
A DATA SOURCE DEFINITION TOOL FOR

REPORTING TOOLS

Bachelor of Technology (Information Technology)

End of First Semester Project Report

Haoxiang Zhu

June, 2007

Supervisors:

Gareth Cronin (Industrial)

Development Team Leader

Kiwiplan Ltd.

New Zealand

Dr. Xinfeng Ye (Academic)

Department of Computer Science

University Of Auckland

New Zealand

ABSTRACT

The Kiwiplan GUI framework provides a CrystalReportsstyle report designer that
uses Kiwiplan's flexible table system as its data source. Everyday users are able to
create reports based on existing customizable tables within application user
interfaces. However, power users in organizations often wish to report on custom
data sources. Traditionally power user reporting tools allow the definition of an SQL
query and then reports are built on the resultset from this query.

In this project, we are going to build a Data Source Definition Tool which allows the
user to link together business objects in a SQLjoin style fashion to achieve custom
data sources based on the business objects, rather than just a SQL query on the
database backend.

 - 1 -

Contents

1. INTRODUCTION... - 3 -

1.1. THE COMPANY...- 3 -
1.2. MOTIVATION..- 3 -
1.3. PROJECT GOAL ...- 4 -

2. HIGH LEVEL SYSTEM OVERVIEW... - 5 -

3. INVESTIGATING IREPORT AND JASPERREPORTS.. - 7 -

4. SYSTEM REQUIREMENTS SPECIFICATION .. - 9 -

5. INTEGRATE IREPORT INTO THE SYSTEM .. - 13 -

5.1 DATA SOURCE SERVICE V.S. DATA SOURCE ...- 13 -
5.2 IDATASOURCESERVICEPROVIDER ...- 14 -
5.3 USING JRDATASOURCE...- 15 -
5.4 USING IREPORTCONNECTION..- 16 -
5.5 WORKING WITH FLEXIBLETABLE IN KIWIPLAN FRAMEWORK ...- 17 -

6. SUPPORT FOR SUB-REPORTS .. - 19 -

6.1 MASTER DATA SOURCE ...- 19 -
6.2 DATA SOURCE EXPRESSION ...- 21 -
6.3 OBJECT LEVEL JOIN WHEN BUILDING SUB-REPORT ...- 22 -

7. CONCLUSIONS ... - 25 -

8. ACKNOWLEDGEMENT.. - 26 -

9. REFERENCES.. - 27 -

 - 2 -

1. Introduction

This report documents the outcomes from the first half of my final year Bachelor of
Technology project. In this section, I am going to briefly introduce the company
which offers this project, followed by the motivation and the final goal of this project.

1.1. The company
Kiwiplan is a software development company that services the corrugating and
packaging industries. Typical customers include firms that produce corrugated
cardboard products such as boxes, display stands, and other packaging products.

Their product range covers the entire business process for a packaging firm, from
order entry to shipping. The core products relate to controlling the plant and
scheduling the corrugating machinery. These products communicate with the
equipment on the factory floor to control production and collect data.

In the 1970's, Kiwiplan was starting business as a small corrugating firm. As their
throughput increased they developed computer systems to help them keep up with
demand. There was considerable interest in these computerised systems from other
packaging companies, and the IT department grew and eventually separated from the
box plant division.

Kiwiplan is now one of the world’s leading software suppliers to the packaging
industry. They have customers in 28 countries and four international offices. All
research and development work is done in New Zealand.

1.2. Motivation
• Currently, Kiwiplan uses DataVision as the reporting tool. This type of reporting

tool only supports reports to be built from a single data source. There is no way of
combining data that obtained from different data stores (e.g. different databases)
together to produce the desired reports. However, power-users in organizations
often wish to report across multiple data sources, this is typically the case, for big
organization such as Kiwiplan, where a report may require data stored at different
database servers located in different counties (e.g. US office and NZ office).

• Sub-reports are widely used in many organizations. A sub-report is an entire

report that is placed in the detail area of another report. Its main purpose is to
display data from data sources linked in a set using one-to-many links at the same
level. The existing reporting facility in Kiwiplan does not have the build-in
support for creating a sub-report. Having the ability of producing sub-reports not
only make the resulting report more visually understandable, it also saves time

 - 3 -

and effort for technical staffs to prepare lots of complicated reports.

1.3. Project Goal
The goal of this project is to enhance the existing reporting facility in Kiwiplan, so
that:

• Report user can use multiple data sources to create a single report.
• Report user can design the desired report using an easy-to-use tool.
• Sub-report should be supported.

A key difference between this reporting facility and the traditional reporting facility is
that the tool works on-object-basis.

Traditional reporting tool usually has a connection to a back-end database, and the
report is generated from the resultset of executing some query languages. In this tool,
we do not have a back-end database connection. And all the data sources that the
reporting tool works with are objects. An example of such objects can be a collection
of JavaBean objects.

In the next section, a high level view of the proposed system is to be shown to get us
familiar with the proposed system.

 - 4 -

2. High Level System Overview
In this section, we are going to have a general structure of the proposed system, and
also have some ideas of how the system can achieve the goals that I specified in the
project goal.

There are a few very important components in this system, let us now look at them
one by one:

• Raw Data Source: The raw data source is the place where the data that we
use in the report is originated. This can typically be some relational
databases.

• Custom Data Source: As I mentioned earlier, report users typically want
some kind of custom data source(s) for the report, and therefore, the custom
data source here, will be the data source(s) that the reporting tool makes use
of. The custom data source in this case, can typically be a collection of java
objects, since our proposed tool works on object level.

• Reporting Tool: A tool that allows the users to design the report using the
supplied data source(s).

• Report: The result the system should produce. Note that the content of the
report may come from different raw data source(s).

Having explained these important components, let us have a look at how our proposed
system links them all together, and achieve our goal:

Figure.1 High level overview of data source definition tool

As we can see from Figure.1, the Data Source Definition Tool has linked all the
important components together. This can be further explained by the following
workflow:
1. The Data Source Definition Tool accesses some raw data sources.
2. The Data Source Definition Tool produces some custom data source(s). Note that

there may be multiple custom data sources produced.

 - 5 -

3. The reporting tool uses the custom data source(s) produced by the tool.
4. A report is generated based on the custom data source(s).

We can also notice that the reporting tool is actually part of the Data Source
Definition Tool. This means that in order to develop such a reporting facility, we
either have to develop a reporting tool of our own, or we have to use one of the
existing reporting tools that are publicly available, which can be easily embedded into
our system. There are many reporting tools that are publicly available, such as
DataVision, iReport, and BIRT (as an Eclipse plug-in). They all have very similar
functionalities, but in this project, I have chosen iReport as our underlying reporting
tool, due to the fact that it is better suited to this project. The following table shows a
comparison between iReport and DataVision on some selected features (Note that
new version of DataVision may have some more features, this comparison is done
based on the DataVision version that Kiwiplan uses.):

 Tools
Features

iReport DataVision

Drag-n-drop report design √ √
Language Java Java
Custom Data Source Very well supported Supported, but limited
Embeddability √ √
Sub report √ No

Report Parameters √ √
Complexity Heavy-weighted Relatively light-weighted
Databases Any with JDBC driver

defined
Any with JDBC driver

defined
Report Engine Jasperreports Build-in

Table.1 comparison between iReport and DataVision

As we can see from table.1, although the major functionality of these two reporting
tools are quite similar, iReport is a better option due to its sub-report and custom data
source support, hence, I have chosen iReport as the reporting tool for this project.

It is also shown in the table that the report engine iReport uses is called JasperReports,
in next section, we are going to look at the connection between iReport and
JasperReports, and how they are combined together to produce an end-user report.

 - 6 -

3. Investigating iReport and JasperReports
JasperReports and iReport are two widely used open source software developed by
JasperSoft. They are purely written in Java, and their existences have made reporting
in Java applications. In this section, we are going to look how JapserReports and
iReport work.

JasperReports is an open-source Java class library designed to aid developers with the
task of adding reporting capabilities to Java applications. Since it is not a standalone
tool, it cannot be installed on its own. Instead, it is embedded into Java applications
by including its library in the application's CLASSPATH. JasperReports is a Java
class library, and is not meant for end users, but rather is targeted towards Java
developers who need to add reporting capabilities to their applications.

JasperReports takes in a report design as an XML file (jrxml file), and compile into a
jasper report file (jasper file). Through a JasperFillManager, a report print is produced
for the end report users. The following diagram shows the work flow of how
JasperReports work.

Figure.2 Work flow for JasperReports

(www.hisp.info/confluence/download/attachments/3330/seminar.ppt)

iReport, on the other hand, provides a front-end Graphical User Interface, for the end
report users to define the design of a report, unlike JasperReports, iReport is targeted
towards any report users, i.e. not necessary Java developers. The primary job of
iReport is to produce the jrxml file for JasperReports to use. Hence, we can see
iReport has JasperReports build-in as its report engine. The following diagram
illustrates how iReport and JasperReports work together to produce a report for the
end report users:

 - 7 -

http://www.hisp.info/confluence/download/attachments/3330/seminar.ppt

Figure.3 iReport and JasperReports

(http://ireport.sourceforge.net/cap3.html)

In Figure.3, report users define a report structure using iReport. The result that
iReport provides is a jrxml file (in the diagram, it is shown as TEST.XML). Then this
jrxml file is passed alone to JasperReports, it compiles the design of the report into
a .jasper file (in the diagram above, it is shown as TEST.JASPER). This compiled
report design is combined with a JRDataSource, to produce a final report (RESULT in
the diagram), also known as a jasper-print. It is not hard to see that in JasperReports:

JasperPrint = Jasper file + JRDataSource

Now, let us have a look at another very
important concept in JasperReports,
JRDataSource. JRDataSource is an
interface provided by JasperReports, it
is the data source used for

JasperReports to produce a print. Therefore, any possible data sources need to
implement this interface, to provide the compatibility to JasperReports.

+next() : bool
+getFieldValue(JRFeild field)() : object

<<interface>>
JRDataSource

Some examples of implementations of JRDataSource can be:

• JRResultSetDataSource – wraps a JDBC ResultSet object as the data source.
• JRXMLDataSource – wraps an XML document as the data source.
• JRTableModelDataSource – wraps a TableModel as the data source.

Through this interface, JasperReports has provided the users with the ability to define
custom data sources. Having this interface, we can therefore implement any kind of
data source of our own, and those custom data sources that defined by ourselves can
be used by JasperReport as the data source to produce reports. This is one of the most
important reasons that I chose iReport/JasperReports as the reporting tool in this
project.

 - 8 -

4. System Requirements Specification

Requirement Engineering has been one of the most important components throughout
Software Development Life Cycle (SDLC). In order to detail the requirements of the
project, I have had quite a number of meetings with the development leader within
Kiwiplan. And the resulting software requirement of this project is summarized using
the following use case diagram:

Figure.4 Use Case Diagram

ow, let us have a look at each of the use case in more detail:

ed, the user is able to

 Select Data Source From Service: When the users have chosen the data source

 Filter Unnecessary Data: The users might not be interested in all of the data

 Preview Data Source: After the user has chosen the data source, they should be

N
• Select Data Source Service(s): As previously mention

design the report across multiple data sources. Therefore, the user needs to be
able to select different data source services which provide accesses to different
data sources. Typically, a data source service provides access to more than one
data sources.

•
service, they should be able to select the corresponding data source from the
particular service.

•
from a particular data source. They want to filter out un-necessary data. For
example, select the order records during a particular period of time.

•

Select Data
Source

Service(s)

Filter Unnecessary
Data from Data

Source

Desgin the Report Design the Report
Select Data

Source
Service(s)

Choose a master
data source

Select Data
Source From

Service Preview the Data
Source in JTable
(FlexibleTable)

Preview the Data
Source in JTable
(FlexibleTable) Filter Unnecessary

Data from Data
Source

 - 9 -

able to preview the selected data source(s). The data source(s) are typically
displayed in a JTable under the current implementation. And in Kiwiplan, we are
going to using a FlexibleTable (table implementation under Kiwiplan GUI
framework) to display the data source(s).

 Choose Master Data Source: The functionality is primarily used for the

 Design Report: Of course, the users need to be able to design the report

fter the use cases have been decided. The User Interface has been developed

•
sub-report support of the tool. A master data source is the data source used for the
master report. When the user has chosen more than one data sources from the
services, they should (they are required) choose a master data source for iReport
to use, and any other data sources are treated as detail data sources used for
sub-report. This feature will be discussed in more detail later this report.

•
structure.

A
according to those use cases. The following figure is a screen-shot of the current
implementation of the user interface (Note that this user interface design might
change later):

Figure.5 User Interface

 the above User Interface design:

d “1” corresponds to the Select Data Source
In
• The component that is labele

Service use case where user is able to choose among different data sources. For
example, if there are four data source services available, each of the dropdown
lists will have the four services available for users to choose from. By default, the

 - 10 -

Anstey
Oval

Anstey
Oval

Anstey
Oval

Anstey
Oval

Anstey
Pencil

Anstey
Pencil

Anstey
Pencil

Anstey
Pencil

Anstey
Pencil

system shows one pair of “select service” option and “select data source” option,
the user can ask to choose from more/less data source services/sources by
clicking the “More”/ “Less” buttons. In this example shown in Figure.5, the user
has clicked the “More” button once, and has chosen a service called
“UniPeopleService” which provides the people service.

 The component that is labeled “2” corresponds to the “Select Data Source From

 The component that is labeled “3” corresponds to the “Preview Data Source”,

 The “Filter Data Source” use case has not been implemented under the current

 The component that is labeled “4” corresponds to the “Design Report” use case.

•
Service” use case where the user has chosen the “Student” data source.

•
where the user is able to preview the selected data source(s) in JTable, in the
example above, as the user has chosen two data sources from two different
services, there are two data sources table displayed in a tabbed pane.

•
implementation, but it will be implemented in the final version the system. The
plan is to make use of the Filter System inside Kiwiplan framework, therefore,
the implementation is not considered to be particularly difficult.

•
However, if more than one data sources are chosen, a dialog will pop up
prompting for the master data source (corresponds to “Choose Master Data
Source” use case). The dialog is shown below:

Figure.6 Selection of master data source dialog

fter the master data source has been chosen, the user interface for iReport will

he following is a brief class diagram for the user interface design:

A
display allowing the user to design the report using the selected data source(s).

T

 - 11 -

Figure.7 class diagram for user interface design

 - 12 -

5. Integrate iReport into the System

Up until this point, we have had the data source(s) ready for the iReport to use. In this
section, we are going to see how iReport uses our custom data source(s) produced by
the Data Source Definition Tool, and how those data source(s) are passed along to
iReport.

5.1 Data Source Service V.s. Data Source
Before I introduce how iReport is integrated into the system, we have to clarify two
very important terms that we used: Data Source Service and Data Source, first, let
us have a look at the diagram:

Figure.8 Data Source Service V.s. Data Source

A data source service is a service access layer that provides accesses to the data
sources it serves. In the above diagram, there are two data source services,
UniPeopleService and AcademicRecordService, the UniPeopleService provides two
data sources: Student and Staff data sources. And the AcademicRecordService
provides only one data source StudentGrade data source. A data source service is
similar to a data repository or a data warehouse, in the sense that it stores all the data

User

UniPeopleService

Access Access

DataSourceService DataSourceService

AcademicRecordService

Student 1
Student 2
Student 3
Student 4
Student 5

Staff 1
Staff 2
Staff 3
Staff 4
Staff 5

Student Data Source Staff Data Source

Serves Serves

Serves

Student Grade 1
Student Grade 2
Student Grade 3
Student Grade 4
Student Grade 5

Grade Data Source

 - 13 -

sources corresponding to that particular service.

A data source is the actual objects have the data information stored. Typical examples
of data sources can be a table in a relational databases or a collection of java objects.
In the above diagram, all the data sources are provided as a list of simple JavaBean
objects.

5.2 IDataSourceServiceProvider
Now, let us have a look at how the data source service is implemented. As we noticed
from Figure.7, there is an Interface called IDataSourceServiceProvider. In the use
case diagram (shown in Figure.4), the user is able to select from different data source
services. This interface provides such compatibility for any class that provides this
kind of service. The class diagram of this interface is shown on the left:

For any classes that implements this interface,
they should specify how each of the data
sources that this service provide is obtained,
for example, from a JDBC resultset, or from a
collection JavaBean objects in the getData()
method. A sample implementation of this
interface is shown in Figure.9, which provides
the data sources shown in Figure.8.

 public List getData(String dataSourceName) {

 List list = new ArrayList();

 if (dataSourceName.toLowerCase().equals("student")) {

 Student s1 = new Student("0000001","James", "Bond");

 Student s2 = new Student("0000002","Bill", "Gates");

 list.add(s1);

 list.add(s2);

 }

 else if (dataSourceName.toLowerCase().equals("staff")) {

 Staff st1 = new Staff("4545674","Abc","Def","Computer Science");

 Staff st2 = new Staff("8745374","Kkk","Hhh","Computer Science");

 Staff st3 = new Staff("3524364","Loo","Ccc","Economics");

 list.add(st1);

 list.add(st2);

 list.add(st3);

 }

 return list;

 }

Figure.9 Sample implementation of getData method for IDataSourceServiceProvider
In this implementation, the data sources are generated from a List of JavaBean
objects.

 - 14 -

5.3 Using JRDataSource
By having the data source services, we have the ability to enable users to choose data
sources from different services. However, after these selected data sources are in place,
we need to make use of these custom data sources in iReport. As I mention in
Section.3 of this report, iReport make use of custom defined data sources through an
interface called “JRDataSource”.

In our case, when the user has selected the desired data sources, they are displayed in
a JTable. Therefore, we can make use of a pre-defined data source called
JRTableModelDataSource to warp the table model as the data source for iReport to
use.

Typically, any kind of JRDataSource is provided through a corresponding
JRDataSourceProvider, which is another interface provided by JasperReport. In my
implementation, I have implemented a TableModelDataSourceProvider to provide the
JRTableModelDataSource.

The detail of the structure is shown in the following class diagram:

Figure.10 class diagram for JRDataSource and its provider

• The JRRewindable interface is an extension to JRDataSource, any class that
implements this interface is a data source that can move back to its very first
element. JRTableModelDataSource is such a class.

• TableModelDataSourceProvider provides the JRDataSource through the create()

method. The following code segment shows the constructor and the create

 - 15 -

method of TableModelDataSourceProvider:
/* constructor */

 public TableModelDataSourceProvider(TableModel tableModel){

 this.tableModel = tableModel;

 this.tableDataSource = new

JRTableModelDataSource(this.tableModel);

 }

/* create a JRDataSource */

public JRDataSource create(JasperReport report) throws JRException{

 return new JRTableModelDataSource(tableModel);

 }
Figure.11 code segment showing constructor and create method from TableModelDataSourceProvider

5.4 Using IReportConnection
Using JRDataSourceProvider provides the JRDataSource for iReport to use, however,
we still have to find out a way to pass the JRDataSource from our Data Source
Definition Tool to iReport.

iReport has provided class called “IReportConnection” which enables the custom
connections to iReport. Typically, each IReportConnection (and its sub classes) warps
a JRDataSourceProvider instance in to, so that when this connection gets connected
to iReport, the JRDataSource is provided through the provider that is wrapped inside
this connection. In this project, I have implemented a TableDataSourceConnection
which wraps a TableModelDataSource in it as the provider of
JRTableModelDataSource. The following class diagram shows how iReport uses
IReportConnection to produce data source through the provider:

Figure.12 class diagram: connects to iReport

 - 16 -

When the users choose more than one data sources from the Data Source Definition
Tool, each of those data sources will be created into a JRDataSourceProvider and
wrapped into an IReportConnection, i.e. every data source is passed alone to iReport
as a separate connection. The following code segment shows how iReport is launched
with the pre-defined custom data source(s) that user has chosen using the Data Source
Definition Tool:
public static void launchIReportWithDefaultConnection(…){

 … …

 Vector connList = new Vector();

 for (Iterator iterator = tableModels.iterator();

iterator.hasNext();) {

 TableModel dataViewTableModel = (TableModel) iterator.next();

 TableModelDataSourceProvider provider = new

TableModelDataSourceProvider(dataViewTableModel);

 IReportConnection conn = new

TableDataSourceConnection(provider);

 connList.add(conn);

 … …

}

frame.setConnections(connList);

... …
Figure.13 code segment: launch iReport using custom data sources

5.5 Working with FlexibleTable in Kiwiplan Framework
In Kiwiplan, instead of displaying data using a JTable, we use a FlexibleTable to
display the data source(s). The FlexibleTable is similar to JTable but with more
sophisticated functionalities, e.g. the table headers are defined from a preference
bundle XML file. The following screen shot is an example of using the Data Source
Definition Tool with FlexibleTable:

Figure.14 Data Source Definition Tool with FlexibleTable

 - 17 -

The implementation using FlexibleTable is not fully completed yet. However, the
concepts of using the FlexibleTable are exactly the same as using JTable. The
following class diagram shows the design using FlexibleTable:

Figure.15 class diagram: connects to iReport using FlxibleTable

The second half of this project will be focusing on the implementation using
FlexibleTable.

 - 18 -

6. Support for Sub-reports

Nowadays, sub reports have been widely used in many organizations, therefore, it is
necessary to allow the Data Source Definition Tool to have the ability to build
sub-reports. A sub report usually uses multiple data sources that have some kind of
relationship. In this section, we are going to see how the Data Source Definition Tool
supports the user in creating sub reports using the custom data sources that it
provides.

6.1 Master Data Source
As described in Section 4, when the user chooses more than one data sources, a dialog
will pop up asking the user to choose one of the selected data sources as the master
data source to iReport.

Choosing more than one data sources will inform the Data Source Definition Tool that
the current user tries to create a sub report using iReport. Typically, sub-report uses
more than one data sources when the report is being filled with data, however, in
iReport, there can be only one active connection at a time, this means any data
sources that are used by the sub reports will therefore needs to be recreated at run time.
Thus, when the user has selected the master data source, this data source will be
passed alone to iReport as an active connection. The following are the event flows
after the user has chosen a master data source:

1. The user chooses one of the data sources as the master data source.
2. This data source is wrapped into an IReportConnection, and set to be the

active connection, which is the connection that the master report uses.
3. The TableModel of any non-master data sources are stored into a parameter

list for master report, and this parameter list is being passed alone to iReport
as the parameters of the master report.

(a)

(b)

Figure.16 (a) active connection and (b) fields from active data source

Figure.16 (a) shows that when user choose student as the master data source in the
Data Source Definition Tool, the student data source has been the data source that the
active connection uses for the master report. Figure.16 (b) shows the available fields
from the current active connection. In this example, there are studentID, firstName,
and lastName from student data source.

 - 19 -

Figure.17 parameters for master report

In iReport, each report has a list of
parameters. Each of the parameters is a
JRParameter object.

Figure.17 shows the parameter list for
the master report. Notice at the bottom
of the list, there is a parameter name:
SUBREPORT_GRADEDATASOURCE_
TABLEMODEL. This means that the
user has previously chosen two data
sources from the Data Source Definition
Tool and the grade data source is not
chosen as the master data source.
Therefore, the table model of this data
source is stored in the parameter list of
the master report for further recreation
of this data source.

A JRParameter is constructed using the name of the parameter and the corresponding
class type of that particular parameter. The actual value (or reference address) of each
parameter in the list are stored in the first JRParameter:
REPORT_PARAMETERS_MAP which is itself a JRParameter. This is a special
parameter of type HashMap. Before the report is getting filled, this hash map is
iterated through, and each value is assigned to the corresponding parameter if there is
a match, otherwise, that parameter will have a null value. The follow diagram
illustrates the structure of the parameter list:

Figure.18 JRparameter list structure for master report

The sample of the above HashMap is shown in Figure.19

 - 20 -

Figure.19 HashMap storing the actual value of JRParameters

6.2 Data Source Expression
Since iReport can only have one active connection at a time, therefore, when we are
filling the sub-report with data, we need to create the data source for sub report at run
time. The recreation of sub report data source is done through a feature called Data
Source Expression provided in iReport. The following diagram is a screen-shot from
iReport when the user is setting up the connection for sub-report, typically, we choose
use data source expression.

Figure.20 Set up connection for sub report

 - 21 -

As we previously discussed, iReport uses JRDataSource when building the report,
therefore, we need to create a JRDataSource object in order to fill the sub report. This
JRDataSource is recreated every time the report is filled using the table model for that
particular data source. The table model has been saved as a parameter of the master
report that this sub report belongs to. The following screen-shot is the data source
expression editor, where a new TableModelDataSource is created using the table
model:

Figure.21Data Source Expression Editor

In this example, we are building a JRTableModelDataSource using the table model
passed as the parameter from the master report parameter list (shown in Figure.17).

After this data source expression is in place, every time the report is filled, the master
report is filled with the data source in the active connection, and the sub-report is
filled with this newly created JRDataSource.

6.3 Object Level Join when building Sub-report
When we build a sub-report, typically, there are some kind of relationship between the
master report and the detail report. This is similar to a foreign constraint in relational
databases. However, we use JRDataSource as our custom data source in creating
reports; we therefore need to achieve the same type of join in object level.

Let us look at the following example, image we have two data sources displayed in
JTable as follow:

 - 22 -

Student Data Source

Grade Data Source

And we want to build a report as shown in the diagram below:

Figure.22 Sample sub report

As we can see in the above report, the student information is the master report and the
corresponding student grade information for that particular student is displayed in the
sub report. In order to achieve this, we have to do a join on the student ID between
these two data sources when filling the sub report. If we were doing this in a relational
database, the following SQL statement will apply:

select GradeTable.studentID, GradeTable.course, GradeTable.grade
from GradeTable, StudentTable
where StudentTable.studentID = GradeTable.studentID

Figure.22 SQL for join between tables

This kind of join can be achieved in iReport by defining a filter expression on the sub
report data source, the following diagram shows how such expression is defined:

 - 23 -

Figure.23 Filter Expression

In the above filter expression, $F{studentID} represents the studentID in the Grade
data source. $P{id} is the studentID from the student data source (the master data
source) that we have to previously passed from the master report as a sub report
parameter.

 - 24 -

7. Conclusions

During the first half of the project, I have completed the tasks that outlined in the
initial project plan. The development of the prototype version of the Data Source
Definition Tool (using JTable) will be very useful when I convert the system into
FlexibleTable version in the next semester.

I have now gained relatively good understanding of how iReport/JasperReport work,
this must be a big advantage in the next a few iterations of this project.

In the next half of the project, I am planning to focus on the following issues:
• The parameter passing seems to be very complicated for users to be able to use

easily, and therefore it is necessary to simply the process by making it more
“automatic”.

• How the report definition efficiently so that the data sources can be retrieved back
again if we want to re-run the report.

• Passing queries through to restrict the amount of data being retrieved

 - 25 -

8. Acknowledgement

I wish to extend my great thanks to my supervisors: Gareth from Kiwiplan and Dr.
Xinfeng Ye, for their continuous support throughout the first half of this project.

I would also like to thank Dr. S. Manoharan, the BTech coordinator, for providing lots
of useful information on the BTech programme.

Many thanks to all the experienced programmers from Kiwiplan, for giving me lots of
interesting and positive suggestions/advices, and for helping me fixing all kinds of
small bugs in the code.

 - 26 -

9. References
1. JasperReport Homepage, “JasperReports Documentation”, Available from:

http://jasperforge.org/sf/wiki/do/viewPage/projects.jasperreports/wiki/HomePa
ge. Accessed Apr 2007

2. Elizabeth Montalbano, “Eclipse Developers To Get Open-Source Reporting

Tool. (Business Intelligence and Reporting Tool)”, Computer Reseller News
Sept 13, 2004 p37.

3. iReport Home, “iReport Tutorial”, Available from:

http://ireport.sourceforge.net/tutorial1.html. Accessed Apr 2007

 - 27 -

http://jasperforge.org/sf/wiki/do/viewPage/projects.jasperreports/wiki/HomePage.%20%20Accessed%20Apr%202007
http://jasperforge.org/sf/wiki/do/viewPage/projects.jasperreports/wiki/HomePage.%20%20Accessed%20Apr%202007
http://ireport.sourceforge.net/tutorial1.html

