasperReports:

JasperPrint = Jasper file + JRDataSource

Now, let us have a look at another very
important concept in JasperReports,
JRDataSource. JRDataSource is an

<<interface>>
JRDataSource

+next() : bool

+getFieldValue(JRFeild field)() : object | nterface provided by JasperReports, it
i1s the data source used for

JasperReports to produce a print. Therefore, any possible data sources need to
implement this interface, to provide the compatibility to JasperReports.

Some examples of implementations of JRDataSource can be:
e JRResultSetDataSource — wraps a JDBC ResultSet object as the data source.
e JRXMLDataSource — wraps an XML document as the data source.
e JRTableModelDataSource — wraps a TableModel as the data source.

Through this interface, JasperReports has provided the users with the ability to define
custom data sources. Having this interface, we can therefore implement any kind of
data source of our own, and those custom data sources that defined by ourselves can
be used by JasperReport as the data source to produce reports. This is one of the most
important reasons that I chose iReport/JasperReports as the reporting tool in this
project.

Figure 3.3 shows the system structure when iReport is embedded:

Data Source Definition Tool -8- Haoxiang Zhu

http://ireport.sourceforge.net/cap3.html

——Data Source Definition Tool ~

Report Design~

Data Source Selection EFE
((User Interface
User Interface & TR R i
& L
f»:__—:/) Java Products
b
b =

Figure 3.3 System embedded iReport
As shown in Figure 3.3, the system includes the following main components:
e Data Source Selection Ul: This user interface allows the users to select the
appropriate data sources from available data sources services. (Refer to
Section 5.1 later in this report).

e Report Design Ul: This user interface provides a front end environment for
users to design the report graphically (e.g. by simply drag and drop fields), in

our case, this feature is already provided by iReport.

e Report Engine: Every report is generated using a report engine, iReport has
its build-in report engine as JasperReports.

Data Source Definition Tool -9- Haoxiang Zhu

4. System Requirements Specification

Requirement Engineering has been one of the most important components throughout
Software Development Life Cycle (SDLC). In order to detail the requirements of the
project, I have had quite a number of meetings with the development leader within
Kiwiplan. The resulting software requirement of this project is summarized using the
following use case diagram:

,’

A

Power User

Figure 4.1 Use Case Diagram

Now, let us have a look at each of the use case in more detail:

Select Data Source Service(s): As previously mentioned, the user is able to
design the report across multiple data sources. Therefore, the user needs to be
able to select different data source services which provide accesses to different
data sources. Typically, a data source service provides access to more than one
data sources.

Select Data Source From Service: When the users have chosen the data source
service, they should be able to select the corresponding data source from the
particular service.

Preview Data Source: After the user has chosen the data source, they should be
able to preview the selected data source(s). The data source(s) are typically
displayed in a JTable under the current implementation.

Choose Master Data Source: The functionality is primarily used for the
sub-report support of the tool. A master data source is the data source used for the

Data Source Definition Tool -10 - Haoxiang Zhu

master report. When the user has chosen more than one data sources from the
services, they should (they are required) choose a master data source for iReport
to use, and any other data sources are treated as detail data sources used for
sub-report. This feature will be discussed in more detail later this report.

e Specify Report Linkage: When users choose to design a sub report, they should
specify how the sub report is linked to its master report, particularly, which fields
from the master report is linked to the ones in the sub report. This feature will
again be discussed in more detail later this report.

e Design Report: Of course, the users need to be able to design the report
structure.

After the use cases have been decided. The User Interface has been developed
according to those use cases. The following figure is a screen-shot of the current

implementation of the user interface (Note that this user interface design might
change later):

!_-é Data Source Definition Tool g‘

Please select senvice: [UniPeopleSernvice | _"@EEISE select data sul,r :)

| — — ™

Please select serice; |ncadew[ﬂecurd52nﬂce Please select data source: Grade |«

i — _"_,_,..-'-'_'_
g View Data Source > More Less (Design Report -\.

|/ Student Data Source | Grade Data Source |

studentlC [Hu]¥g=1=] grade

ooo00o1 CEI134 ot
Onoooo0 C5134 L
0noooa 5340 A

00000 CEIT2 A-
onooooz ECOM1M B+
oooooo: INFORSYS220 -
ooooooz MATHZOG At
ooo0ooz 2101 B-

Figure 4.2 User Interface

In the above User Interface design:

e The component that is labeled “1” corresponds to the Select Data Source
Service use case where user is able to choose among different data sources. For
example, if there are four data source services available, each of the dropdown
lists will have the four services available for users to choose from. By default, the
system shows one pair of “select service” option and “select data source” option,
the user can ask to choose from more/less data source services/sources by

Data Source Definition Tool -11- Haoxiang Zhu

clicking the “More”/ “Less” buttons. In this example shown in Figure 4.2, the
user has clicked the “More” button once, and has chosen a service called
“UniPeopleService” which provides the people service.

e The component that is labeled “2” corresponds to the “Select Data Source From
Service” use case where the user has chosen the “Student” data source.

e The component that is labeled “3” corresponds to the “Preview Data Source”,
where the user is able to preview the selected data source(s) in JTable, in the
example above, as the user has chosen two data sources from two different
services, there are two data sources table displayed in a tabbed pane.

e The component that is labeled “4” corresponds to the “Design Report” use case.
This button will launch iReport report design panel, providing the users with a
graphical user interface to design the desired report. However, if more than one
data sources are chosen, a wizard will pop up asking the users to pre configure
the report settings. This wizard will be discussed in more details in the next
sections.

The following is a brief class diagram for the user interface design:

JPanel <<interface>>
ActionListener

DataSourceProviderPanel <<interface>>
_________ > IDataSourceServiceProvider

+actionPerformed()

1 *

D Selectic Li:
DatasourceSelectionPane - 1 1PaneList

& +morePane()
+lessPane()
+getPanelList()

+getSelectService()
+getSelectedDataSource()

Figure 4.3 class diagram for user interface design

Data Source Definition Tool -12- Haoxiang Zhu

5. Integrate iReport into the System

Up until this point, we have had the data source(s) ready for the iReport to use. In this
section, we are going to see how iReport uses our custom data source(s) produced by
the Data Source Definition Tool, and how those data source(s) are passed along to
iReport.

5.1 Data Source Service V.s. Data Source

Before I introduce how iReport is integrated into the system, we have to clarify two
very important terms that we used: Data Source Service and Data Source, first, let
us have a look at the diagram:

Data source service:
Similar to a Data Repository
or a Data Warehouse.

Access Access

DataSource3 DataSource3

A

UniPeopleService
Serve Serves

AcademicRecordService

Student Grade 1
Student Grade 2
Student Grade 3
Student Grade 4
Student Grade 5

Grade DatgjSource

Table in relational DB
or a collection of java beans

Data Source: T

Figure 5.1 Data Source Service V.s. Data Source

A data source service is a service access layer that provides accesses to the data
sources it serves. In the above diagram, there are two data source services,
UniPeopleService and AcademicRecordService, the UniPeopleService provides two
data sources: Student and Staff data sources. And the AcademicRecordService
provides only one data source StudentGrade data source. A data source service is
similar to a data repository or a data warehouse, in the sense that it stores all the data

Data Source Definition Tool -13- Haoxiang Zhu

sources corresponding to that particular service.

A data source is the actual objects have the data information stored. Typical examples
of data sources can be a table in a relational databases or a collection of java objects.
In the above diagram, all the data sources are provided as a list of simple JavaBean
objects.

5.2 IDataSourceServiceProvider

Now, let us have a look at how the data source service is implemented. As we noticed
from Figure 4.3, there is an Interface called IDataSourceServiceProvider. In the use
case diagram (shown in Figure 4.1), the user is able to select from different data
source services. This interface provides such compatibility for any class that provides
this kind of service. The class diagram of this interface is shown on the left:

‘ ' ; : For any classes that implements this interface,

<<|nterface>>

: . they should specify how each of the data
IDataSourceServiceProvider sources that this service provide is obtained,
+getAlDataSourcellames() for example, from a JDBC resultset, or from a
#QetData(Sing datasourcel\ame] collection JavaBean objects in the getData()
+getSenviceName] method. A sample implementation of this
tgetClassODataSource(Sting dataSourceName) | interface is shown in Figure 5.2, which
+getCorePreference| provides the data sources shown in Figure 5.1.

public List getData(String dataSourceName) {

List list = new ArrayList(Q);

if (dataSourceName.tolLowerCase().equals(*"student™)) {
Student s1 = new Student(''0000001',"James', '"Bond");
Student s2 = new Student(''0000002","Bill", "Gates');
list.add(sl);
list.add(s2);

by

else 1T (dataSourceName.toLowerCase() .-equals('staff')) {
Staff stl = new Staff(''4545674","Abc","Def",""Computer Science™);
Staff st2 = new Staff(''8745374","Kkk",""Hhh" ,""Computer Science™);
Staff st3 = new Staff("'3524364","Loo","Ccc", " "Economics");
list_add(stl);
list_add(st2);
list.add(st3);

by

return list;

}

Figure.5.2 Sample implementation of getData method for IDataSourceServiceProvider
In this implementation, the data sources are generated from a List of JavaBean
objects.

Data Source Definition Tool -14 - Haoxiang Zhu

5.3 Using JRDataSource

By having the data source services, we have the ability to enable users to choose data
sources from different services. However, after these selected data sources are in place,
we need to make use of these custom data sources in iReport. As I mention in
Section.3 of this report, iReport make use of custom defined data sources through an
interface called “JRDataSource”.

In our case, when the user has selected the desired data sources, they are displayed in
a JTable. Therefore, we can make use of a pre-defined data source called
JRTableModelDataSource to warp the table model as the data source for iReport to
use.

Typically, any kind of JRDataSource is provided through a corresponding
JRDataSourceProvider, which is another interface provided by JasperReport. In my
implementation, I have implemented a TableModelDataSourceProvider to provide the
JRTableModelDataSource.

The detail of the structure is shown in the following class diagram:

<<interface>>
<<interface>> JRDataSource
JRDataSourceProvider +next()
+supportsGetFieldsOperation() +getFieldValue()
+getFields()
+create()
+dispose()
/\

<<interface>>
JRRewindableDataSource

+moveFirst()
TableModelDataSourceProvider
-tableDataSource
-table JRTableModelDataSource
-tableModel _tableModel
+getTableModel() -index
+supportsGetFieldsOperation() : -columnNames
+getTableModelName() prOVIdeS +next()
+getFieds) [T TTTToooommmmmmoo3 +getFieldValue()
+create() +moveFirst()
+dispose()

Figure 5.3 Class diagram for JRDataSource and its provider
e The JRRewindable interface is an extension to JRDataSource, any class that
implements this interface is a data source that can move back to its very first

element. JRTableModelDataSource is such a class.

e TableModelDataSourceProvider provides the JRDataSource through the create()
method. The following code segment shows the constructor and the create

Data Source Definition Tool -15- Haoxiang Zhu

method of TableModelDataSourceProvider:

/* constructor */

public TableModelDataSourceProvider(TableModel tableModel){
this.tableModel = tableModel;

this.tableDataSource = new
JRTableModelDataSource(this.tableModel);

}

/* create a JRDataSource */
public JRDataSource create(JasperReport report) throws JRException{
return new JRTableModelDataSource(tableModel);

}

Figure 5.4 code segment showing constructor and create method from TableModelDataSourceProvider

5.4 Using IReportConnection

Using JRDataSourceProvider provides the JRDataSource for iReport to use, however,
we still have to find out a way to pass the JRDataSource from our Data Source

Definition Tool to iReport.

iReport has provided class called “IReportConnection” which enables the custom
connections to iReport. Typically, each IReportConnection (and its sub classes) warps
a JRDataSourceProvider instance in to, so that when this connection gets connected
to iReport, the JRDataSource is provided through the provider that is wrapped inside
this connection. In this project, I have implemented a TableDataSourceConnection
which wraps a TableModelDataSource in it as the provider of
JRTableModelDataSource. The following class diagram shows how iReport uses
IReportConnection to produce data source through the provider:

IReportConnection
+isJDBCConnection()
+isJRDataSource()
+getDescription() -

. <<interf: >>
+getConnection() <<interface>> JRIIJnafasaﬁrce
+ge:.’{lRDataSource() JRDataSourceProvider st
+
+g:tN::::8 +supportsGetFieldsOperation() +getFieldValue()

) +getFields()
+getProperties() +ereate()
+loadProperties() +dlispose()
+save() P
+getSpecialParameters()
+disposeSpecialParameters() —=interfacess
st} JRRewindableDataSource

+moveFirst()

TableDataSourceConnection

TableModelDataSourceProvider

Data Source Definition Tool

- 16 -

Figure 5.5 Class diagram: connects to iReport

-tableModelDataSourceProvider -tableDataSource

-tableModelDataSource -table JRTableModelDataSource
+getJRDataSource() -tableModel -tableModel

+getName() +getTableModel() -index

+getProperties() +supportsGetFieldsOperation() id -columnNames
+loadProperties() +getTableModelName() provides +next()
+setDataSourceProvider() +getFieds) [T o----—- +getFieldValue()
+getDataSourceProvider() +create() +moveFirst()
+disposeDataSource() +dispose()

Haoxiang Zhu

When the users choose more than one data sources from the Data Source Definition
Tool, each of those data sources will be created into a JRDataSourceProvider and
wrapped into an IReportConnection, i.e. every data source is passed alone to iReport
as a separate connection. The following code segment shows how iReport is launched
with the pre-defined custom data source(s) that user has chosen using the Data Source
Definition Tool:

public static void launchlReportWithDefaultConnection(..){

Vector connList = new Vector();
for (lterator iterator = tableModels.iterator();
iterator.hasNext();) {

TableModel dataViewTableModel = (TableModel) iterator.next();
TableModelDataSourceProvider provider = new

TableMode lDataSourceProvider(dataViewTableModel);
IReportConnection conn = new

TableDataSourceConnection(provider);

connList.add(conn);

frame.setConnections(connList);

Figure 5.6 Code segment: launch iReport using custom data sources

5.5 Working with FlexibleTable in Kiwiplan Framework

In Kiwiplan, instead of displaying data using a JTable, we use a FlexibleTable to
display the data source(s). The FlexibleTable is similar to JTable but with more
sophisticated functionalities, e.g. the table headers are defined from a preference
bundle XML file. The following screen shot is an example of using the Data Source
Definition Tool with FlexibleTable:

Gz R — —
Dm o Eoe Cais memes oee

=
Fivmmi G g CHECkDEs SRR e Cheeser el suamaie CEvinmests Comms Brgmns PSusiss fuomn seanmes | DS owes Fas s Ve

Fleass dRlasE wpivae | MAnSEarisiing = Feaee Gedeil Sale s | Casiim -

Tirwnn wpfeer panctt | Manstaniunmn o TIemie vebern fans seuron | Srdssshenign -

1
§
i
i
i
i
i
g
||
i
1
H
i

e g e oy

¥ P B B e A e B 0 [e |

ddddddddddddad
dddaddaddatitid
P B I i I B I I B I

1y

P the e W B e 7 W B
LD PE DL

o
o~
-
-
o
™~

Ty N am T e Bl

T e - Dt S Fa g T St G -

Figure 5.7 Data Source Definition Tool with FlexibleTable

Data Source Definition Tool -17- Haoxiang Zhu

The implementation using FlexibleTable is not fully completed yet. However, the
concepts of using the FlexibleTable are exactly the same as using JTable. The
following class diagram shows the design using FlexibleTable:

<<interface>>
JRDataSource
<<interface>> +next()
IReportConnection JRDataSourceProvider tgetFieldValue()
+supportsGetFieldsOperation()
+getFields()
+create()

4 +dispose() <<interface>>
JRRewindableDataSource
+moveFirst()

FlexibleTableDataSourceConnection FlexibleTableModelDataSourceProvider FlexibleTableModelDataSource
> provides
T b

Figure 5.8 class diagram: connects to iReport using FlxibleTable
This feature is not yet included in the end due to time constraint, however, converting

from JTable into FlexibleTable is not considered to be a complex task, and this feature
is to be included in the future development.

Data Source Definition Tool - 18- Haoxiang Zhu

6. Support for Sub-reports

Nowadays, sub reports have been widely used in many organizations, therefore, it is
necessary to allow the Data Source Definition Tool to have the ability to build
sub-reports. A sub report usually uses multiple data sources that have some kind of
relationship. In this section, we are going to see how the Data Source Definition Tool
supports the user in creating sub reports using the custom data sources that it
provides.

6.1 Master Report and Sub Report Data Source

As described in Section 4, when the user chooses more than one data sources, a
wizard will pop up. The first wizard step is to ask the user to choose one of the
selected data sources as the master data source to iReport. The wizard step is shown
below:

‘%?SEt UI.J da.tat.:c;hn..ecﬁ'.:h. Tt eeperre —

Please choose one data source as the master data source:

StudentDataSource | -

StudentDataSource
GradeDataSource

o Back ‘ HNext 6 Cancel

Figure 6.1 Wizard step for choosing master data source

As shown in Figure 6.1, the user has previously chosen two data sources from the data
source selection U, therefore, the wizard will prompts the user to choose one of them
as the master data source.

Choosing more than one data sources will inform the Data Source Definition Tool that
the current user tries to create a sub report using iReport. Typically, sub-report uses a
different data source to the one master report uses when the report is being filled with
data, however, in iReport, there can be only one active connection at a time, this
means that any data sources that are used by the sub reports will therefore needs to be
recreated at run time. Thus, when the user has selected the master data source, this
data source will be passed alone to iReport as an active connection.

The following are the event flows after the user has chosen a master data source:

Data Source Definition Tool -19- Haoxiang Zhu

1. The user chooses one of the data sources as the master data source.

2. This data source is wrapped into an IReportConnection, and set to be the
active connection, which is the connection that the master report uses.

3. The TableModel of any non-master data sources are stored into a parameter
list of the master report, and this parameter list is being passed alone to
iReport as the parameters of the master report.

' < EEJ Fields
_v-" s Sl } @ studentID
] " | StudentDataSource [| @ Firsthame
[. . _ L) lastMame
=B e E e R s R
SRR NE RN RS R (b)
(a)

Figure 6.2 (a) active connection and (b) fields from active data source

Figure 6.2(a) shows that when user choose student as the master data source in the
Data Source Definition Tool, the student data source has become the data source that
the active connection uses for the master report. Figure 6.2(b) shows the available
fields from the current active connection. In this example, there are studentID,
firstName, and lastName from student data source.

g Parameters In iReport, each report has a list of
@ REPORT_PARAMETERS_MAP parameters. Each of the parameters is a

5:::: o JRParameter object.

.. REPORT_DATA_SOURCE

@) REPORT_SCRIPTLET Figure 6.3 shows the parameter list for
) g EEEEEI—;‘E%ECE . the master report. Notice at the bottom
,,,,,, @ REPORT TIME_ZOME of the list, there is a parameter named:
@) REPORT_WIRTUALIZER SUBREPORT_GRADEDATASOURCE _
W g BEPGRT. CLASS LOADER TABLEMODEL. This means that the
Eos REPORT_URL_HANDLER_FACTORY .

@ REFORT FORMAT FACTORY user has previously chosen two 'd.ata
...... @ I5_IGNORE_PAGINATION sources from the Data Source Definition
@ HIBERNATE_SESSION Tool and the grade data source is not
- CUMENT

g ?S:—E;TT;;D&NAGER chosen as the master data source (the
...... @ P4 _QLERY_HINTS_MAP user chose StudentDataSource in the
@) MONDRIAN_COMNECTION wizard). Therefore, the table model of

“oig) SUBREPORT_GRADEDATASOURCE _TAELEMCDEL this data source is stored in the

Figure 6.3 parameters for master report parameter list of the master report. This
table model is used later to recreate the
data source.

The entire process of creating report connection, passing table model into parameter
can be better explained in Figure 6.4:

Data Source Definition Tool -20- Haoxiang Zhu

1. Master Reporl —

—+ 3. IReportConnection

4. Master Data
2. Sub Report Source

|

L — JRDataSource

5. JEParameters

6. Sub Report Table
Model

v\ / 7. TableModel

8. Sub Data Source
JRDataSource

Figure 6.4 Setting up connection and data sources

e Our goal is to produce a master report (1) which has a sub report (2)
embedded.

e Each master report has its active connection as a IReportConnection (3)

e FEach [ReportConnection (3) object wraps in a Master Data Source (4) which
is of type JRDataSource (refer to Section 5.3). This JRDataSource therefore
acts as the data source for the master report.

e FEach IReportConnection object is associated with a list of JRParameters (6),
this list records the information of the report attributes such as report page
number, report date etc. One of the elements inside the list is a
SubReportTableModel (6) which is of type TableModel (7). This table model
is used every time to recreate the data source for the sub report (8) into a
JRDataSource. This data source (8) is used as the data source for the sub
report.

6.2 Setting up JRParameters

A JRParameter is constructed using the name of the parameter and the corresponding
class type of that particular parameter. The actual value (or reference address) of each
parameter in the list are stored in the first JRParameter:
REPORT_PARAMETERS_MAP which is itself a JRParameter. This is a special
parameter of type HashMap. Before the report is getting filled, this hash map is
iterated through, and each value is assigned to the corresponding parameter if there is
a match, otherwise, that parameter will have a null value. The follow diagram
illustrates the structure of the parameter list:

Data Source Definition Tool -21- Haoxiang Zhu

Vector<JRParameter>

HashMap
REPORT_PARAMETER_MAP java.util.HashMap -
REPORT_CONNECTION java.sql.Connection
REPORT_MAX_COUNT java.lang.Integer
REPORT DATA SOURCE ... JRDataSource
SUBREPORT_GRADEDATASOURCE_TABLEMODEL javax.swing.table. TableModel
Figure 6.5 JRparameter list structure for master report
The sample of the above HashMap is shown in Figure 6.6
HashMap
REPORT_PARAMETER_MAP java.util.LHashMap@3f23a
REPORT_CONNECTION null
REPORT_MAX_COUNT 15
REPORT_DATA_SOURCE ... JRDataSource@4a3d2
[SUBREPORT_GRADEDATASOURCE_TABLEMODEL javax.swing.table. TableModel@3ea2c

Figure 6.6 HashMap storing the actual value of JRParameters

6.3 Building a sub report manually in iReport

Before we explain how a sub report is built, we should first of all make sure how sub
report is structured in iReport and clarify a few terminologies:

e Master report: A master report is a report that has its fields with a sub report
element embedded, as shown in Figure 6.7 (a).

e Sub report element: A sub report element is a report element of a report.
Whenever this element appears in a report, it means that this report is a master
report and it has a sub report embedded.

Data Source Definition Tool -22- Haoxiang Zhu

Tuseas I PFRERS IR @S e 3

2o 3 12014 18 1B, 17 A

FF{studentiD} T BF{fistName} [FF{lastName} i bﬁ“@ v
| Fields

~oQ) studenkID

% L@ firstMame

Lo lastiame
[variables

[Parameters
[#] Page Number
E Tokal Pages
sub report element [£] Page % of ¥
[E] Total
s
-1 IEE) Per

Figure 6.7 (a) master report

t Date

S e [P EFDESS G0N EERENE SR S
f || [Element Properties
k=

Sub report

[@ Variahles

[@ Parameters
[Z] Page Mumber
[Z] Total Pages
[Z] Page % of ¥

[E] Total

3 el 5 T BT B RN S T - - e T R k- S N A

Figure 6.7 (b) sub report
e Sub report: Sub report is itself a report. It is always being referred to by a
corresponding sub report element (Figure 6.7 (b)). In iReport, sub report only has
detail band which has all the fields of the sub report. This is because a sub report

is always being embedded inside a master report.

In order to build a sub report in iReport environment, a user needs to complete the
workflow as described below (a live demo on how to create a sub report in iReport,
refer to http://ireport.sourceforge.net/swi/Subreport viewlet swf.htm):

Data Source Definition Tool -23- Haoxiang Zhu

http://ireport.sourceforge.net/swf/Subreport_viewlet_swf.htm

1.Launch iReport with an active

connection 10.Run master report

A

A 4

2.Specify fields to be displayed in

master report 9.Compile sub report -> jasper file

A

A 4

3.Add a sub report element to the

master report 8.Define report linking in sub report

A

A 4

4.Specify data source for the sub 7.Add parameters to sub report
report to use corresponding to those in master
report

A

A 4

5. Add selected fields to master

6.Specify fields to be displayed in
sub report

A\ 4

report’s parameter (link to sub
report)

Figure 6.8 Workflow on building a sub report manually

There are a few important issues we have to emphasize here:

Step 4 is done by defining a Data Source Expression by reusing the TableModel
of the sub report which was wrapped in IReportConnection (refer to Section 6.1),
the data source will be recreated every time a sub report is generated. Data
Source Expression is discussed in more detail in Section 7.2.

Step 5 is done by adding fields into the parameter list of the sub report element.
This list is passed alone to its sub report. Another word, the sub report of the
current master report will have access to every element in the list. This is
discussed more in Section 7.3.

Step 2 and 6 are done by dragging and dropping fields from the field lists to the
report design panel. This feature is provided by iReport.

Step 8 is done by defining a filter expression in the sub report. This is discussed
in more details later in Section 7.4.

6.4 Data Source Expression

Since iReport can only have one active connection at a time, therefore, when we are
filling the sub-report with data, we need to create the data source for sub report at run
time. The recreation of sub report data source is done through constructing a Data
Source Expression provided in iReport. The following diagram is a screen-shot from
iReport when the user is setting up the connection for sub report manually.

Data Source Definition Tool -24 - Haoxiang Zhu

Fz1 Untitled_report_1
Common | Subreport |Subreport {Okher) | Al

Parameters Map Expression

|

ZonnecktionfData Source Expression

Use data source expression [v]

'RTablEMDdElDataSDurcemﬁP {MyTableModel}) |

(] | I [=]
IUsing cache

Figure 6.9 Set up connection for sub report

As we previously discussed, iReport uses JRDataSource when building the report,
therefore, we need to create a JRDataSource object in order to fill the sub report. This
JRDataSource is recreated every time the report is filled using the table model for that
particular data source. The table model has been saved as a parameter of the master
report that the current sub report belongs to. The following screen-shot is the data
source expression editor, where a new TableModelDataSource is created using the

table model:

#1 Expression editor...

ew net.sf.jasperreports.engine.data.
TRTskhleModellataSource ($P { SUBREPORT GRADEDATASOURCE TABLEMODEL})

Line 2, Calumn 2

Dhjects and expressions | yalidation errars

@, Fields ¥ML_DATA_DOCUMENT Parameter Document ||| getvalueat int, int|#
Yariabl i
L Variables IPA_ENTITY_MAMAGER Parameter Entitylanzaer getColumnClassf i
& Parameters 5
O3 Formulas IPa_QUERY_HIMTS_MAP Parameter Map getColumnCount() =
[[J Recent Expressions MONDRIAM_CONMECTION Parameter Connection = getColumnMames i
| Wizards + | | getRowCount() int [v
< | 1 | [73 [T (2]
[Impart. ..] [Export. ..] [Check Expression [Apply] [Cancel]

Figure 6.10 Data Source Expression Editor

In this example, we are building a JRTableModelDataSource using the table model

Data Source Definition Tool -25- Haoxiang Zhu

passed as the parameter from the master report parameter list (shown in Figure 6.10).

This Data Source Expression is effectively a java statement that creates a new
JRTableModelDataSource object every time the sub report is built. Therefore the
master report is filled with the JRDataSource embedded in the active connection, and
the sub-report is filled with this newly created JRDataSource created using this data
source expression.

6.5 Sub Report Parameters

In order to establish some linkages between a master and a sub report, we need to
have some way to “communicate” between them. This is done through Sub Report
Parameters. We can specify sub report parameters in the sub report element, to pass
the field values from the master report to its sub report, as shown below:

Fxp Untitled_report__1

Common Subrepork | Subreporkt (OEher) | oAl

Subreport Expression Class
java.lang.Skrilg |

Subreport Expression
oM hUnEitled report_ 1 subreportc3 6. jasper

Subreport paramel ters | subreport return values

Parame! ter Expression
1a | TfFistudentID)

[L_copw.from mastor_]

Figure 6.11 Sub report parameters
In the above diagram, we have assigned the “studentID” field from the master data
source to a parameter called “id” to the sub report. The sub report can later access this
field by referring to “id”.

6.6 Object Level Join for Multiple Data Sources

When we build a sub-report, typically, there are some kind of relationship between the
master report and the sub report. This is similar to a foreign constraint in relational
databases. We cannot issue SQL commands to achieve joins among different data
sources due to the fact that we use JRDataSource object as our custom data source in
creating both master and sub reports; we therefore need to achieve the same type of
join in object level.

Let us look at the following example, imagine we have two data sources displayed in

JTable as follow, and keep in mind that these two data sources are both of type of
JRDataSource in the context of iReport:

Data Source Definition Tool -26- Haoxiang Zhu

Student Data Source:

studentlD firsthlame lastHlame
aooooo James Bond
noooooz Bill Gates

Grade Data Source:

studentlD COUrSE grade
oooooot 5334 A+
nooooot 5335 A+
nooooot 5340 A
oooooot CEaT2 A
noooooz ECOMT01 B+
noooooz INFORESYS220 -
noooooz MATHZ03 A+
ooooooz 3101 EB-

And we want to build a report as shown in the diagram below:

0000001 James Bond
000000 CS334 .
0000001 Cs=33s s
000000 cs340 2
000000 cs372 A
0000002 Bill Gates
studsntl D
0000002 ECOM101 B+
0000002 INFORSY S220 C-
0000002 MATHZOS A
[Slslsls]o]s =] cs=101 =

Figure 6.12 Sample sub report
As we can see in the above report, the student information is the master report and the
corresponding student grade information for that particular student is displayed in the
sub report. In order to achieve this, we have to do a join on the student ID between
these two data sources when filling the sub report. If we were doing this in a relational
database, we will effectively issue the following SQL commands in the sub report:

Select GradeTable.studentID, GradeTable.course, GradeTable.grade
From GradeTable, StudentTable
Where StudentTable.studentID = GradeTable.studentID

Figure 6.13 SQL for join between tables
However, we cannot execute the SQL commands against our data source simply
because they are not tables in relational database. Therefore we need to find a similar

way to achieve same goal as stated in the above SQL commands.

Remember here we are dealing with two JRDataSource objects, so if we translate the
above SQL commands (executed to produce results for sub report) into plain English,

Data Source Definition Tool -27- Haoxiang Zhu

W€ mean:

Filter: the original GradeDataSource
Condition: every element in the resulting data source has the ID same as that
specified in the master report.

Figure 6.14 Filter condition

Therefore, in order to achieve joins on data source object level, we reuse the Filter
Expression feature provided by iReport. Effectively, a filter expression is a Java
statement that specifies a condition to the sub report data source (JRDataSource), so
that every time when data is displayed in the report, the data is filtered in advanced
according to the condition specified in such an expression. We can view the idea
graphically as follow:

Original Data .| Filter Expression _| Filtered Data Source
Source "| [Filtering Condition] “| (for sub report)

Figure 6.15 Applying Filter Expression

11 Expression editor...

ew Java.lang. BDD_LeanmsF{st.udent.ID} Yoequals (SP{did})}

Line 1, Column 53

Objects and expressions | yalidation errors

EEJ Fields Skring hashCoder) int "\

5@ variables course Field Skring compareTol Sktring Jink

g Parameters

& Formulas grade Field Sktring compareTol Object) inl

[3 Recent Expressions indexOF ink, ink) ink

@ Wizards inde=OF int } int —
[l 3]

[Irnport...] [Export. ..] [Check Expression] [apply] [Cancel]

Figure 6.16 Filter Expression Editor

The filter expression shown in Figure 6.16 is defined for the Grade Data Source.
$F {studentID} represents the studentID in the context of the data source for the sub
report, namely Grade Data Source. $P{id} is the studentID from the Student Data
Source (the master data source) that we have to previously passed from the master
report as a sub report parameter (refer to Section 7.3).

Data Source Definition Tool -28 - Haoxiang Zhu

When this expression is executed, it will filter out all rows from the grade data source
wherever its StudentID is not the same as the current row displayed in the master
report (refer to Figure 6.12).

Data Source Definition Tool -29 - Haoxiang Zhu

7. Automating Building Sub-Reports

Building a sub report in iReport is quite a complex manual process. We are targeting
at simple user experiences so that all the users need to do is simply specify data
sources and then start designing the report, they are not required to have any prior
knowledge on how iReport works. This has been identified as a major shortcoming
after the first half of this project. Hence, simplifying user experience has been greatly
addressed during the second half of the project. In this section, we are going to
discuss how the process has been automated.

7.1 The Workflow

Our simplified user experience of building a sub reports can be summarized in the
following workflow diagram:

1. Pre-specify a master data source 7.Run master report

A

A 4

2. Pre-specify fields to be displayed
in the master report (optional)

6.Compile sub report -> jasper file

A

A 4

3. Pre-specify fields to be displayed 5. Launch iReport with an active
in the sub report (optional) connection and predefined settings

\/

4. Pre-specify master and sub
report linkages

Figure 7.1 Workflow on building a sub report automatically

As we can see from the above workflow, our target here is to pre-configure the report
settings, so that after iReport is launched, we can have the desired reports ready for
the users to modify/design without them having to configure the sub report settings.

In another word, we only require the end users to perform the following:
1. Specify master data source in a simple user interface.
2. Specify fields to be displayed in the master and sub reports in a simple user
interface.
3. Specify linkages between master and sub report in a simple user interface.
4. Design report by dragging and dropping fields in iReport environment.

Data Source Definition Tool -30- Haoxiang Zhu

As mentioned earlier, a wizard has been designed in our system to achieve simple user
experiences. Now let us look at a few important aspects of those workflows in
association with the wizard:

e When more than one data sources are chosen, user needs to specify a data source
to be the master data source. This is already discussed previously in Section 6.1,
selecting a master data source is the first wizard step.

e After selecting the master data source, the wizard will prompt the user to specify
the fields to be displayed in the master report, as shown below:

ég Set up data connection

Please select attributes from master data source: (You can also select later from ireport)

MasterDataSource Selected Attributes
& studentiD
& firsthame
& 1astiame

o

o

bl B Bl b

o Back . Next @ Cancel

Figure 7.2 Pre-specify fields in master report

In the above diagram, the left list box has all the fields available in the master
data source, the user can select the desired fields by clicking the “>” button (or
“>>" to select all the fields) to add to the selected attributes. This will result those
fields to be added automatically to the master report when iReport is launched.
This step can however be skipped (select none), this is because the user can still
add those fields into the report design panel (in iReport) by dragging them into
the design panel.

e The next wizard step is to select the fields to be displayed in the sub report, as
shown in Figure 7.3. In this case, the list box on the left lists all the available
fields in the sub report data source, the user can choose desired fields to be
displayed by adding them to the selected attributes list, which locates on the right
on side of the wizard panel. This step can also be skipped due to the same reason
described earlier.

Data Source Definition Tool -31- Haoxiang Zhu

£ Set up data connection “

Please select attributes from sub data source: (You can also select later from ireport)

SubDataSource Selected Attributes
& studentlD
& course
@ urade

A II Iv II
A A v v

‘ ‘Back H ONext ‘ ‘ ‘Cancel ‘

Figure 7.3 Pre-specify fields in sub report

e We also need the user to specify the linkages between the master and the sub
report by selecting the connecting fields. The next wizard step provides the user a
graphical view of doing this:

£ Set up data connection m
Please link the data in master and sub data source:
StudentDataSource GradeD ce Result
& stugentiD @ studentiD @ StudentDataSource studentiD=-=GradeDataSource. studentl
@ firsthlame @ course
@ lasttame @ urade
4 Il [1»
Link

| ‘Back || ‘Finish | | ‘Cancel |

Figure 7.4 Wizard step for linking fields in master and sub report

This wizard step has three list boxes. The very left one lists all the available fields
from the master data source; the middle one lists all the available fields from the
sub data source. The user can select the fields to be linked together by choosing
one field from the master data source and one from the sub data source followed
by clicking the link button, this link is later converted into a filter expression
described earlier to achieve object level join between different data sources. The
list box on the right hand side shows all resulting links chosen by the user
previously. It is displayed using a format similar to:
MasterDataSourceName.fieldName <-> SubDataSourceName.fieldName

Data Source Definition Tool -32- Haoxiang Zhu

e After the user clicks the “Finish” button from the wizard panel, iReport will
launched with those settings specified in the wizard loaded, including a
pre-configured sub report. The user can now start designing the report by simply
dragging and dropping fields into the report design panel, without needing to
manually set up the sub report settings (if they are satisfied with the report layout
and positioning, they can even compile and run the report). Figure 7.5 shows a
pre-configured report.

= s I
12,3, 4,

; FPEEERRNNE=EEEeRE R
: AT W TR 0 R N 0 N RPN ===

(e =

BF{student/D} FFifirstName} FF{lastName} | Library

g Fields
- studentID
% @ FirstMame
Q) lastName
g Variables
||| Parameters
| ||E] Page humber
IE Tokal Pages
sub report element (2] Page ¥ of ¥
[Z] Total
3 Current Date
- Percentage

Figure 7.5 Pre-configured report

7.2 Implementation of Automation Process

In this section, we are going to look at how the automation process is implemented in
detail. In order to make the process of building the sub report automatic, we
effectively need to programmatically achieve the following:

e Add displaying fields into master and sub report programmatically by reading
wizard results.

e Add sub report element into master report programmatically.

e Initialize data source expression programmatically.

e Initialize sub report parameters in its master report programmatically.

e Add the corresponding parameters into the parameter list of the actual sub report.

e Initialize filter expression programmatically according to the linkage
specifications from the wizard results.

In order to achieve the above goals, we have come up with the class design shown in
Figure 7.6. Report, ReportElement and SubReportElement are original classes
from iReport framework. ConfiguredReport, ConfiguredSubreport and
ConfiguredSubReportElement are the three new classes created to achieve our
specific goal. Each of the three classes is configured in the following ways:

Data Source Definition Tool -33- Haoxiang Zhu

Report ReportElement

|

SubReportElement

Figure 7.6 class diagram for automating sub report

e ConfiguredReport
B Displaying Fields
Fields are added in advanced into the report according to the user’s previous
selection from the wizard. The following code segment illustrates this:

for (inti = 0; i < selectedMasterAttributes.size(); i++) {
String field = (String) selectedMasterAttributes.get(i);
TextFieldReportElement re =
new TextFieldReportElement(marginX + i*fwidth + 10,
yPos + 10,
fwidth - 20,
20
);

re.updateBounds();

re.setText("$F{"+field +"}");

re.setBand(detailedBand);

re.setMatchingClassExpression("java.lang.String", true);

elements.add(re);

offset += 10;

Figure 7.7 Code segment illustrating how to add predefined fields

In the above code segment, selectedMasterAttributes is an object of type
Vector<Object>. It is one of the results from the wizard. This vector contains the
names of fields selected previously by the user in the wizard which are to be
displayed in the master report (refer to Figure 7.2).

Each field is constructed into a TextFieldReportElement and positioned
accordingly in the report frame.

Data Source Definition Tool -34- Haoxiang Zhu

e ConfiguredSubreportElement
B [nitialize Data Source Expression

We knew earlier that each sub report will use a JRDataSource as its
underlying data source, and this data source is constructed every time when
the sub report is produced using a data source expression, we therefore need
to construct this data source expression programmatically, we do this by
examining every parameter in the parent report until we find out a parameter
is of type TableModel, we can then construct the data source expression and
embed it into the expression editor as if we were doing this manually (refer to
Figure 6.10). The following code segment shows how this is achieved:

Vector reportParams = parentReport.getParameters();
for (Iterator iterator = reportParams.iterator(); iterator.hasNext();) {
JRParameter para = (JRParameter) iterator.next();
String paraName = para.getName();
if(paraName.startsWith("SUBREPORT ")
&&
paraName.endsWith(" TABLEMODEL")){
String connExpression =
"new net.sf.jasperreports.engine.data.JRTableModelDataSource($P {"+
paraName+"}) ";
MainFrame.getMainInstance().getElementPropertiesDialog().
configureSetup(connExpression,
dataLinksInMaster);

Figure 7.8 Initialize data source expression

B Add Sub Report Parameters
We also notice from previous sections that we need to pass fields from the
master report to the sub report for them to be linked together through sub
report parameters. The following code segment shows how sub report
parameter is added into the element.

for (int 1 = 0; 1 < dataLinks.size(); i++) {
String linkAttribute = datalLinks.get(i);
JRSubreportParameter srp = new
JRSubreportParameter("param"+i, "$F{"+linkAttribute+"}");
element.getSubreportParameters().addElement(srp);
dtm.addRow(new Object[]{srp, srp.getExpression()});

Figure 7.9 Adding sub report parameters

Data Source Definition Tool -35- Haoxiang Zhu

In the above code fragment, we iterate through the datalinks, which are the
links specified by the user in the wizard dialog and refer to the link fields in
the master data source. We construct a new JRSubreportParameter object for
each of the link fields with the naming convention “paramN” where N is the
number index of the field. The value of each of the parameter is the actual
field name that is to be linked. Note that this naming convention needs to be
strictly followed when constructing ConfiguredSubReport (next point to be
discussed).

e ConfiguredSubReport
B Displaying Fields
Similar to that in the master report, the sub report also adds the fields into the
report frame according to user selection from the wizard. The following code
segment illustrates how this is done:

for (Iterator iterator = allAttributes.iterator(); iterator.hasNext();) {
Object attribute = (Object) iterator.next();
JRField field = new JRField((String)attribute, "java.lang.String™);
addField(field);

}

for (int i=0; i<fieldList.getModel().getSize(); ++i) {
/I FIELD
JRField f = (JRField)fieldList.getModel().getElementAt(i);
TextFieldReportElement
re = (TextFieldReportElement)detailField.cloneMe();
re.setPosition(...);
re.setWidth(fwidth);
re.updateBounds();
re.setText("$F{"+ f.getName() +"}");
re.setBand(detail);
re.setMatchingClassExpression(f.getClassType(),
true);
getElements().addElement(re);

Figure 7.10 Code segment illustrating how to add predefined fields in sub report (some

code omitted)

In the above code segment, allAttributes is again an object of type
Vector<Object>. It is another result from the wizard. This vector contains the
names of fields selected previously by the user in the wizard which are to be
displayed in the sub report (refer to Figure 7.3). Each of the fields is
constructed into a JRField, and added into the field list of the sub report.

Data Source Definition Tool -36- Haoxiang Zhu

Each of the field is then constructed into a TextFieldReportElement and
positioned accordingly into the report frame.

B Adding Parameters

As we mentioned earlier, sub report needs have access to the fields in the
master report which are used as linking fields between master and sub report.
All we need to do here is to assign that many parameters in the parameter list
of the sub report and give them an appropriate name, the actual assignment is
done in the process of constructing a ConfiguredSubreportElement (see
previous point). The following code segment shows how the parameters are
added into the parameter list of the sub report:

/**

* Add the linking parameters for the sub report to link with master report
&
private void addParameters() {
for(int i = 0; i < dataLinks.size(); i++){
JRParameter param =
new JRParameter("param"+i, "java.lang.String", false);
addParameter(param);

j
}

Figure 7.11 Code illustrating how to add parameters into sub report’s parameter list
In the above code fragment, datalinks are the result from the wizard (refer to
Figure 7.4) where user specified the linking fields between the master and
sub report. Here, we only count the name of the linking fields, and construct
the same number of parameters in the sub report’s parameter list. The naming
convention of the parameter is “paramN” where ‘N’ represents the index
number of the parameter, starting from 0. Note that this naming conversion
has to be exactly the same when assigning the sub report parameters in the
ConfiguredSubreportElement (described earlier).

B Setting Up Report Links (Filter Expression)
We also need to set up the links between master and sub report. We achieve
this by programmatically construct a filter expression, the following code
segment illustrates this:

private void setupLinks(){
String expressionStr = "new java.lang.Boolean(";
for (inti = 0; i < dataLinks.size(); i++) {
DataltemLinkage link = (DataltemLinkage) dataLinks.get(i);
String param = link.getSubData();
String linkStr =
String.format("$P{%s}.equals($F{%s})",
"param"+i, param);

Data Source Definition Tool -37- Haoxiang Zhu

if(i > 0) expressionStr +=" && ";
expressionStr += linkStr;
}
expressionStr +=")";
setFilterExpression(expressionsStr);

}

Figure 7.12 Programmatically construct Filter Expression

In the above code segment, DataltemLinkage is simply a wrapper class that
wraps around each linkage specified by the user in the wizard, the
getSubData() method return the name of the fields to be linked in the sub
report data source. For example, if getSubData() is called on a link
represented as: DataSourceA.fieldA <-> DataSourceA.fieldB, it will return
fieldB, because the linking field name in the sub report data source is fieldB.
We therefore iterate through the linking list and construct a similar filter
expression shown in Figure 6.16 programmatically. Note that here we use the
parameter in the sub report parameter list which was previously assigned,
following the naming convention of “paramN”.

The following sequence diagram shown in Figure 7.13 summarizes what we discussed
in the above section.

setupLinks

’ IReportUtils ’ ConfiguredReport ’ ConfiguredSubReport ’ ConfiguredSubReportElement

T T T

I I I !

4 | | }
| |

I I }

Create } } |

1 |

| |

| |

|

| |

setFields | }

| i

Create | |

|

|

addFields |

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

t
|
|
|
|
|
I
|
|
} addParameters
|
I
|
|
|
|
|
I
|
|
|
|

1
addSubReportElement
|

u

] addFilelds

addSubReportParameters

Figure 7.12 Interaction among three classes

Data Source Definition Tool -38- Haoxiang Zhu

8. Future Works

e Using FlexibleTable For Displaying Data Sources

In the initial plan of the project was to embed reporting facility into the existing
framework. However due to the time constraint, this has not been completed yet. The
major tasks that to be undertaken are to display the data source in FlexibleTable under
Kiwiplan GUI framework instead of the current JTable implementation. A few
concerns might arise from the conversion process:

B Define table attributes in core preference bundle (an XML file specifying
table structure) rather than using TableModel straightaway.

B Using module class inside Kiwiplan framework to display table.

B A few more classes to enable FlexibleTable support for displaying data in
FlexibleTable.

These tasks described above are not considered to be particularly difficult, and
therefore require only minor effort either by me or by other developers from Kiwiplan
to complete.

e Saving The Report Definition

After reports have been generated, we can only save the report structure into jasper
file. We did not have any mechanism on saving the embedded data sources behind the
report. This would not be desired if we want to reproduce a same report and viewing
the same data in the report. Therefore, in the future, we should have some mechanism
on saving the report definition effectively so that data sources can be retrieved back
easily when the report is rerun.

e Modified iReport Code

While every effort has been made throughout the project to not modify the original
code of iReport, I did come across a few places that I have not found out any way to
solve the problem while not modifying the original code. This can be very inflexible
due to the fact that our code will not work with a newer version of iReport if our
modification has not been included in the new release.

Therefore, in the future, we need to identify those modifications and migrate them to

our own code base. This can typically be done by subclass the original iReport
classes.

Data Source Definition Tool -39- Haoxiang Zhu

9. Conclusions

I am actually quite excited when I am writing under this title, because it gives me a
sign that this is the end of my final year Bachelor of Technology project.

The most valuable thing that I gained from the project is possibly not that I
understand how to use iReport or JasperReports, but more importantly, the skills that I
gained to develop new ideas, ways to solve problems, working with leading edge
technologies. 1 guess this is the most important spirit for anyone in IT industry to
survive.

Before this BTech project, I have completed an undergraduate project within the
university as well as an industrial project with Kiwiplan already, but I have to say this
whole year project really gave something I have never tasted. I am actually involved
in the entire software development life cycle! From the first day I was sitting in
Gareth’s office trying to figure out what does the data source definition tool do to
today I am writing the conclusion of this project, I feel I have learnt so much. I had
gone to a completely wrong way on solving this problem, had experienced hard time
when a problem cannot be solved for days, even months. Those are the unique and
valuable experience I gained through this project.

I also realized that planning, designing are very important aspects throughout the
development process. At the very beginning, I was struggling on how on earth iReport
works, and how on earth I can make custom data sources to make them work within
the context of iReport. I visited iReport forum, honestly, every single post about
custom data source, I even tried to contact iReport authors when I really don’t get
what they are doing by looking at the code. Finally, I started to understand the
problem, and had some basic ideas on how to solve them. Then I started to build some
classes, gradually, more problems raised, I then tried to build more classes based on
the original design, without scarifying what I already had. This kind of gradual
approach is important, and it is also important to make flexible designs in every single
system so that they are scalable, flexible, easy to maintain, easy to understand and
easy to debug.

This project has really prepared me well to work in the real industry. I have had much
more new thoughts on how to solve problems, in particular, some more design and
analysis skills. I have enjoyed this project a lot and I also recommend everyone who is
doing IT project either next year or a few years later to take your project as a valuable
opportunity, because it might really give your something in return.

Data Source Definition Tool -40 - Haoxiang Zhu

10. Acknowledgements

I wish to extend my great thanks to my supervisors: Gareth Cronin from Kiwiplan and
Dr. Xinfeng Ye, for their continuous support throughout the entire project.

I would also like to thank Dr. S. Manoharan, the BTech coordinator, for providing lots
of useful information on the BTech programme.

I would also like to thank everyone who helped me throughout the year.

Data Source Definition Tool -41- Haoxiang Zhu

11.References

1. JasperReport Homepage, “JasperReports Documentation”, Available from:
http://jasperforge.org/sf/wiki/do/viewPage/projects.jasperreports/wiki/HomePa
ge. Accessed Apr 2007

2. Elizabeth Montalbano, “Eclipse Developers To Get Open-Source Reporting
Tool. (Business Intelligence and Reporting Tool)”, Computer Reseller News
Sept 13, 2004 p37.

3. iReport Home, “iReport Tutorial”, Available from:
http://ireport.sourceforge.net/tutorial 1 .html. Accessed Apr 2007

Data Source Definition Tool -42 - Haoxiang Zhu

http://jasperforge.org/sf/wiki/do/viewPage/projects.jasperreports/wiki/HomePage.%20%20Accessed%20Apr%202007
http://jasperforge.org/sf/wiki/do/viewPage/projects.jasperreports/wiki/HomePage.%20%20Accessed%20Apr%202007
http://ireport.sourceforge.net/tutorial1.html

