
A VIRTUAL DATABASE

FOR STANDARD REPORTING TOOLS

Computer Science 380 Project

Haoxiang Zhu

 2006

Supervised by: Dr. Santokh Singh & Dr. Xinfeng Ye

Department of Computer Science

University of Auckland

 1

ABSTRACT

Traditionally, reporting tools connect to a data source directly. In a service-oriented
architecture, the data model might change from time to time. Therefore, any changes
made to the data model will result in changes to the reporting tool’s configuration.

In this paper, we are going to address this problem by investigating the
implementation of a middle tier, which locates in between of the reporting tool and the
data source. After the middle tier is in place, every change made to the data model
does not influence the reporting tool’s configuration in any way.

 2

CONTENTS

1. INTRODUCTION ..3

2. BACKGROUND...4

3. SYSTEM ARCHITECTURE & DESIGN..9

3.1 SYSTEM OVERVIEW ...9
3.2 CUSTOMIZED JDBC DRIVER DESIGN ...10
3.3 SYSTEM ARCHITECTURE DIAGRAMS... 11
3.4 THE MIDDLE TIER ...16

3.4.1 Distributing the Middle Tier Service Using RMI Technology..16
3.4.2 Middle Tier Design ...17

4 XML DATABASE MAPPING..20

5 IMPLEMENTATION...28

5.1 DATABASE LOCATION SERVICE ..28
5.2 AUTOMATIC QUERY REWRITING ..31
5.3 GETTING THE RESULTSET..35

5.3.1 Approach One – Execute the rewritten query from middle tier35
5.3.2 Approach Two – Execute the rewritten query from reporting tool40

6 PERFORMANCE EVALUATIONS...43

6.1 TESTING ENVIRONMENT ..45
6.2 SERIALIZE USING MAP OBJECT ..48
6.3 SERIALIZE USING CACHEDROWSET OBJECT ...49
6.4 SERIALIZE BY CONVERTING RESULTSET INTO XML DOCUMENT (WEBROWSET)50
6.5 EXECUTING REWRITTEN QUERY DIRECTLY ..51
6.6 ALL TOGETHER..53

7 CONCLUSION...54

8 FUTURE WORKS ...55

9 ACKNOWLEDGMENT ..56

10 REFERENCES...57

 3

1. Introduction

A reporting tool is a software tool that allows end users to build professional business
reports based on data in a database. These reports can then be scheduled to be run
automatically at particular times or based on business rules and distributed a group of
end consumers who are interested in the information.

Most of the reporting tools have a direct connection to a data source. However, in a
service oriented architecture, the data mode in the underlying data source may change
from time to time. The data model change can be caused by, for example, a change of
service provide, a change of the business logic etc. Therefore, in order for the
reporting tool to produce a consistent result, the reporting tool’s setting also has to be
changed to cope with the data model changes.

In this project, we are going to focus on the development of a middle tier that is to be
used by a standard reporting tool. It is aiming to improve the usability of standard
reporting tools. After the middle tier is in place, the reporting tool should be able to
work independently to any data model changes (including database location) in the
underlying database. This middle tier locates between the standard reporting tool and
the database server, so that whenever there are changes made in the data model, we
only need to make minimum amount of changes in the middle tier without changing
the setting of the standard reporting tools.

Besides, we will also compare the performances of different implementations of the
middle tier, in order to find out a best solution which not only satisfy the requirements
but also work as efficiently as possible.

 4

2. Background

As Internet plays a more and more important role in our life, many big organizations
prefer to have their customer invoices, monthly billing information in electronic form
which is automatically generated by a reporting tool, rather than the old paper form.

Figure 2.1 Slingshot Online Account History (https://www.slingshot.co.nz/)

By doing so, not only it provides the customers more controls over the data that they
are interested in, it also eliminates the costs of distributing traditional paper-form
mails.

Most of the reporting tools have a direct connection to a database. The reporting tool
generates different results according to the different requests it receives from the end
users of the reporting tools.

Let us, first of all, look at the design of traditional reporting tools illustrated in Figure
2.2

Reporting Tool

Standard
JDBC
Driver Database

Figure 2.2 Architecture Diagram of Traditional Reporting Tool

From Figure 2.2, we observed the following:
¾ A reporting tool issues a query (i.e. SQL statement), requesting the data that

the end user is interested in.
¾ The query is intercepted by the “Standard JDBC Driver” (e.g. MySQL

Connector/J)

 5

¾ The JDBC Driver executes the query against the target database.
¾ The JDBC Driver constructs a ResultSet Object which contains all the data

that the reporting tool is requesting for.
¾ The ResultSet is sent back to the reporting tool.
¾ The reporting tool gets the ResultSet, format the result according to user’s

requirements, and display the report.

Let us use an example to illustrate the behavior of the standard reporting tool. We
illustrate this by looking at a widely-used reporting tool “BIRT”. “BIRT” is an open
source, Eclipse-based reporting system that integrates with applications to produce
compelling reports for both web and PDF. BIRT provides core reporting features such
as report layout, data access and scripting.

Similar to what we have mentioned earlier, for BIRT, every report has a direct
connection to a data source through a JDBC driver. All the data presented in that
particular report is obtained from the data source it connects to.

Figure 2.3 shows a dialog box prompts the data source the particular report connects
to:

Figure 2.3 BIRT data source connection

After this connection is established, we can then start configuring the report by
selecting a dataset from the data source. The dataset is specified by an SQL statement
executed against the data source, as shown in Figure 2.4.

 6

Figure 2.4 BIRT select dataset

In this example, our dataset is customerName, contactLName, contactFName, phone
from customer table of the data source.

Figure 2.5 Selected dataset

When we have the dataset ready, we can design the layout of the report and use the
data from the dataset to populate the report, as shown in Figure 2.6.

Figure 2.6 Report design view

Up to this point, we have all the setting ready in order to generate a report, we need to
keep in mind that all the data present in this report is obtained from the data source
this particular report connects to. Figure 2.7 shows a report generated by the above
report setting:

 7

Figure 2.7 A simple report generated by BIRT

This is how BIRT uses its underlying data source to generate a report. In this example,
the reporting tool (BIRT) has a direct connection to its data source with no data model
changes made.

However, in some cases, the data model, at the server side, may change from time to
time, it is therefore impossible for the reporting tool to work as correctly as before
without changing the configurations of the reporting tool. This may not be desired
from the business prospective since they do not want their customers to reconfigure
the reporting tool every time they change the data model.

Let us once again, use a simple example to illustrate how this can happen: Image the
reporting tool has a connection to a data source which contains only one table
“MyTable”, this table has two columns: ColumnX and ColumnY. The reporting tool’s
configurations contain a query which extracts ColumnX from this table: select
ColumnX from MyTable, as shown in figure 2.8:

Reporting Tool

JDBC
DriverSelect ColumnX from MyTable ColumnX

ColumnY

MyTable

Data Source
Figure 2.8 Reporting tool extract data from data source

This setting works fine because the query is valid according to the current data model.
But if now the data model in the data source is changed by renaming ColumnX to
NewColumnX. In this case, if we do not change the reporting tool’s setting, i.e. do not
change the query: select ColumnX from MyTable, it will cause an error, since

 8

ColumnX does not exist in the data model any more. This is shown in Figure 2.9:

Reporting Tool

JDBC
Driver

Select ColumnX from MyTable
NewColumnX

ColumnY

MyTable

Data Source
(Modified)

Rename

Same Report Setting

Figure 2.9 Reporting tool causing error

Clearly, we can see how this problem can be raised from the above example. It is
therefore useful to make the reporting tool’s setting independent to the data model
change in the data source.

In the remaining chapters of this report, we are going to address this problem and
provide a feasible solution to this problem.

 9

3. System Architecture & Design

In this chapter, we start by an overview of our system design in Section 3.1. In
Section 3.2, we explain why we need a customized JDBC driver in our underlying
system. Then we present a more detailed architecture diagrams for the underlying
system in Section 3.3. Finally, in Section 3.4, we conclude this chapter by explaining
the design of the middle tier in more detail.

3.1 System Overview
We have already discussed the potential problems the traditional reporting tool may
have (refer to Chapter 2, Figure 2.8 and Figure 2.9), basically, when the data model
changes, the reporting tool will not work as correctly as before without modifying its
configuration. Our design is aiming to solve this problem, so that the changes made in
the data model are independent to the query generated by the reporting tool.

One possible way of solving this problem is: when the reporting tool sends the query
defined in its setting, we can have another layer (a middle tier) which acts like a
virtual database for the reporting tools to connect. What it actually does is that it
modifies the query before it gets executed against the modified database at runtime.
The modified version of the query should be executed against the modified database,
but still provide the reporting tool with the desired result. This can be illustrated in
Figure 3.1:

Reporting Tool

JDBC
Driver DatabaseMiddle Tier

Virtual Database

Figure 3.1 A bird eye view of the system

In Figure 3.1, unlike traditional reporting tools, we make the reporting tool connect to
a middle tier (a virtual database) instead of a database directly. However, the JDBC
driver that the traditional reporting tool uses only provide the facility to connect to a
real database, in order to achieve our goal to make the reporting tool connect to the
virtual database, we therefore need to modify the JDBC driver.

 10

3.2 Customized JDBC Driver Design
According to the initial investigation, most reporting tools acquire data by querying
the relational databases. Most of them, particularly Java written reporting tools,
connect to such relational databases by a type 3 JDBC driver. Almost every RDMS
has a JDBC driver that is compatible to its database, e.g. MySQL provides the
Connector/J as its database connector.

Standard JDBC provides methods that do these basic things:

• Create and manage connections to data sources based on a URL or DataSource
object registered with a Java Naming and Directory Interface (JNDI) naming
service. Thus, no client-side configuration is required.

• Compose and send SQL statements to the data sources.
• Retrieve and process result sets that are returned to the Java application or

applet.

Since we do not want a direct connection from the reporting tools to the relational
database, we therefore need to define our own JDBC driver that satisfy our interests,
the customized JDBC driver should,

EITHER:

¾ Connect to a middle tier service instead of a database.
¾ Pass the request from the reporting tool to the middle tier service, so that the

middle tier will process the request and return the result back to the JDBC
driver.

¾ Send the result that obtained from the middle tier service back to the
reporting tool as if the result is obtained directly from the database.

OR:

¾ Connect to a middle tier service instead of a database.
¾ Pass the request from the reporting tool to the middle tier service, so that the

middle tier will process the request and return a new request that can be
executed on the modified database, giving the same result as if the data
model has not been changed.

¾ Act like a standard JDBC driver, but process the new request obtained from
the middle tier service.

 11

3.3 System Architecture Diagrams
After we have a customized JDBC driver (refer to Section 3.2) in place, we can now
modify the behavior of the reporting tool. The customized JDBC driver gives the
reporting tool the ability to connect to a middle tier (contains a set of programs), as
supposed to a real database. By doing so, we can use the programs in the middle tier
to achieve our goal.

Figure 3.2 illustrates one possible solution:

Reporting Tool

Customized
JDBC
Driver

Database

XML Mapping File

VDB

DataFetcher

QueryRewriter

XMLReader

Middle Tier

Standard
JDBC
Driver

Figure 3.2 System Architecture Diagram (Approach One)

Let us look at this design in more detail. The reporting tool uses a customized JDBC
driver to connect to this middle tier instead of the database directly. In essence, the
customized JDBC driver passes whatever requests coming from the reporting tool to
the middle tier. The middle tier consists of the following components:

¾ VDB (Virtual Database): It is called a virtual database, since it is not a real

database. However, it provides the reporting tool an interface to connect to as
if it is a real database. It is the central controller in the middle tier as it
dispatches the requests coming from the reporting tool to the appropriate
elements within the middle tier for processing and returns the results back to
the reporting tool.

¾ XML Mapping file: When there are data model changes in the real database,

we do not want these changes to be visible to the reporting tool, another word,
the reporting tool maintains an old (consistent) view of the database that is
never changed. In order to achieve this, we need to have some methods of
mapping the data model in the real database to the data model that the
reporting tool sees. Hence, this XML file specifies the mapping from the
actual database to reporting tool’s view of the database.(The mapping is

 12

explained in Chapter 4 of this report)

¾ XML Reader: The XML Reader reads the XML Mapping files and extracts

the useful information from the XML Mapping file. It is generally used by
the QueryRewriter when rewriting the query generated from the reporting
tool.

¾ QueryRewriter: Since the requests (i.e. SQL query) coming directly from the

reporting tool will not be able to be executed correctly against the real
database after the changes have been made. It is therefore necessary to
reconstruct the incoming query into a new version which is compatible to the
current database. QueryRewriter does this by accessing the XML Mapping
file through the XML Reader. Generally, executing the query constructed by
the QueryRewriter against the current database produces the same result as
executing the initial query against the old database (i.e. the database before
the data model changes).

¾ DataFetcher: As its name suggests, this is the object that accesses the real

database in the middle tier. It uses a standard JDBC driver to access the
database, but executes the re-written query generated by the QueryRewriter.
Upon receiving the ResultSet, it forwards the ResultSet back to VDB. VDB
will then pass this ResultSet back to the reporting tool which initialized the
request. (However, this class is not required in our second approach, which is
going to be explained shortly.)

To sum up, this design achieves our goal by performing the following steps:

1. The reporting tool generates a request. This request is sent to the customized
JDBC driver.

2. The customized JDBC driver forwards this request to VDB which sits in the
middle tier.

3. VDB dispatches the same request to QueryRewriter, expecting a rewritten
query which can be executed against the current database.

4. In order to rewrite the query, the QueryRewriter calls the XML Reader to
extract the relevant information from the XML Mapping file.

5. XMLReader reads the XML Mapping file and returns the mapping
information back to the QueryRewriter.

6. According to the mapping information, the QueryRewriter reconstructs the
query to be compatible to the current database.

7. QueryRewriter returns the rewritten query back to VDB.
8. VDB forwards this rewritten query to the DataFetcher. Upon receiving the

written query, the DataFetcher executes this query against the current
database through a standard JDBC Driver (e.g. MySQL Connector/J).

9. DataFetcher receives the ResultSet and send it back to the VDB.

 13

10. VDB transfers this ResultSet back to the reporting tool through the
customized JDBC driver as if this ResultSet is from the database directly.

The following sequence diagram illustrates the interactions among the reporting tool
the middle tier and the data source for this approach:

Reporting Tool Customized JDBC VDB

query

query

QueryRewriter

query

XML Reader

Mapping information

rewrite query

rewritten query

DataFetcher

rewritten query

ResultSetResultSet

ResultSet

Data
Source

execute rewritten query

result

Figure 3.3 Sequence Diagram for Approach One

In this design, we maintain a connection from the middle tier to the current database
through the DataFetcher. However, it is not necessary for us to maintain such a
connection from the middle tier. This is because all we need is an updated version of
the query statement which can be executed against the current database but yield the
same results as if it is executing the old query against the database before the data
model changes. Hence, we have a second approach to solve the problem. The system
architecture of the second approach is illustrated in Figure 3.4

 14

Reporting Tool

Customized
JDBC
Driver

Database

XML Mapping File

VDB QueryRewriter

XMLReader

Middle Tier

Figure 3.4 System Architecture Diagram (Approach Two)

This approach does not differ much to the previous approach except that no
connection is maintained from the middle tier to the database. Instead, more like the
traditional reporting tool, the connection is maintained between the JDBC driver and
the database. By doing so, we can therefore avoid the need of using a DataFetcher in
the middle tier, since now the results are returned from the database back to the JDBC
directly bypassing the middle tier.

Nevertheless, we still need a customized JDBC driver to connect to the middle tier
due to the fact that before getting the ResultSet from the database, we still need the
middle tier to reconstruct the query which can be executed against the current
database.

This design achieves our goal by performing the following steps (Step 1-7 are the
same as the previous approach):

1. The reporting tool generates a request. This request is sent to the customized
JDBC driver.

2. The customized JDBC driver forwards this request to VDB which sits in the
middle tier.

3. VDB dispatches the same request to QueryRewriter, expecting a rewritten
query which can be executed against the current database.

4. In order to rewrite the query, the QueryRewriter calls the XML Reader to
extract the relevant information from the XML Mapping file.

5. XMLReader reads the XML Mapping file and returns the mapping
information back to the QueryRewriter.

6. According to the mapping information, the QueryRewriter reconstructs the
query to be compatible to the current database.

7. QueryRewriter returns the rewritten query back to VDB.

 15

8. VDB transfers the rewritten query to the customized JDBC driver
9. Upon receiving the rewritten query, the JDBC driver executes the rewritten

query in the current database which yield the same results as if it is executing
the old query against the database before the data model changes.

The following sequence diagram illustrates the interactions among the reporting tool
the middle tier and the data source for this approach:

Reporting Tool Customized JDBC VDB

query

query

QueryRewriter

query

XML Reader

Mapping information

rewrite query

rewritten query

rewritten query

ResultSet

Data
Source

execute rewritten query

result

Figure 3.5 Sequence Diagram for Approach Two

 16

3.4 The Middle Tier

3.4.1 Distributing the Middle Tier Service Using RMI Technology
As we can see from both architectures in Section 3.3, in order to achieve our goal, it is
necessary to have a middle tier service that sits between the reporting tool and the
database. From the business prospective, it is possible that the middle tier service is
either hosted in the same server where the database is hosted, or, more commonly, in a
dedicated server machine.

In our proposed system, it is the JDBC driver (refer to Section 3.2), which sits on the
client side, connects to the middle tier service. In order to invoke the server methods
remotely from the client side (i.e. the reporting tool), it is therefore feasible to use
JAVA RMI technology.

Figure 3.6 illustrates how RMI is integrated into our system:

Client

Reporting Tool

Middle Tier (Server)

Export
VDB Stub

AccessCustomized
JDBC
Driver

VDB
Implementation

VDB
Interface

Database

RMI

Figure 3.7 RMI in the system

“Java Remote Method Invocation (Java RMI) enables the programmer to create
distributed Java technology-based to Java technology-based applications, in which the
methods of remote Java objects can be invoked from other Java virtual machines,
possibly on different hosts. RMI uses object serialization to marshal and unmarshal
parameters and does not truncate types, supporting true object-oriented
polymorphism” [Java API].

It is worth mentioning that “RMI uses object serialization to marshal and unmarshal
parameters”, it is therefore important to note that everything we passed though RMI
should either be primitive types (such as String, int) or serializable Object.

 17

3.4.2 Middle Tier Design
In Section 3.3, we mentioned that VDB (Virtual Database) is a central controller in
the middle tier as it provides the reporting tool an interface to connect to as if it is a
real database. The customized JDBC driver (from the client side) needs to access this
middle tier remotely. A solution to this problem is to make the VDB a remote object
which can be executed from the client side. Since VDB is the central controller, if we
can access the VDB remotely, we can therefore access the middle tier remotely.

Here, we use the standard way to achieve the remote method invocation: we define an
interface called VDB, and this interface exists in both client (Customized JDBC driver)
and the server side (middle tire). The server side provides the actual implementation
(VDBImpl) to the VDB interface.

Figure 3.7 is a class diagram illustrates the structure of the middle tier, and how the
middle tier is distributed as RMI services to the client.

+connect()
+executeQuery()/getQuery()
+getVDBTables()
+getDBLocation()

VDBImpl

+connect()
+executeQuery()/getQuery()
+getVDBTables()
+getDBLocation()

<<interface>>
VDB

+connect()
+getResult()

-dbLocation : string
DataFetcher

+getTableDefinition()
+getColumnMapping()
+getAllTables()

-inputXMLFile
-doc

XMLReader

+rewrite()
-query
QueryRewriter

<<interface>>
java.rmi.Remote

java.sql.Connection

[optional]

Note that only public methods are shown in the diagram .
For simplicity, return values and parameters are also not shown .

Figure 3.7 Class Diagram of the Middle Tier

 18

As we can see in this diagram, every class in the middle tier represents one of the
components in the middle tier architecture (refer to Section 3.3), we have already
discussed them in previous sections. Now, let us look at each of the classes in more
detail.

¾ We make VDB the remote object by implementing the java.rmi.Remote

interface, and it is itself an interface. The client side (Customized JDBC
driver) must have the same interface in order to access the remote object.

¾ VDBImpl is the actual implementation of the VDB interface, and it provides

the functionalities of the following methods:
z connect: When this method is invoked, the VDB calls the connect

method on DataFetcher, which establishes an actual database
connection between DataFetcher and the actual (real) database.

z executeQuery / getQuery: This method is called differently
depending on different implementations. executeQuery executes the
rewritten query against the current database, while getQuery only
returns the rewritten query as a String. These two methods are used
mutually exclusively. They are used in different implementations
(more detail in Section 5.3).

z getVDBTables: This method returns all the tables in the Virtual
Database, another word, the tables that the reporting tool is
supposed to see. This is because as the data model changes, the
tables that actually exist in the current database may not exist in the
reporting tool’s view of the database (e.g. adding a table in the data
model).

z getDBLocation: This method returns the URL string of the current
database(e.g. "jdbc:mysql://www.myDBServer/myDBName;”)

¾ DataFetcher: This class maintains a connection (java.sql.Connection) to the

current database. The location of the database (dbLocation) is obtained
through VDB. The class is optional in the middle tier design because it is
only used in the design showed in Figure 3.2 where the middle tier keeps a
connection to the database. The design showed in Figure 3.4 does not require
a persistent connection between the middle tier and the real database. Hence
this class is not needed. The class diagram for the latter implementation is the
same except that there is no such DataFetcher class.
z connect: Connect to the real database through a standard JDBC

Driver (e.g. MySQL Connector/J).
z getResult: Obtain the resultset from the real database. Note that the

return type cannot be java.sql.ResultSet due to the fact that we can
only transport serializable object through RMI. java.sql.ResultSet is,
unfortunately, not serializable. The actual return type of this method

 19

may vary depending on different implementations. This will be
discussed in more detail in Section 5.3 of this report.

¾ XMLReader: This class is defined to read an XML mapping file.

z getTableDefinition: This method takes in a table name as the
parameter and returns an SQL select statement which generates the
table in the reporting tool’s prospective from the current underlying
database.

z getColumnMapping: This method also takes a table name as input
parameter and returns a Hashtable object. This object contains the
column mapping from the new version of the table to old version of
the table. The Hashtable contains the <key, value> pair as:
<newColumnName, oldColumnName>. If the table has not been
modified, newColumnName is the same as oldColumnName.

z getAllTables: This method returns all the table names that the
reporting tool should see. That is, all the tables in the Virtual
Database.

¾ QueryRewriter: This class is defined to rewrite the query generated by the

reporting tool to the form that is compatible to the current database. Refer to
Section 5.2 for detail description of query rewriting.

 20

4 XML Database Mapping

In this chapter, we are going to see how the database mapping file is defined using
XML, in particular, how to achieve the goal of mapping the data model in the current
database to an old view of the data model that the reporting tool consistently sees.

Since the reporting tool maintains a constant view of the data model before any
changes have been made, we therefore must have some way of mapping the current
data model in the database to the reporting tool’ s constant view. In achieving this, we
define an XML file which contains all the necessary mapping information.

The XML mapping file can generally cope with all the possible data model changes in
a database such as:
¾ Table rename
¾ Table deletion/creation
¾ Table conjoin/split
¾ Column rename
¾ Column deletion/creation
¾ Column relocation (move from one table to another)

The change of physical location of the database is not considered as a data model
change, hence it is not dealt with in the XML mapping file. However, the location of
the database is transparent to the reporting tool. This is done by way of a database
location service provided by the middle tier. It is described in Section 5.1 of this
report.

Before we go into the detail of such an XML mapping file, it is important to know
that we have made the following assumptions in defining the XML mapping file:

¾ The XML mapping file must be defined manually. This means that this XML

mapping file must be written by a human-being who is in charge of the
database (e.g. a database administrator). At the current stage, this process
cannot be automated.

¾ The person who defines the XML mapping file must have perfect knowledge
of both the data model before changes (i.e. reporting’s view to the data model)
and the current data model in the database (i.e. the database with data model
modified).

¾ The mapping file only contains the mapping information from the
most-recent version of data model to the reporting tool’s view of the data
model. No information in between the two states of the data model (if any) is
available in the mapping file (at the current stage of our design).

 21

An simple example of such a mapping file is shown in Figure 4.1:

Figure 4.1 Simple example of XML mapping file

This XML mapping file is defined according to the following roles:
1. The XML mapping file defines the data model in the reporting tool’s view. It

only defines all the tables/columns that exist in the reporting tool’s view.
2. The “name” attribute in the table tag defines the name of the table from the

reporting tool’s point of view
3. The value of the “def” tag must be an SQL query that is executed against the

current database. The execution of the query produces a ResultSet, with its
contents equivalent to the table of the name defined in the name attribute (i.e.
the old version of this table) as if the data model has not been changed. The
value can be empty when the table has not been changed.

4. The “columns” element contains “col” sub-elements, which defines all the
columns inside the current table, from the reporting tool’s view.

5. The “name” attribute of the “col” tag defines the name of the corresponding
column, in the reporting tool’s point of view.

6. The value of the “col” tag specifies the new name of the column in the
current data model (if any). If the column name has not been changed, the
value should be empty, or same as the “name” attribute.

Strictly speaking, except defining the data model mapping, the XML mapping file
also provides the reporting tool with the metadata information. This is because the
data model in the current database is not a correct version of the data model that
reporting tool wants, of course, provided that the data model has been changed at least
once and not the same as the original version. For this reason, the standard JDBC
implementation provided by the database vendor (e.g. MySQL Connector/J) must be
modified. An example of such modification may be getMetaData() method from the
Connection class, since the meta-data information cannot be obtained from the
database directly. The only way to obtain the meta-data for the reporting tool (after
any changes are made) is from the XML mapping file.

<VDB>
 <table name = “tableName”>
 <def>table definition in the database after data model is changed</def>

 <columns>
 <col name = "columnA">newColumnA </col>
 <col name = " columnB "></col>
 …
 </columns>
 </table>
 …
 <!-- more table follows -->

</VDB>

 22

We are now going to present some concrete examples on how the database mapping is
done.

Assume there is a brand new database, which has only one table defined: Customers.
This data model (with only one Customers table) is the data model that the reporting
tool sees, and the reporting tool’s view remains the same irrespective to any further
changes in the data model. Therefore, the data model with one Customer table is the
one we are going to define in our Virtual Database (middle tier). Figure 4.2 illustrates
the data mode of the Virtual Database, i.e. the data model from the reporting tool’s
view.

Data model defined in the Virtual Database. (the reporting tool’s view)

Customers

PK customerNumber

customerName
customerLastName
customerFirstName
phone
addressLine 1
addressLine 2
city
state
postCode
country
creditLimit

FK1 salesRepEmployeeNumber

Figure 4.2 Data model (before change), reporting tool’s data model, VDB data model (Example 1)

After a period of time, the data model is changed. The after-change data model in the
real database is shown in Figure 4.3.

After-change data model in the real database. (invisible to the reporting tool)

Country

PK countryID

countryName

Customers

PK customerNumber

customerName
customerLName
customerFName
phone
addressLine 1
addressLine 2
city
state
postCode

FK2 countryID
creditLimit

FK1 salesRepEmployeeNumber

 Figure 4.3 Data model (after change), data model in the real database (Example 1)

 23

Comparing the above data models, we have observed that the following changes have
been made in the new data mode (Figure 4.3 compared to Figure 4.2):
¾ A new Country table has been added with two columns: “countryID” and

“countryName”.
¾ The old Customers table has been split into two tables: Customers and

Country, with the “countryID” the foreign key linking them.
¾ The “country” column in the old data model has been moved to the new

Country table in the new data model, and has been renamed to
“countryName”. (Here, our assumptions applies: one must have perfect
knowledge that “country” in the old data model is now being called
“countryName” in the new data model)

¾ “customerLastName” and “customerFirstName” in the Customers table of
the old model have now been renamed to “customerLName” and
“customerFName” respectively.

Now, let us look at the XML file that maps these two data models:

Figure 4.4 XML Mapping File (Example 1)

1 <VDB>
2 <table name = "customers">
3 <def>
4 SELECT c.customerNumber, c.customerName, c.contactLName,
5 c.contactFName, c.phone, c.addressLine1,
6 c.addressLine2, c.city, c.state, c.postalCode,
7 cou.countryName, c.salesRepEmployeeNumber, c.creditLimit
8 FROM customers c, countries cou
9 WHERE cou.countryID = c.countryID
10 </def>
12 <columns>
13 <col name = "customerNumber"></col>
14 <col name = "customerName"></col>
15 <col name = "contactLastName">contactLName</col>
16 <col name = "contactFirstName">contactFName</col>
17 <col name = "phone"></col>
18 <col name = "addressLine1"></col>
19 <col name = "addressLine2"></col>
20 <col name = "city"></col>
21 <col name = "state"></col>
22 <col name = "postalCode"></col>
23 <col name = "countryName"></col>
24 <col name = "salesRepEmployeeNumber"></col>
25 <col name = "creditLimit"></col>
26 </columns>
27 </table>
28 </VDB>

Anstey
Oval

Anstey
Line

Haoxiang Zhu
Text Box
a

Anstey
Oval

Anstey
Text Box
b

Anstey
Line

 24

The following issues should be emphasized in particular:

¾ Since the XML mapping file only defines the data model that the reporting

tool presumes, there is no “Country” in the XML mapping file.
¾ As indicated by “a” in Figure 4.4, the “def” element defines an SQL query,

that is to be executed against the new database (new data model). If this query
is to be solely executed, it is going to produce a ResultSet that contains the
exactly equivalent content to the Customers table before the data model has
been modified (i.e. equivalent to the Customers table in Figure 4.2) except the
fact that “contactLastName” and “contactFirstName” have been renamed, as a
result, the column names in the result is not the same as the column names in
the original data model. For now, let us just assume that it is not a problem.
This will soon be fixed when we actually rewrite the query (refer to Section
5.2 later in this report).

¾ As indicated by “b” in Figure 4.4, since “contactLastName” and
“contactFirstName” in the original data model have been renamed in the new
data model. We map the changes by specifying the new name of the columns
as the value of the “col” element.

The following is another more complicated example showing how the XML mapping
file is defined. As in the previous example, the reporting tool’s version of the data
model is shown in Figure 4.5. And the data model in the real database is shown in
Figure 4.6:

Data model defined in the Virtual Database. (the reporting tool’s view)

Order

PK orderNumber

orderDate
requiredDate
shippedDate
status
comment

FK1 customerNumber

OrderDetails

PK,FK1 productCode
PK orderNumber

quantityOrdered
priceEach

FK2 orderLineNumber

OrderLine

PK orderLineNumber

orderLineDescription

 25

Figure 4.5 Data model (before change), reporting tool’s data model, VDB data model (Example 2)
After-change data model in the real database. (invisible to the reporting tool)

Order

PK orderNumber

requiredDate
shippedDate
status
comment

FK1 customerNumber

NewOrderDetails

PK,FK1 productCode
PK orderNumber

quantityOrdered
priceEach
orderLineNumber
orderLineDescription
orderDate

Figure 4.6 Data model (after change), data model in the real database (Example 2)

Again, we can observe that the following changes are made:
¾ The “OrderLine” table does not exist in the current data model any more.
¾ The table “OrderDetails” has been renamed to “NewOrderDetails”
¾ The table “OrderLine” has been combined into the table “NewOrderDetails”

by moving the column “orderLineDescription” to table “NewOrderDetails”.
¾ The column “orderDate” in table “Order” has been moved to table

“NewOrderDetails”
The XML file that maps these changes of the two data models is illustrated in Figure
4.7:

1<VDB>
2 <table name = "orders">
3 <def>
4 SELECT DISTINCT orders.orderNumber,orderDate,
5 requiredDate,shippedDate,status,comments,customerNumber
6 from orders, neworderdetails
7 where orders.orderNumber = neworderdetails.orderNumber
8 </def>
9
10 <columns>
11 <col name = "orderNumber"></col>
12 <col name = "orderDate"></col>
13 <col name = "requiredDate"></col>
14 <col name = "shippedDate"></col>
15 <col name = "status"></col>
16 <col name = "comments"></col>
17 <col name = "customerNumber"></col>
18 </columns>
19 </table>
20
21 <table name = "orderdetails">
22 <def>
23 SELECT productCode,orderNumber,
24 quantityOrdered,priceEach,orderLineNumber

 26

Figure 4.7 XML Mapping File (Example 2)

Once again, let us look at the following issues in particular:
¾ Since the XML mapping file defines the data model that the reporting tool

presumes. Although the table “OrderLine” has been removed from the
current data model, is it still defined in the XML mapping file. The table still
“virtually” exists if we execute the query inside the “def” tag under
“orderline” (indicated by “a” in Figure 4.7). However, this table is now
constructed by extracting information from table NewOrderDetails

¾ The table name change does not affect the XML definition, the only thing
needs to be changed is to replace the new table name with the old table name
whenever it appears inside the “def” tag, i.e. appears in the query that is
going to executed against the current database. Such an example can be
found in line 6, 7, 25, 41 from the XML mapping file where “orderdetails”
has been replaced by “neworderdetails”.

25 from neworderdetails
26 </def>
27
28 <columns>
29 <col name = "orderNumber"></col>
30 <col name = "productCode"></col>
31 <col name = "quantityOrdered"></col>
32 <col name = "priceEach"> </col>
33 <col name = "orderLineNumber"></col>
34 </columns>
35 </table>
36
37 <table name = "orderlines">
38 <def>
39 SELECT DISTINCT orderLineNumber,
40 orderLineDescription
41 From neworderdetails
42 </def>
43
44 <columns>
45 <col name = "orderLineNumber"></col>
46 <col name = "orderLineDescription"> </col>
47 </columns>
48 </table>
49</VDB>

Anstey
Oval

Anstey
Line

Haoxiang
Text Box
a

 27

The above two examples showed how the XML mapping file is defined. In general,
the syntax of the XML mapping file should conform to the following DTD:

Figure 4.8 DTD of the XML mapping file

<!DOCTYPE VDB[
 <!ELEMENT VDB (table*)>
 <!ELEMENT table (def, columns)>
 <!ATTLIST table name CDATA #REQUIRED>
 <!ELEMENT def (#PCDATA)>
 <!ELEMENT columns (col+)>
 <!ELEMENT col (#PCDATA)>
 <!ATTLIST col name CDATA #REQUIRED>
]>

 28

5 Implementation

In this chapter, we are going to look at the implementation of the system, with a
primary focus on the middle tier. In Section 5.1, we discuss the Database Location
Service provided by the middle tier to achieve database location transparency between
the reporting tool and the database. In Section 5.2, we are going to look at how the
SQL query generated by the reporting tool is converted into a new query that
produces the desired result for the reporting tool as if the data model is not changed.
And finally, in Section 5.3, we are going to find out how exactly does the reporting
tool obtain the data it requests, and how do different implementations differ in the
way of passing the ResultSet to the reporting tool.

5.1 Database Location Service
As we have mentioned earlier, most reporting tool connects to a database directly in
order to fetch the data of interest, meaning that the reporting tool must have the
knowledge of the physical location of the database in order to connect. This physical
location is specified by a database URL. It has the following syntax:

protocol:driver://host:port/databaseName

¾ Protocol specifies the protocol used to connect to a database. In our case, it
should be “jdbc”.

¾ Driver is the driver that enables the client to connect to a database. It is
usually a vendor provided software, such as (MySQL Connector/J), but not
limited to.

¾ Host and port, similar to HTTP protocol, specifies the database host IP
address and port number to connect to.

¾ Database name, as its name suggests, is the name of the underlying database.

A concrete example can be:
jdbc:com.mysql.jdbc.Driver://192.168.23.21:80/northwind

By looking at the database URL, we observed that if the database location was
changed, we must make change to the URL in order to connect to the desired database.
In our system, however, we want to achieve the goal that any changes in the database
side, is transparent to the reporting tool, including the database location. Hence, the
traditional way of specifying database URL is not robust enough for our system.

Nevertheless, this problem can be easily solved by adding an extra service to the
existing RMI service in the middle tier. Such service is a database location service. As
its name suggested, this service provides the location of the current database, since the
reporting tool connects to the middle tier instead of the database, it is therefore
possible to reveal the location of the database to the reporting tool at runtime, as long

 29

as the reporting tool finds the location of the middle tier. Since the middle tier acts as
a Virtual Database interface for the reporting tool, it is implemented in such a way
that the when the reporting tool is connected to the middle tier, it is very similar that
the reporting tool is connecting to a real database except a little modification to the
database URL.

Figure 5.1 Connect the reporting tool to Virtual Database

Figure 5.1 is a typical dialog box that reporting tool prompts for database connection
through JDBC Driver. In the example above, it is using a JDBC Driver called:
HXDriver.

We also notice that instead of specifying the physical address of the database, we have
made the database server name to be “VDB”. In here, “VDB” is a virtual address of
the database, namely, the Virtual Database. As we mentioned in Section 3.4.1, the
middle tier is expressed as a remote object by the interface of “VDB”, “VDB” is in
fact the name of the remote object that existed in the RMI registry.

The following code snippet shows how “VDB” is registered as a remote object from
the server side, it exports the stub for the client to use at the client side (refer to Figure
3.7 in Section 3.4.1 for detail):

Figure 5.1 Code snippet of the RegVDB class

public class RegVDB{
 public static void main(String [] args){
 VDB stub = null;
 try{
 LocateRegistry.createRegistry(8081);
 VDBImpl vdb = new VDBImpl();
 stub = (VDB)UnicastRemoteObject.exportObject(vdb, 0);
 Registry reg = LocateRegistry.getRegistry(8081);
 reg.rebind("VDB",stub);
 }catch(Exception e){……}
 }
}

Anstey
Oval

Anstey
Oval

 30

By doing so, the reporting tool can access the middle tier through the remote object,
we can therefore reveal the physical location to the reporting tool at run-time by
providing the following service:

Figure 5.2 Code snippet of database location service

This service, in essence, is a remote method. The return value of this method is a
String containing the database server IP address and the database name. That is, the
second half of the database URL.

This method is designed to be called by the JDBC driver at the reporting tool’s side
(client) in order to find out the current physical location of the database. By providing
this service, whenever the location of the database changes, the reporting tool’s setting
remains the same since all it needs to do is to call this remote method to find out the
up-to-date location of the database and connect to that address. The server side,
however, need to change the current database location it is pointing to in the cases of
database location changes (e.g. if the server has been moved to a new location with
the IP address: 203.231.32.34, the return value should be: 203.231.32.34/northwind).

The following code snippet shows how, the JDBC driver, in the reporting tool’s side,
find out where the current location of the database:

Figure 5.3 Customized JDBC driver looks for the current DB location

 /**
 * This method tells the RT where the actual DB is located at run time as
 * a service the RT connects to this DB at run time
 * By doing so, the location of the actual DB is transparent to the RT
 */
 public String getDBInfo() throws RemoteException{
 return "192.168.23.43/northwind"; // DBServerIP / DBname
 }

//@modify: modify url, so that VDB maps to a real DB address
int startInx = url.indexOf("//") + 2;
String vdbName = url.substring(startInx);
try{
 //Look for virtual DB in RMI registry
 Registry reg = LocateRegistry.getRegistry("localhost",8081);
 vdb = (VDB)reg.lookup(vdbName);
 url = vdb.getDBInfo(); // find out the current database location
}
catch(Exception e){
 return null;
}
//@end modify

Anstey
Oval

 31

5.2 Automatic Query Rewriting
Let us once again review what our system needs to achieve: When the reporting tool
generates a request (SQL statement), the middle tier gets hold of the query through the
JDBC Driver. The middle tier cannot execute this query against the database due to
the fact that the data model resides in the real database is possibly not the same as the
data model that the reporting tool presumes.

Therefore, the middle tier has a query rewriting facility which rewrites the query,
originates from the reporting tool, to a new form of query which is compatible to the
current data model but produces the results that the reporting tools wants as if the data
model is not modified. Another word, we need to execute such a new query, to extract
the old information from the “after-change” version of the data model.

This is done by having a QueryRewriter class inside the middle tier implementation.
The only assumption made in the current implementation is that the SQL statement
can only contain “SELECT” statement with “FROM” and “WHERE” clauses. This is
a reasonable assumption due to the fact that we are dealing with the requests issued by
the reporting tool. It is unlikely to have “UPDATE”, “INSERT” in the query
whatsoever. Keyword such as “ORDERBY” is not dealt with at the current stage of
implementation.

The QueryRewriter class has a single public method rewrite(), it reconstruct the
incoming query by rewriting “SELECT”, “FROM”, and “WHERE” clauses
respectively, the return value is the reconstructed SQL statement of type String .

The QueryRewriter class has an instance of XMLReader, it extracts the information
from the XML mapping file as the content to be rewritten. Figure 5.4 shows the code
snippet of the rewrite() method:

Figure 5.4 Code snippet of the rewrite() method.

/* This method rewrite the query originated from the reporting
 * tool to a query which is compatible to the current DB
 * @param: old query
 public String rewrite(String query){
 this.query = query;
 String newQuery = "";
 if(query.toLowerCase().startsWith("select")){
 newQuery += rewriteSelectClause(getSelectClause()) + " ";
 newQuery += rewriteFromClause(getTableNames()) + " ";
 newQuery += rewriteWhereClause(getWhereClause());
 return newQuery.trim();
 } else return query;
 }

 32

The query rewriting is done according to the following roles:
¾ First it checks whether this query is a SELECT statement, if it is not, the

returned query is the incoming query without any modifications made. This
is not avoidable since we only want to deal with the “real” query that
requests for concrete data from the database. It is very common for most
reporting tools to query for meta data, typically at its first connection to the
database, by issuing query such as “SHOW TABLES”, this kind of query is
out of our interest and hence it is necessary to avoid them in order not to
produce unnecessary complications and mistakes.

¾ Secondly, it processes the “SELECT” clause of the SQL statement. For each

of the fields (columns) appears in the SELECT clause, if the column name is
not specified in the form: tableName.columnName, it looks through the XML
mapping file to find out which table (specified in the FROM clause) this
column belongs to, and rewrite the column name into the format of:
tableName.columnName. It also checks to see weather the name of the
column is changed. If not change is made, keep it the same, otherwise change
the column name into the new column name of the current data model and
add an “AS” keyword followed by the old column name before the data
model is modified.

The following pseudocode illustrates how this is done:

Figure 5.5 Pseudocode: rewriting SELECT clause

¾ Thirdly, it processes the FROM clause of the originated query. The rewriting

is done by replacing each of the table name specified in the FROM clause by
a sub-query. The sub-query is obtained from the “def” sub-element within the
table element, from the XML mapping file. This works because the query in
the “def” tag generates a virtual form of the table as if the model is not
changed.

for each column col in select clause
if tableName is not specified

 tableName := findTableNameFromXml(col);
 col := tableName + “.” + col;

end if

if col is renamed

 newName := findNewColumnNameFromXml(col);
 col := tableName + “.” + newName;
 col += “AS” + oldName;

end if

end for

 33

The following pseudocode illustrates how this is done:

 Figure 5.6 Pseudocode: rewriting FROM clause

¾ Lastly, it will processes the WHERE clause. The rewriting of WHERE clause

follows a similar role to rewriting SELECT clause. It basically finds all the
column names in the WHERE condition and replace them with the new
column names (if any) in the current data model. However, it requires more
work since there are unknown number of conditions separated by keyword
“AND” or “OR”. We need to extract all the conditions out before further
process them.

The following figure shows the pseudocode of rewriting WHERE clause:

Figure 5.7 Pseudocode: rewriting WHERE clause

for each tableName is the FROM clause:
 String subQuery = “”;
 def := lookForDefInXml(tableName);
 subQuery += def;
 subQuery += “AS” + tableName; // AS the old table name

end for

String[] conditions = split the WHERE clause according to {AND, OR};

for each condition cond in conditions
 String sign := find the sign in cond // can be <, >, =, <=, >= etc
 String left := cond.left(sign); // left hand side of condition
 String right := cond.right(sign); // right hand side of condition

 for col is {left, right}

if tableName is not specified
 tableName := findTableNameFromXml(col);
 if(tableName != null)
 col := tableName + “.” + col;
 else // no table name matching
 col := col // do not change, it is an assignment such as

// table. col =’hello’
end if
if col is renamed

 newName := findNewColumnNameFromXml(col);
 col := tableName + “.” + newName;

end if

 end for
end for

 34

After the above steps, we will have a new query which is ready to be executed against
the current database, but produce the desired result that the reporting tool requests, i.e.
if this rewritten query is executed against the current database, we will then have a
ResultSet object that contains the data that the reporting tool requests.

The content of the ResultSet will be exactly the same if we were to execute the
original query against the database before any changes are made.

In the next section, we are going to look at how can we, use different implementations,
to transport this ResultSet back to the reporting tool.

 35

5.3 Getting The ResultSet

In Section 5.2, we have discussed how the incoming query can be rewritten to be
compatible to the current data model. But one question can be raised: who is going to
execute this rewritten query?

This question has already been answered in Section 3.3, where we present the
architecture of the middle tier. Different architectures have different way of handling
the rewritten query, and hence different ways of obtaining the final ResultSet
containing the data that the reporting tool is interested in.

Basically, there are two scenarios:
1. The middle tier is responsible of obtaining the ResultSet and transporting it

back to the reporting tool.
2. The middle tier is not responsible of obtaining the ResultSet. The reporting

tool itself obtains the ResultSet.

5.3.1 Approach One – Execute the rewritten query from middle tier
Let us first of all look at the first scenario.

When the rewritten query is in place, since the DataFetcher in the middle tier
maintains a connection to the current database, we can therefore execute the rewritten
query from the DataFetcher class. After the execution, a ResultSet Object is returned,
containing the result the reporting tool wants. This ResultSet Object must be
transported to the reporting tool’s side for further processing. However, we need to
keep in mind that the middle tier is in fact a remote object. Every method we called
from the reporting tool’s side is a remote method invocation. RMI requires that both
parameter and return type must be either primitive type or object that is serializable.
In our case, the ResultSet object obtained from the remote side, is not serializable,
hence it cannot be transported to the client side.

We therefore, need to process the ResultSet object at the remote side (i.e. middle tier),
and pack the data into another object that is serializable for it to be transported
through RMI to the reporting tool, more strictly, to the customized JDBC driver used
by the reporting tool. Upon receiving this serializable “ResultSet”, the customized
JDBC driver needs to re-process those data encapsulated in the object to reconstruct a
“real” ResultSet object for the reporting tool to use.

Figure 5.8 shows a detail diagram of how this approach works:

 36

Middle Tier / Remote Service / Virtual Database

Reporting Tool

RMI

MySQL
DataBase

1. query

Network

Customized
JDBC Driver

2. query

3.
 q

ue
ry

4. Rewritten query

5. MySQL ResultSet

6.
 S

er
ia

liz
ab

le
 R

es
ul

tS
et

7. Serializable ResultSet8. Standard ResultSet

The Reporting
Tool will
connect to the
Middle Tier

Converting from MySQL
resultset

to serializable resultSet
 to be transported through
RMI.

MYSQL JDBC
(J-Connector)

This
Serializable
ResultSet is a
wrapper of
MySQL
resultset
It is
serializable
and can be
transported
through RMI.

This
ResultSet is
not
Serializable ,
and hence
cannot be
passed over
RMI

Figure 5.8 Getting ResultSet through RMI

It is clear that as long as we can convert the ResultSet obtained from Step.5 into the
serializable ResultSet shown in Step 6 and 7, there will be no problem with this
approach.

So far, we have found three ways of converting the JDBC ResultSet object into a
serializable object. Each of those implementations requires modifications to the
DataFecther class, since DataFetcher is responsible for converting the ResultSet it
obtained into a serializable form. We are going to look at each of them in detail. All of
them process the JDBC ResultSet object at the remote side once, and convert it to a
serializable object to be transportable through RMI.

z Packing the ResultSet into a Map object:

“The Map Interface is a member of the Java Collection Framework. It provides
three collection views, which allow a map's contents to be viewed as a set of keys,
collection of values, or set of key-value mappings. The order of a map is defined
as the order in which the iterators on the map's collection views return their
elements.” [JAVA 5.0 API]

In our implementation, a LinkedHashMap is typically used. The Map object
contains the <key, value> pair as <columnName, listOfColumnValues>, where
listOfColumnValues is an ArrayList object contains all the values within one
column.

 37

A graphical view of the Map object is shown in Figure 5.9:

A1

A2

A3

A4

A5

A6

.

.

.

MyColumn A MyColumn B MyColumn DMyColumn C

B1

B2

B3

B4

B5

B6

.

.

.

C1

C2

C3

C4

C5

C6

.

.

.

D1

D2

D3

D4

D5

D6

.

.

.

List A List B List C List D

Figure 5.9 Graphical representation of Map Object for encapsulating the ResultSet

The following code snippet shows how the Map object is constructed
programmatically (inside DataFetcher class):

Figure 5.10 Code snippet of the toMap() method.

 /** Helper method that maps a ResultSet into a map of column lists
 * @param ResultSet
 * @return map of lists, one per column, with column name as the key */
 private Map toMap(ResultSet rs) throws SQLException{
 ResultSetMetaData meta = rs.getMetaData();
 Map columns = new LinkedHashMap(); // Set up the map of columns
 int numWantedColumns = meta.getColumnCount();
 for (int i = 1; i <= numWantedColumns; i++){
 List columnValues = new ArrayList();
 columns.put(meta.getColumnName(i), columnValues);
 }
 while (rs.next()){
 for (int i = 1; i <= numWantedColumns; i++){
 String columnName = meta.getColumnName(i);
 Object value = rs.getObject(columnName);
 List columnValues = (List)columns.get(columnName);
 columnValues.add(value);
 columns.put(columnName, columnValues);
 }
 }
 return columns;
 }

 38

z Converting the ResultSet object into CachedRowSet object
“A CachedRowSet object is a container for rows of data that caches its rows in
memory, which makes it possible to operate without always being connected to
its data source. Further, it is a JavaBeansTM component and is scrollable,
updatable, and serializable. A CachedRowSet object typically contains rows from
a result set.

A CachedRowSet object is a disconnected rowset, which means that it makes use
of a connection to its data source only briefly. It connects to its data source while
it is reading data to populate itself with rows and again while it is propagating
changes back to its underlying data source. The rest of the time, a CachedRowSet
object is disconnected, including while its data is being modified. Being
disconnected makes a RowSet object much leaner and therefore much easier to
pass to another component.” [JAVA 5.0 API]

The above two paragraphs are obtained from Java API (5.0). It describes the
CachedRowSet object from package javax.sql.rowset. We used the standard
implementation provided by Sun Microsystems in our implementation, therefore,
the detailed implementation is unknown. However, it is worth mentioning that
CachedRowSet does not maintain a continuous connection to the data source.
This suggests that this implementation uses somehow similar approach to the
Map approach described earlier, i.e. the ResultSet is processed once at the remote
side before it can be transported to the reporting’s side.

The following code fragment shows how the CachedRowSet object is obtained
(inside DataFetcher class):

 /**
 * This method executes the rewrittern query
 * and return the ResultSet as a CachedRowSet object which can be

* serialized into the RT site
 * @ param rewrittern query
 */
 public CachedRowSet getRowSet(String sql){
 CachedRowSetImpl crs = null;
 try{
 crs = new CachedRowSetImpl();
 Statement stmt = conn.createStatement();
 ResultSet rs = stmt.executeQuery(sql);

 crs = new CachedRowSetImpl(); // The implementation is
// provided by Sun Microsystem.

 crs.populate(rs);

 39

Figure 5.11 Code snippet of constructing CachedRowSet object from DataFetcher class.

z Converting the ResultSet object into XML document

Since all the data the reporting tool wants is already contained in the ResultSet
object, we can therefore process the ResultSet at the server side and convert the
data into an XML document as long as we have a proper XML schema (or DTD)
defined.

The interface WebRowSet inside javax.sql.rowset package offers a way of
converting JDBC ResultSet into an XML document. Such an XML document
contains three main elements: <properties>, <metadata> and <data>. The XML
document conforms to the XML schema defined at the following address:

 http://java.sun.com/xml/ns/jdbc/webrowset.xsd

In our implementation, we also used the standard implementation provided by
Sun Microsystems. The following code fragment shows how the WebRowSet
object is constructed using the JDBC ResultSet (inside DataFetcher class):

Figure 5.11 Code snippet of constructing WebRowSet object from DataFetcher class.

 catch(Exception e){
 e.printStackTrace();
 }
 return crs;
 }

 /**
 * This method executes the rewrittern query
 * and return the ResultSet as a CachedRowSet object
 * which can be serialized into the RT site
 * @param rewrittern sql
 */
 public WebRowSet getRowSet(String sql){
 WebRowSetImpl wrs = null;
 try{
 Statement stmt = conn.createStatement();
 ResultSet rs = stmt.executeQuery(sql);
 wrs = new WebRowSetImpl(); // The implementation is provided
 // by Sun. Microsystems
 wrs.populate(rs);
 }
 catch(Exception e){……}
 return wrs;

}

 40

To summarize the above three scenarios, in order to obtain the data from the remote
side to the reporting tool’s side, we need to extract all the information from the
ResultSet and convert it into a serializable object. This kind of approach is however
costly as far as efficiency is concerned (it is discussed in the next Chapter).

5.3.2 Approach Two – Execute the rewritten query from reporting tool

It would be much better if the ResultSet object can be obtained by the reporting tool
without being transported through RMI. Hence, we introduce the second approach. In
this approach, the middle tier is not responsible for fetching the data, and hence no
DataFetcher is needed. What the middle tier does is to receive the SQL query and
modify it so that it can be executed against the current data model. After the query is
rewritten by the middle tier, the query itself, rather than the ResultSet produced by
executing the query, is transported through RMI to the reporting tool (more accurately,
to the customized JDBC driver). The customized JDBC driver which is sitting at the
reporting tool’s side (client), upon receiving the rewritten query, executes the new
query against the current database and fetches the result. Note that the ResultSet now,
is a standard JDBC ResultSet, hence no serialization is needed. The following
diagram illustrates this:

Remote Services/ VDB / Middle Tier

Reporting Tool

RMI

MySQL
DataBase

1.query

Network

Modified
MySQL JDBC
(J-Connector)

2.query

3.
 q

ue
ry

6.
 R

ew
rit

te
n

qu
er

y

7.
 S

ta
nd

ar
d

R
es

ul
tS

et

4.
 R

ew
rit

te
n

Q
ue

ry

5. Rewritten Query8. Standard ResultSet

The Reporting
Tool connect
to the middle
tier.

This service layer
looks the query
coming from the
reporting tool , and
rewrite the query so
that it can be
executed on the
current DB.

This service layer
contains an XML
mapping file .

Instead of
executing the
original query ,
the JDBC now
executes the
query that is
returned from
the middle
tier.

Figure 5.12 Getting ResultSet directly by executing the rewritten query

This approach, is very similar to the previous approach, the only difference is that
after the middle tier has got the rewritten query, it does not execute the query against

 41

the current database, instead, it passes this rewritten query to the JDBC driver used by
the reporting tool though RMI. (Refer to the sequence diagrams in Figure 3.3 and
Figure 3.5 for comparison)

We can also see that in this approach, there is only one JDBC driver needed due to the
fact that the middle tier does not keep a connection to the actual database. The only
JDBC driver, is very likely to be a vendor supported JDBC Driver (e.g. in the diagram,
it is a MySQL Connector/J since the database is a MySQL database). However, this
JDBC driver needs to be modified from the original version, typically, the following
modifications need to be considered:

¾ Has an instance of VDB class as the remote stub.
¾ Calls the getQuery() remote method on VDB to obtain the rewritten query

before executing it.
¾ All the meta-data information cannot be obtained from the database directly.

This information must be obtained from the XML mapping file resides on the
middle tier since the data model in the database may be different from what
the reporting tool expects.

The following code snippet shows how the rewritten query is obtained inside
executeQuery() method of Statement class (This is a modified version of the MySQL
JDBC implementation):

Figure 5.13 Code snippet of obtaining the rewritten query from JDBC.

Up until now, there are two approaches of getting the ResultSet, the first approach
obtains the ResultSet through the middle tier (Figure 5.8). The second one obtains the
ResultSet directly from the database by executing the rewritten query (Figure 5.12).
The following table is a comparison between the two approaches:

public java.sql.ResultSet executeQuery(String sql)
throws SQLException {

 checkClosed();
 try{
 if(vdb != null){
 // this method returns the rewritten query
 sql = vdb.getQuery(sql); //vdb is the remote stub
 }
 }
 catch(Exception e){
 e.printStackTrace();
 }
 // the query executed will be the rewritten query
 ……
}

 42

 Approach
 Issue

Approach One Approach Two

Middle tier maintains connection
to database

Yes No

ResultSet Serialization Yes No
No. JDBC Drivers 2 1
Modifications to vendor provided
JDBC Driver

No Yes

Query rewriting Yes Yes

Passing ResultSet through RMI Yes No
Table 5.1 Comparison between two approaches

 43

6 Performance Evaluations

So far, we have looked at all the implementations of the middle tier. But we are still
not sure which implementation gives us the best performance quality. If we were to
use this middle tier into practice, we also want an implementation which not only
does the “job” but also retrieve the information efficiently. As mentioned previously,
the biggest problem that influences the performance of the underlying system is how
the ResultSet object is handled. In this chapter, we are going to compare different
implementations in terms of their performances. In Section 6.1, we specify the testing
environment. From Section 6.2 to 6.4, we are going to see the performances of the
first approach discussed above, where the ResultSet is obtained through the RMI. In
Section 6.5, we are also going to look at the performance of the second approach,
where the ResultSet is passed directly from the database. Finally, in Section 6.6, we
are going to compare both of the approaches and conclude on which implementation
gives the best performance quality as far as speed is concerned.

Before we look at the testing results of different implementations, let us first of all,
look at how the timing is done in order to give a fair comparison among all the
implementations.

The timing is conducted in the reporting tool’s side. The timer starts right before the
command “statement.executeQuery(someQuery)” where the reporting tool requests its
JDBC driver to fetch the ResultSet for further processing and ends right after the
ResultSet has been successfully fetched by the JDBC driver and accessed each object
in the ResultSet once by a dummy command:

Object obj = resultSet.getObject(columnNumber)

The reason that we need such a dummy step of accessing each object inside the
ResultSet once is because: for the implantations which packs ResultSet into Map,
CachedRowSet, and XML document. The resulting rowset does not keep a connection
to the data source (i.e. all the element is already cached into the rowset before it is
being transported), while the standard JDBC ResultSet (the approach executing
rewritten query directly from reporting tool) keeps persistent connection to the data
source, i.e. for standard JDBC ResultSet, at the time the ResultSet is obtained, we do
not have all the data cached inside the ResultSet, in fact, only every time the next()
method is called, the JDBC driver will then fetch a new row from the current data
source. Therefore, it is not a fair comparison to only time the period of getting the
ResultSet, but not process each element inside the ResultSet. Therefore, in the timing
routine, we use this dummy step to run a simulation of processing all the elements
inside the ResultSet object for both of the approaches.

In order to get an average value, the above timing routine is to be executed for 100
times to get an average reading with high precision. The following segment of code

 44

shows how the timing is conducted inside the reporting tool:

Figure 6.1 Code snippet of timing mechanism.

From Section 6.2 to Section 6.6, each of the implementations (refer to Section 5.3) are
tested using the above timing mechanism. In order to compare our implementation
with the traditional reporting tool implementation, the traditional implementation of
the reporting tool (i.e. not through middle tier, every time the data model change, the
query issued by the reporting tool changes accordingly) is also tested under the same
timing mechanism in order to identify any possible overhead in our implementations.

……
int limit = 100; // No. of time to run the loop, to give an average value
while(c < limit){
 long start = System.nanoTime(); // start timing
 resultSet = statement.executeQuery(query);
 while(resultSet.next()){
 for (int i = 1; i <= numberOfColumns; i++) {
 Object obj = resultSet.getObject(i); // dummy step
 }
 }
 long end = System.nanoTime(); // end timing
 long diff = end - start;
 sum += diff;
 c++;
}
resultSet.close();
System.out.println("average time is: "+(sum/limit)/100000.0 + " mill seconds");
……

 45

6.1 Testing Environment
The test is conducted on a database with data model changes by comparing the
performance of our implementations and the traditional reporting tool. In our
implementation, the query issued by the reporting tool does not reveal any data model
changes. In the traditional implementation, the query issued by the reporting tool is
manually changed to conform to the data model changes, but it would otherwise
produce the same result.

For the sake of simplicity, a simplified version of reporting tool is used, where an
SQL statement can be entered into the program to simulate the setting that the
reporting tool is configured to. The following is a screen-shot of the testing program:

Screen-shot of testing program

For our implementations, the tests are conducted in such a way that the testing
program, middle tier and the database are residing on different machines (same
configurations, see table below).

For the traditional reporting tool implementation, the testing program and the database
are residing on different machines (same configurations, see table below).

The testing environment is summarized in the following tables:

System Environment:

Operating System Windows XP Professional (5.1, Build 2600) Service Pack 2

Processor Intel(R) Pentium(R) 4 CPU 3.40GHz (2 CPUs)

Memory 2048MB RAM

Java Version Java (TM) 2 Runtime Environment, Standard Edition (build 1.5.0_06-b05)

 46

Database Environment:

Name MySQL 5.0.20

Host URL http://studwww.cs.auckland.ac.nz/

Database Driver MySQL Connector/J 5.0.2

Driver Details JDBC-3.0, “Type 4” driver

Network Environment:

Protocol TCP/IP

Type Full Duplex

Speed (PC to router) 100Mbps

Speed (between router) 1Gbps

When the tests are conducted, the related table defined in the real database is:

Related table in the real database

OrderDetails

PK,FK1 productCode
PK orderNumber

quantityOrdered
priceEach
orderLineNumber
orderLineDescription
orderDate

The mapping view of the table that the reporting tool views is (i.e. Virtual Database):

Related table in the Virtual Database

OrderDetails

PK,FK1 productCode
PK orderNumber

quantityOrdered
priceEach

FK2 orderLineNumber

OrderLine

PK orderLineNumber

orderLineDescription

The query used to simulate the reporting tool’s setting is (i.e. the query issued by the
reporting tool):

 47

The tests are conducted by retrieving a ResultSet with different sizes ranging from
40Kb to 400Kb approximately (raw data size, no meta-data size included). The
different sizes of the ResultSet is obtained by changing the number of rows inside the
table “OrderDetails” in the real database, from 1000 rows to 10,000 rows.

SELECT orderNumber, productCode,
orderdetails. orderLineNumber, orderLineDescription

FROM orderdetails, orderlines
WHERE orderdetails.orderLineNumber = orderlines.orderLineNumber

 48

6.2 Serialize using Map Object
The following table illustrates the comparison between the middle tier implementation
which encapsulates the ResultSet into a Map object and the traditional reporting tool
implementation:

ResultSet Size
(Kb)

Method

39.8 79.7 119.5 159.4 199.2 239.1 278.9 318.8 358.6 398.5

Middle Tier
Implementation

(Map) /ms

38.8 68.7 101.6 122.3 157.0 197.8 205.9 230.9 266.6 284.8

Traditional
Reporting tool

/ms

14.9 32.5 44.4 55.1 68.3 80.9 82.5 89.3 101.8 115.7

Table 6.1 Testing data (Map v.s. traditional reporting tool).

The following graph is plotted according to the above data:

Middle Tier (Map Implementation) V.S. Traditional Reporting
Tool

0

50

100

150

200

250

300

0 100 200 300 400 500

ResultSet Size (in Kb)

Ti
me

(i
n
 m
i
ll
i
se

co
n
d)

Map

Traditional
Reporting tool

Figure 6.2 Plot: Map Implementation against Traditional Reporting Tool

From Figure 6.2, we can observe both the traditional implementation and our middle
tier implementation produce result nearly linear, i.e. as the ResultSet increases its size,
the time it take increases as well. It seems that the Map implementation tends to
increase at a faster rate than that of the traditional implementation. There is also
significant overhead introduced by the Map implementation as expected, this
overhead is very likely produced due to the time it takes to process the ResultSet
object at the remote side (server side) before it can be transported through RMI.

 49

6.3 Serialize using CachedRowSet Object
The following table illustrates the comparison between the middle tier implementation
which encapsulates the ResultSet into a CachedRowSet object and the traditional
reporting tool implementation:

ResultSet Size
 (Kb)
Method

39.8 79.7 119.5 159.4 199.2 239.1 278.9 318.8 358.6 398.5

Middle Tier
Implementation
(CachedRowSet)

/ms

67.5 123.7 157.4 202.5 276.6 290.3 342.7 413.6 450.4 510.6

Traditional
Reporting tool

/ms

14.9 32.5 44.4 55.1 68.3 80.9 82.5 89.3 101.8 115.7

Table 6.2 Testing data (CachedRowSet v.s. traditional reporting tool).

The following graph is plotted according to the above data:

Middle Tier (CachedRowSet Implementation) V.S. Traditional
Reporting Tool

0

100

200

300

400

500

600

0 100 200 300 400 500

ResultSet Size (in Kb)

Ti
me

(i
n
 m
i
ll
i
se

co
n
d)

CachedRowSet

Traditional
Reporting Tool

Figure 6.3 Plot: CachedRowSet Implementation against Traditional Reporting Tool

Again, as expected, the CachedRowSet implementation also seems to take a
significant amount of time serializing the ResultSet. As the size of the ResultSet
increases, the time it takes to serialize increases at a very fast rate.

 50

6.4 Serialize by converting ResultSet into XML document (WebRowSet)
The following table illustrates the comparison between the middle tier implementation
which encapsulates the ResultSet into an XML document and the traditional reporting
tool implementation:

ResultSet Size
 (Kb)
Method

39.8 79.7 119.5 159.4 199.2 239.1 278.9 318.8 358.6 398.5

Middle Tier
Implementation

(XML)
/ms

71.6 122.3 153.5 208.6 261.2 316.6 351.9 436.5 479.7 540.7

Traditional
Reporting tool

/ms

14.9 32.5 44.4 55.1 68.3 80.9 82.5 89.3 101.8 115.7

Table 6.3 Testing data (XML v.s. traditional reporting tool).

The following graph is plotted according to the above data:

Middle Tier (XML Implementation) V.S. Traditional Reporting
Tool

0

100

200

300

400

500

600

0 100 200 300 400 500

ResultSet Size (in Kb)

Ti
m
e
(
in

mi
l
li
se

co
n
d)

XML

Traditional
Reporting tool

Figure 6.4 Plot: XML document (WebRowSet) Implementation against Traditional Reporting Tool

Although XML seems to be widely used for serialization of dataset, this
implementation does not seems to be favorable either, the overhead introduced is
quite large and increase in a very fast rate as the ResultSet size increases.

 51

6.5 Executing rewritten query directly
Up to now, we have looked at the performance of all the implementations which
convert the ResultSet into a serializable object before transporting them trough RMI.
Although the time ranges are all within millisecond, compared to the traditional
reporting tool implementation, all of them seem to introduce rather significant
overheads. In this section, we are going test the performance of the second approach,
where the ResultSet does not go through RMI, only the rewritten query get passed
through RMI (Section 5.3.2). If we can have a result with relatively low overhead
compared to the previous testing, not only we have found an improvement to our
solution, we also can prove that the overhead is indeed produced by ResultSet
serialization.

The following table illustrates the comparison between the middle tier implementation
which executes the rewritten query directly from the reporting tool and the traditional
reporting tool implementation:

ResultSet Size (Kb)

Method

39.8 79.7 119.5 159.4 199.2 239.1 278.9 318.8 358.6 398.5

Middle Tier Impl
(rewritten query

from RT) /ms

20.2 42.8 57.6 62.1 71.3 80.3 94.5 102.3 106.1 113.7

Traditional
Reporting tool

/ms

14.9 32.5 44.4 55.1 68.3 80.9 82.5 89.3 101.8 115.7

Table 6.4 Testing data (execute rewritten query from RT v.s. traditional reporting tool).
The following graph is plotted according to the above data:

Middle Tier (Directly execute rewritten query from RT) V.S.
Traditional Reporting Tool

0

20

40

60

80

100

120

140

0 100 200 300 400 500

ResultSet Size (in Kb)

Ti
m
e
(i
n
mi
ll
is
ec
on
d)

Execute rewritten
query from RT

Traditional
Reporting tool

Figure 6.5 Plot: Execute written query from RT against Traditional Reporting Tool

 52

Clearly from Figure 6.5, we can see that the second approach, by passing the rewritten
query through RMI and execute the query from the reporting tool directly has
decreased the time dramatically. In fact, the time difference with the traditional
reporting tool implementation is nearly negligible. Meanwhile, we also proved that
the overhead in our first approach is indeed produced by the ResultSet serialization.

 53

6.6 All together
In this section, we are going to compare all the implementations together. In particular,
we are going to see by how much, the second approach in favor to approach one:

Figure 6.6 is plotted using the same set of data obtained from Section 6.2 to 6.5, but
combine them into one graph to get a better comparison schema.

Comparison among all implementations

0

100

200

300

400

500

600

0 100 200 300 400 500

ResultSet Size (Kb)

T
im
e
 (

mi
l
li
s
ec
o
nd
)

Map

CachedRowSet

XML

Execute rewritten
query from RT

Traditional
Reporting Tool

Figure 6.6 Plot: Comparison among all implementations

According to Figure 6.6, we can roughly separate all the implementations into three
distinct categories:

1. High: This category includes CachedRowSet and XML implementations from the

first approach. They seem to have a very high overhead due to ResultSet
Serialization.

2. Medium: Map implementation from the first approach. Compared to

CachedRowSet and XML, it seems that it takes relatively less time in serializing
the ResultSet. However, it still produces some amount of overhead due to the fact
that when compared to the traditional direct database access, it still shows a fairly
big overhead in time.

3. Low: Execute the rewritten query from the reporting tool from the second

approach. Clearly, it hardly produces any overhead in time. Hence, this approach
is the best among all implementations. If this system is to be used to practice, and
performance is of concern, this approach should certainly be adopted.

 54

7 Conclusion

Let us summary the report as the following:

We start this project by looking at the behaviors of the traditional reporting tools.
Indeed, we found that most of the reporting connects to a data source with no middle
tier in between. Therefore, the reporting tool can only cope with any data model
changes by changing its configurations.

We found a possible solution to solve this problem by adding a middle tier in between
the reporting tool and the data source. Instead of connecting to the data source directly,
the reporting tool will now connect to the middle tier which acts as a Virtual
Database to the reporting tool. Each request issued by the reporting tool is intercepted
by the middle tier before it gets processed.

We have also defined an XML mapping mechanism to map the current data model to
the data model that reporting tool views. All the requests from the reporting tool,
when it comes to the middle tier, are now mapped to a new request which is
compatible to the data model before any changes are made.

Thus, we will have a new request generated by the middle tier which can be executed
against the most-recent data model, but produce the results that the reporting tool
wants. We came cross different implementations of getting the result to the reporting
tool either by executing the request from the middle tier and pass the result to the
reporting tool through RMI or sending the new request back to reporting tool and let
the reporting tool itself gets the ResultSet.

We further investigate the different implementations and found, by performance
evaluation, that the approach where the rewritten query gets transported through RMI
achieves our goal very efficiently, it hardly create any overhead.

Overall, the initial problem can be solved and it can also be achieved relatively
efficiently.

 55

8 Future works

As mentioned in the previous chapters, the XML mapping file in this system needs to
be manually defined. Any changes made to the data model must be visible to the
person who defines the XML mapping file. This of course is not desired in many
situations, typically when the data model gets very complicated. Therefore,
automation of this process is definitely worth investigating.

A wide suggestion can be: instead of defining the data model changes directly in the
XML mapping file, we can have two XML files which define both the current data
model in the database and the old data model that reporting tool views. Then we can
build some mechanism which examines the two data model definition and figures out
the changes made automatically. This, however, will require some restrictions on how
the data model can be modified. E.g. how can we know that an old column name
“customer” is now called “client” in the new data model? A possible restriction to
make the mapping automatic can be, say, to specify an ID attribute to each
column/table. So before and after the data model changes, “customer” and “client”
will end up with the same ID.

 56

9 Acknowledgment

I wish to extend my great thanks to my supervisors: Dr. Santokh Singh & Dr. Xinfeng
Ye for all the suggestions, helps and encouragements. Without their guidance, I doubt
I could finish this work.

Special thanks to Vijay Savanth, who is also working on this project, for all the
suggestions either to the development of system or to this report. I wish him all the
best.

Lots of thanks to all my friends, for the confidence they gave me when I run into fear
and difficulties.

 57

10 References

1. Elizabeth Montalbano, “Eclipse Developers To Get Open-Source Reporting Tool.

(Business Intelligence and Reporting Tool)”, Computer Reseller News Sept 13,
2004 p37.

2. Harvey, Troy Alan, M.Eng., “An XML-based architecture for translating SAS

datasets into Web reports”, University of Louisville, 2005.

3. Prakash, N.; Garg, K.; Chopra, Y.C, “SQL translator using artificial neural

networks”, Intelligent Information Systems, Australian and New Zealand
Conference, 1996

4. Mary Stearns Sgarioto, “Object databases move to the middle” InformationWeek.

Manhasset: Nov 29, 1999. p. 115.

5. Liang, Wei Hua, M.Comp.Sc., “WISH XML Query Composer”, Concordia

University (Canada), 2003.

6. Sihem Amer-Yahia, Fang Du, Juliana Freire, “A comprehensive solution to the

XML-to-relational mapping problem”, Sixth ACM CIKM International
Workshop on Web Information and Data Management, November 2004.

7. Iraklis Varlamis, Michalis Vazirgiannis, “Bridging XML-schema and relational

databases: a system for generating and manipulating relational databases using
valid XML documents”, November 2001.

8. Mary Fernandez, Atsuyuki Morishima, Dan Suciu, “Efficient evaluation of XML

middle-ware queries”, SIGMOD Conference, May 2001.

9. Cong Yu, Lucian Popa, “Constraint-based XML query rewriting for data

integration”, International Conference on Management of Data, June 2004.

10. JasperReport Homepage, “JasperReports Documentation”, Available from:

http://jasperforge.org/sf/wiki/do/viewPage/projects.jasperreports/wiki/HomePage.
Accessed Oct 2006.

11. Nitin Nanda and Sunil Kumar, “Create your own type 3 JDBC driver”, Available

from: http://www.javaworld.com/javaworld/jw-05-2002/jw-0517-jdbcdriver.html.
Accessed Oct 2006.

12. MySQL, “MySQL®Connector/J”, Available from:
http://www.mysql.com/products/connector/j/ Accessed Aug 2006.

 58

13. BIRT, “BIRT Tutorial”, Available from:

http://www.eclipse.org/birt/phoenix/tutorial/#tutorial Accessed Jul 2006.

