A DATA SOURCE DEFINITION TOOL FOR REPORTING TOOLS
Bachelor of Technology (Information Technology)

End of First Semester Project Report

Haoxiang Zhu

June, 2007

Supervisors:
	Gareth Cronin (Industrial)

Development Team Leader

Kiwiplan Ltd.

New Zealand
	Dr. Xinfeng Ye (Academic)

Department of Computer Science

University Of Auckland

New Zealand

ABSTRACT
The Kiwiplan GUI framework provides a CrystalReportsstyle report designer that uses Kiwiplan's flexible table system as its data source. Everyday users are able to create reports based on existing customizable tables within application user interfaces. However, power users in organizations often wish to report on custom data sources. Traditionally power user reporting tools allow the definition of an SQL query and then reports are built on the resultset from this query.
In this project, we are going to build a Data Source Definition Tool which allows the user to link together business objects in a SQLjoin style fashion to achieve custom data sources based on the business objects, rather than just a SQL query on the database backend.

Contents

- 3 -1.
Introduction

- 3 -1.1.
The company

- 3 -1.2.
Motivation

- 4 -1.3.
Project Goal

- 5 -2.
High Level System Overview

- 7 -3.
Investigating iReport and JasperReports

- 9 -4.
System Requirements Specification

- 13 -5.
Integrate iReport into the System

- 13 -5.1 Data Source Service V.s. Data Source

- 14 -5.2 IDataSourceServiceProvider

- 15 -5.3 Using JRDataSource

- 16 -5.4 Using IReportConnection

- 17 -5.5 Working with FlexibleTable in Kiwiplan Framework

- 19 -6.
Support for Sub-reports

- 19 -6.1 Master Data Source

- 21 -6.2 Data Source Expression

- 22 -6.3 Object Level Join when building Sub-report

- 25 -7.
Conclusions

- 26 -8.
Acknowledgement

- 27 -9.
References

1. Introduction
This report documents the outcomes from the first half of my final year Bachelor of Technology project. In this section, I am going to briefly introduce the company which offers this project, followed by the motivation and the final goal of this project.
1.1. The company
Kiwiplan is a software development company that services the corrugating and packaging industries. Typical customers include firms that produce corrugated cardboard products such as boxes, display stands, and other packaging products.

Their product range covers the entire business process for a packaging firm, from order entry to shipping. The core products relate to controlling the plant and scheduling the corrugating machinery. These products communicate with the equipment on the factory floor to control production and collect data.

In the 1970's, Kiwiplan was starting business as a small corrugating firm. As their throughput increased they developed computer systems to help them keep up with demand. There was considerable interest in these computerised systems from other packaging companies, and the IT department grew and eventually separated from the box plant division.

Kiwiplan is now one of the world’s leading software suppliers to the packaging industry. They have customers in 28 countries and four international offices. All research and development work is done in New Zealand.
1.2. Motivation

· Currently, Kiwiplan uses DataVision as the reporting tool. This type of reporting tool only supports reports to be built from a single data source. There is no way of combining data that obtained from different data stores (e.g. different databases) together to produce the desired reports. However, power-users in organizations often wish to report across multiple data sources, this is typically the case, for big organization such as Kiwiplan, where a report may require data stored at different database servers located in different counties (e.g. US office and NZ office).
· Sub-reports are widely used in many organizations. A sub-report is an entire report that is placed in the detail area of another report. Its main purpose is to display data from data sources linked in a set using one-to-many links at the same level. The existing reporting facility in Kiwiplan does not have the build-in support for creating a sub-report. Having the ability of producing sub-reports not only make the resulting report more visually understandable, it also saves time and effort for technical staffs to prepare lots of complicated reports.
1.3. Project Goal

The goal of this project is to enhance the existing reporting facility in Kiwiplan, so that:

· Report user can use multiple data sources to create a single report.

· Report user can design the desired report using an easy-to-use tool.

· Sub-report should be supported.

A key difference between this reporting facility and the traditional reporting facility is that the tool works on-object-basis.
Traditional reporting tool usually has a connection to a back-end database, and the report is generated from the resultset of executing some query languages. In this tool, we do not have a back-end database connection. And all the data sources that the reporting tool works with are objects. An example of such objects can be a collection of JavaBean objects.

In the next section, a high level view of the proposed system is to be shown to get us familiar with the proposed system.
2. High Level System Overview

In this section, we are going to have a general structure of the proposed system, and also have some ideas of how the system can achieve the goals that I specified in the project goal.

There are a few very important components in this system, let us now look at them one by one:

· Raw Data Source: The raw data source is the place where the data that we use in the report is originated. This can typically be some relational databases.

· Custom Data Source: As I mentioned earlier, report users typically want some kind of custom data source(s) for the report, and therefore, the custom data source here, will be the data source(s) that the reporting tool makes use of. The custom data source in this case, can typically be a collection of java objects, since our proposed tool works on object level.
· Reporting Tool: A tool that allows the users to design the report using the supplied data source(s).

· Report: The result the system should produce. Note that the content of the report may come from different raw data source(s).

Having explained these important components, let us have a look at how our proposed system links them all together, and achieve our goal:

[image: image1.emf]Data Source Definition Tool

Access

Raw Data Sources

Database A

Database B

Produces

Custom Data Source(s)

A

c

c

e

s

s

P

r

o

d

u

c

e

s

Report

Reporting Tool

Figure.1 High level overview of data source definition tool
As we can see from Figure.1, the Data Source Definition Tool has linked all the important components together. This can be further explained by the following workflow:
1. The Data Source Definition Tool accesses some raw data sources.
2. The Data Source Definition Tool produces some custom data source(s). Note that there may be multiple custom data sources produced.

3. The reporting tool uses the custom data source(s) produced by the tool.

4. A report is generated based on the custom data source(s).

We can also notice that the reporting tool is actually part of the Data Source Definition Tool. This means that in order to develop such a reporting facility, we either have to develop a reporting tool of our own, or we have to use one of the existing reporting tools that are publicly available, which can be easily embedded into our system. There are many reporting tools that are publicly available, such as DataVision, iReport, and BIRT (as an Eclipse plug-in). They all have very similar functionalities, but in this project, I have chosen iReport as our underlying reporting tool, due to the fact that it is better suited to this project. The following table shows a comparison between iReport and DataVision on some selected features (Note that new version of DataVision may have some more features, this comparison is done based on the DataVision version that Kiwiplan uses.):

	 Tools

Features
	iReport
	DataVision

	Drag-n-drop report design
	√
	√

	Language
	Java
	Java

	Custom Data Source
	Very well supported
	Supported, but limited

	Embeddability
	√
	√

	Sub report
	√
	No

	Report Parameters
	√
	√

	Complexity
	Heavy-weighted
	Relatively light-weighted

	Databases
	Any with JDBC driver defined
	Any with JDBC driver defined

	Report Engine
	Jasperreports
	Build-in

Table.1 comparison between iReport and DataVision
As we can see from table.1, although the major functionality of these two reporting tools are quite similar, iReport is a better option due to its sub-report and custom data source support, hence, I have chosen iReport as the reporting tool for this project.
It is also shown in the table that the report engine iReport uses is called JasperReports, in next section, we are going to look at the connection between iReport and JasperReports, and how they are combined together to produce an end-user report.
3. Investigating iReport and JasperReports
JasperReports and iReport are two widely used open source software developed by JasperSoft. They are purely written in Java, and their existences have made reporting in Java applications. In this section, we are going to look how JapserReports and iReport work.

JasperReports is an open-source Java class library designed to aid developers with the task of adding reporting capabilities to Java applications. Since it is not a standalone tool, it cannot be installed on its own. Instead, it is embedded into Java applications by including its library in the application's CLASSPATH. JasperReports is a Java class library, and is not meant for end users, but rather is targeted towards Java developers who need to add reporting capabilities to their applications.
JasperReports takes in a report design as an XML file (jrxml file), and compile into a jasper report file (jasper file). Through a JasperFillManager, a report print is produced for the end report users. The following diagram shows the work flow of how JasperReports work.

[image: image2]
Figure.2 Work flow for JasperReports
(www.hisp.info/confluence/download/attachments/3330/seminar.ppt)
iReport, on the other hand, provides a front-end Graphical User Interface, for the end report users to define the design of a report, unlike JasperReports, iReport is targeted towards any report users, i.e. not necessary Java developers. The primary job of iReport is to produce the jrxml file for JasperReports to use. Hence, we can see iReport has JasperReports build-in as its report engine. The following diagram illustrates how iReport and JasperReports work together to produce a report for the end report users:
[image: image24.wmf]+

next

() :

bool

+

getFieldValue

(

JRFeild field

)() :

object

<<

interface

>>

JRDataSource

[image: image25.emf]Power User

[image: image3]
Figure.3 iReport and JasperReports
(http://ireport.sourceforge.net/cap3.html)
In Figure.3, report users define a report structure using iReport. The result that iReport provides is a jrxml file (in the diagram, it is shown as TEST.XML). Then this jrxml file is passed alone to JasperReports, it compiles the design of the report into a .jasper file (in the diagram above, it is shown as TEST.JASPER). This compiled report design is combined with a JRDataSource, to produce a final report (RESULT in the diagram), also known as a jasper-print. It is not hard to see that in JasperReports:

JasperPrint = Jasper file + JRDataSource
[image: image26.emf]Data Source:

Table in relational DB

or a collection of java beans

Now, let us have a look at another very important concept in JasperReports, JRDataSource. JRDataSource is an interface provided by JasperReports, it is the data source used for JasperReports to produce a print. Therefore, any possible data sources need to implement this interface, to provide the compatibility to JasperReports.
Some examples of implementations of JRDataSource can be:
· JRResultSetDataSource – wraps a JDBC ResultSet object as the data source.

· JRXMLDataSource – wraps an XML document as the data source.

· JRTableModelDataSource – wraps a TableModel as the data source.

Through this interface, JasperReports has provided the users with the ability to define custom data sources. Having this interface, we can therefore implement any kind of data source of our own, and those custom data sources that defined by ourselves can be used by JasperReport as the data source to produce reports. This is one of the most important reasons that I chose iReport/JasperReports as the reporting tool in this project.
4. System Requirements Specification
Requirement Engineering has been one of the most important components throughout Software Development Life Cycle (SDLC). In order to detail the requirements of the project, I have had quite a number of meetings with the development leader within Kiwiplan. And the resulting software requirement of this project is summarized using the following use case diagram:

[image: image4]
Figure.4 Use Case Diagram
Now, let us have a look at each of the use case in more detail:
· Select Data Source Service(s): As previously mentioned, the user is able to design the report across multiple data sources. Therefore, the user needs to be able to select different data source services which provide accesses to different data sources. Typically, a data source service provides access to more than one data sources.
· Select Data Source From Service: When the users have chosen the data source service, they should be able to select the corresponding data source from the particular service.
· Filter Unnecessary Data: The users might not be interested in all of the data from a particular data source. They want to filter out un-necessary data. For example, select the order records during a particular period of time.
· Preview Data Source: After the user has chosen the data source, they should be able to preview the selected data source(s). The data source(s) are typically displayed in a JTable under the current implementation. And in Kiwiplan, we are going to using a FlexibleTable (table implementation under Kiwiplan GUI framework) to display the data source(s).
· Choose Master Data Source: The functionality is primarily used for the sub-report support of the tool. A master data source is the data source used for the master report. When the user has chosen more than one data sources from the services, they should (they are required) choose a master data source for iReport to use, and any other data sources are treated as detail data sources used for sub-report. This feature will be discussed in more detail later this report.
· Design Report: Of course, the users need to be able to design the report structure.
After the use cases have been decided. The User Interface has been developed according to those use cases. The following figure is a screen-shot of the current implementation of the user interface (Note that this user interface design might change later):
[image: image27.emf]Data source service:

Similar to a Data Repository

or a Data Warehouse.

[image: image28.emf]DataSourceService

User

UniPeopleService

DataSourceService

AcademicRecordService

Student 1

Student 2

Student 3

Student 4

Student 5

Staff 1

Staff 2

Staff 3

Staff 4

Staff 5

Student Data Source Staff Data Source

Student Grade 1

Student Grade 2

Student Grade 3

Student Grade 4

Student Grade 5

Grade Data Source

Access

Access

Serves Serves

Serves

[image: image29.jpg]JasperFilManager

compile
JasperDesign JasperReport

JRXmiLoader JRCompler

T 1

JasperCompileManager

I

JasperPrin

JasperPrniiianager

v

Printer

JasperExporiianager

[image: image30.png]TesT XML

- TEST. Saseso
g€
Tofer s
compiLER (=2

Pl

S
JRrecasovese P

[image: image31.png]@ iReport

[image: image32.emf]Power User

[image: image33.wmf]+

next

() :

bool

+

getFieldValue

(

JRFeild field

)() :

object

<<

interface

>>

JRDataSource

[image: image5.jpg]& Data Source Definition Tool -Jo&d

Please select service: [UniPeopleService | Please select data source: [Student |+

Please select service: |AcademicRecordService | v | Please select data source: |Grade [+

wore || Less || pesionRepor

| Student Data Source | Grade bata Source

stugentlD course arade
0000001 (SEEET e
0000001 ca338 ar
0000001 ca3a0 A
0000001 caarz o
0000002 ECONTOT B
0000002 INFORSYS220 c-
0000002 MATH208 A
0000002 cain B

Figure.5 User Interface
[image: image34.png]<<Interface>>
IDataSourceServiceProvider

+getAllDataSourcelNames()
+getData(String dataSourceName)

+getServiceName()
+getClassOfDataSource(String dataSourceName)
+getCorePreference()

In the above User Interface design:

· The component that is labeled “1” corresponds to the Select Data Source Service use case where user is able to choose among different data sources. For example, if there are four data source services available, each of the dropdown lists will have the four services available for users to choose from. By default, the system shows one pair of “select service” option and “select data source” option, the user can ask to choose from more/less data source services/sources by clicking the “More”/ “Less” buttons. In this example shown in Figure.5, the user has clicked the “More” button once, and has chosen a service called “UniPeopleService” which provides the people service.
· The component that is labeled “2” corresponds to the “Select Data Source From Service” use case where the user has chosen the “Student” data source.

· The component that is labeled “3” corresponds to the “Preview Data Source”, where the user is able to preview the selected data source(s) in JTable, in the example above, as the user has chosen two data sources from two different services, there are two data sources table displayed in a tabbed pane.

· The “Filter Data Source” use case has not been implemented under the current implementation, but it will be implemented in the final version the system. The plan is to make use of the Filter System inside Kiwiplan framework, therefore, the implementation is not considered to be particularly difficult.
· The component that is labeled “4” corresponds to the “Design Report” use case. However, if more than one data sources are chosen, a dialog will pop up prompting for the master data source (corresponds to “Choose Master Data Source” use case). The dialog is shown below:

[image: image6.jpg]Choose Master Data Source

@ Please choose one data source as the master data source:

StudentDataSource

oK

cancel

Figure.6 Selection of master data source dialog

After the master data source has been chosen, the user interface for iReport will display allowing the user to design the report using the selected data source(s).
The following is a brief class diagram for the user interface design:

[image: image7.emf]+getSelectService()

+getSelectedDataSource()

DatasourceSelectionPane

+morePane()

+lessPane()

+getPaneList()

DatasourceSelectionPaneList

+actionPerformed()

DataSourceProviderPanel

JPanel

1

1 *

<<interface>>

IDataSourceServiceProvider

1

*

<<interface>>

ActionListener

Figure.7 class diagram for user interface design
5. Integrate iReport into the System
Up until this point, we have had the data source(s) ready for the iReport to use. In this section, we are going to see how iReport uses our custom data source(s) produced by the Data Source Definition Tool, and how those data source(s) are passed along to iReport.
5.1 Data Source Service V.s. Data Source
Before I introduce how iReport is integrated into the system, we have to clarify two very important terms that we used: Data Source Service and Data Source, first, let us have a look at the diagram:

[image: image8]
Figure.8 Data Source Service V.s. Data Source
A data source service is a service access layer that provides accesses to the data sources it serves. In the above diagram, there are two data source services, UniPeopleService and AcademicRecordService, the UniPeopleService provides two data sources: Student and Staff data sources. And the AcademicRecordService provides only one data source StudentGrade data source. A data source service is similar to a data repository or a data warehouse, in the sense that it stores all the data sources corresponding to that particular service.
A data source is the actual objects have the data information stored. Typical examples of data sources can be a table in a relational databases or a collection of java objects. In the above diagram, all the data sources are provided as a list of simple JavaBean objects.

5.2 IDataSourceServiceProvider

Now, let us have a look at how the data source service is implemented. As we noticed from Figure.7, there is an Interface called IDataSourceServiceProvider. In the use case diagram (shown in Figure.4), the user is able to select from different data source services. This interface provides such compatibility for any class that provides this kind of service. The class diagram of this interface is shown on the left:
[image: image35.emf]DataSourceService

User

UniPeopleService

DataSourceService

AcademicRecordService

Student 1

Student 2

Student 3

Student 4

Student 5

Staff 1

Staff 2

Staff 3

Staff 4

Staff 5

Student Data Source Staff Data Source

Student Grade 1

Student Grade 2

Student Grade 3

Student Grade 4

Student Grade 5

Grade Data Source

Access

Access

Serves Serves

Serves

For any classes that implements this interface, they should specify how each of the data sources that this service provide is obtained, for example, from a JDBC resultset, or from a collection JavaBean objects in the getData() method. A sample implementation of this interface is shown in Figure.9, which provides the data sources shown in Figure.8.
	 public List getData(String dataSourceName) {

 List list = new ArrayList();

 if (dataSourceName.toLowerCase().equals("student")) {

 Student s1 = new Student("0000001","James", "Bond");

 Student s2 = new Student("0000002","Bill", "Gates");

 list.add(s1);

 list.add(s2);

 }

 else if (dataSourceName.toLowerCase().equals("staff")) {

 Staff st1 = new Staff("4545674","Abc","Def","Computer Science");

 Staff st2 = new Staff("8745374","Kkk","Hhh","Computer Science");

 Staff st3 = new Staff("3524364","Loo","Ccc","Economics");

 list.add(st1);

 list.add(st2);

 list.add(st3);

 }

 return list;

 }

Figure.9 Sample implementation of getData method for IDataSourceServiceProvider
In this implementation, the data sources are generated from a List of JavaBean objects.
5.3 Using JRDataSource
By having the data source services, we have the ability to enable users to choose data sources from different services. However, after these selected data sources are in place, we need to make use of these custom data sources in iReport. As I mention in Section.3 of this report, iReport make use of custom defined data sources through an interface called “JRDataSource”.
In our case, when the user has selected the desired data sources, they are displayed in a JTable. Therefore, we can make use of a pre-defined data source called JRTableModelDataSource to warp the table model as the data source for iReport to use.
Typically, any kind of JRDataSource is provided through a corresponding JRDataSourceProvider, which is another interface provided by JasperReport. In my implementation, I have implemented a TableModelDataSourceProvider to provide the JRTableModelDataSource.
The detail of the structure is shown in the following class diagram:

[image: image9.emf]+getTableModel()

+supportsGetFieldsOperation()

+getTableModelName()

+getFields()

+create()

+dispose()

-tableDataSource

-table

-tableModel

TableModelDataSourceProvider

+next()

+getFieldValue()

<<interface>>

JRDataSource

+supportsGetFieldsOperation()

+getFields()

+create()

+dispose()

<<interface>>

JRDataSourceProvider

+moveFirst()

<<interface>>

JRRewindableDataSource

+next()

+getFieldValue()

+moveFirst()

-tableModel

-index

-columnNames

JRTableModelDataSource

provides

Figure.10 class diagram for JRDataSource and its provider
· The JRRewindable interface is an extension to JRDataSource, any class that implements this interface is a data source that can move back to its very first element. JRTableModelDataSource is such a class.
· TableModelDataSourceProvider provides the JRDataSource through the create() method. The following code segment shows the constructor and the create method of TableModelDataSourceProvider:
	/* constructor */

 public TableModelDataSourceProvider(TableModel tableModel){

 this.tableModel = tableModel;

 this.tableDataSource = new JRTableModelDataSource(this.tableModel);

 }

/* create a JRDataSource */
public JRDataSource create(JasperReport report) throws JRException{

 return new JRTableModelDataSource(tableModel);

 }

Figure.11 code segment showing constructor and create method from TableModelDataSourceProvider
5.4 Using IReportConnection
Using JRDataSourceProvider provides the JRDataSource for iReport to use, however, we still have to find out a way to pass the JRDataSource from our Data Source Definition Tool to iReport.
iReport has provided class called “IReportConnection” which enables the custom connections to iReport. Typically, each IReportConnection (and its sub classes) warps a JRDataSourceProvider instance in to, so that when this connection gets connected to iReport, the JRDataSource is provided through the provider that is wrapped inside this connection. In this project, I have implemented a TableDataSourceConnection which wraps a TableModelDataSource in it as the provider of JRTableModelDataSource. The following class diagram shows how iReport uses IReportConnection to produce data source through the provider:

[image: image10.emf]+getTableModel()

+supportsGetFieldsOperation()

+getTableModelName()

+getFields()

+create()

+dispose()

-tableDataSource

-table

-tableModel

TableModelDataSourceProvider

+next()

+getFieldValue()

<<interface>>

JRDataSource

+supportsGetFieldsOperation()

+getFields()

+create()

+dispose()

<<interface>>

JRDataSourceProvider

+moveFirst()

<<interface>>

JRRewindableDataSource

+next()

+getFieldValue()

+moveFirst()

-tableModel

-index

-columnNames

JRTableModelDataSource

provides

+getJRDataSource()

+getName()

+getProperties()

+loadProperties()

+setDataSourceProvider()

+getDataSourceProvider()

+disposeDataSource()

-tableModelDataSourceProvider

-tableModelDataSource

TableDataSourceConnection

+isJDBCConnection()

+isJRDataSource()

+getDescription()

+getConnection()

+getJRDataSource()

+getName()

+setName()

+getProperties()

+loadProperties()

+save()

+getSpecialParameters()

+disposeSpecialParameters()

+test()

IReportConnection

1

Figure.12 class diagram: connects to iReport
When the users choose more than one data sources from the Data Source Definition Tool, each of those data sources will be created into a JRDataSourceProvider and wrapped into an IReportConnection, i.e. every data source is passed alone to iReport as a separate connection. The following code segment shows how iReport is launched with the pre-defined custom data source(s) that user has chosen using the Data Source Definition Tool:
	public static void launchIReportWithDefaultConnection(…){
 … …

 Vector connList = new Vector();

 for (Iterator iterator = tableModels.iterator(); iterator.hasNext();) {

 TableModel dataViewTableModel = (TableModel) iterator.next();

 TableModelDataSourceProvider provider = new TableModelDataSourceProvider(dataViewTableModel);

 IReportConnection conn = new TableDataSourceConnection(provider);

 connList.add(conn);
 … …

}

frame.setConnections(connList);
... …

Figure.13 code segment: launch iReport using custom data sources
5.5 Working with FlexibleTable in Kiwiplan Framework
In Kiwiplan, instead of displaying data using a JTable, we use a FlexibleTable to display the data source(s). The FlexibleTable is similar to JTable but with more sophisticated functionalities, e.g. the table headers are defined from a preference bundle XML file. The following screen shot is an example of using the Data Source Definition Tool with FlexibleTable:
[image: image11.jpg]o R

-

Doacs k2,

Figure.14 Data Source Definition Tool with FlexibleTable
The implementation using FlexibleTable is not fully completed yet. However, the concepts of using the FlexibleTable are exactly the same as using JTable. The following class diagram shows the design using FlexibleTable:

[image: image12.emf]FlexibleTableModelDataSourceProvider

+next()

+getFieldValue()

<<interface>>

JRDataSource

+supportsGetFieldsOperation()

+getFields()

+create()

+dispose()

<<interface>>

JRDataSourceProvider

+moveFirst()

<<interface>>

JRRewindableDataSource

FlexibleTableModelDataSource

provides

FlexibleTableDataSourceConnection

IReportConnection

1

Figure.15 class diagram: connects to iReport using FlxibleTable

The second half of this project will be focusing on the implementation using FlexibleTable.
6. Support for Sub-reports
Nowadays, sub reports have been widely used in many organizations, therefore, it is necessary to allow the Data Source Definition Tool to have the ability to build sub-reports. A sub report usually uses multiple data sources that have some kind of relationship. In this section, we are going to see how the Data Source Definition Tool supports the user in creating sub reports using the custom data sources that it provides.
6.1 Master Data Source
As described in Section 4, when the user chooses more than one data sources, a dialog will pop up asking the user to choose one of the selected data sources as the master data source to iReport.

Choosing more than one data sources will inform the Data Source Definition Tool that the current user tries to create a sub report using iReport. Typically, sub-report uses more than one data sources when the report is being filled with data, however, in iReport, there can be only one active connection at a time, this means any data sources that are used by the sub reports will therefore needs to be recreated at run time. Thus, when the user has selected the master data source, this data source will be passed alone to iReport as an active connection. The following are the event flows after the user has chosen a master data source:
1. The user chooses one of the data sources as the master data source.

2. This data source is wrapped into an IReportConnection, and set to be the active connection, which is the connection that the master report uses.

3. The TableModel of any non-master data sources are stored into a parameter list for master report, and this parameter list is being passed alone to iReport as the parameters of the master report.
	[image: image13.jpg]Mrslenr
I —
o R e R

LBt U, 18, G 2

(a)
	[image: image14.jpg][@Felds

Q studerttn

Q lastame

(b)

Figure.16 (a) active connection and (b) fields from active data source
Figure.16 (a) shows that when user choose student as the master data source in the Data Source Definition Tool, the student data source has been the data source that the active connection uses for the master report. Figure.16 (b) shows the available fields from the current active connection. In this example, there are studentID, firstName, and lastName from student data source.
	[image: image15.jpg][@ Parameters

@ REPORT_PARAVETERS. AP
REPORT_CONNECTION

@ REPORT_HAX_CONT

@ REPORT_DATA_SOLRCE

@ REPORT_SCRIPTLET

@ REPORT_LOCALE
REPORT RESOURCE_BUNDLE

@ REPORT_TIME _ZONE

@ REPORT VIRTUALIZER

@ REPORT_CLASS LOADER.

@ REPORT_URL_HANDLER_FACTORY
REPORT_FORMAT FACTORY

@ 15_IGNORE_PAGINATION

@ HIBERNATE_SESSION

@ KML_DATA DOCUMENT

@ PAENTITY_MANAGER
3PA_QUERY_HINTS_HAp

@ HONDRIAN_CONNECTION

@ SUBREPORT GRADEDATASOLRCE TABLEMODEL

Figure.17 parameters for master report
	In iReport, each report has a list of parameters. Each of the parameters is a JRParameter object.

Figure.17 shows the parameter list for the master report. Notice at the bottom of the list, there is a parameter name:

SUBREPORT_GRADEDATASOURCE_TABLEMODEL. This means that the user has previously chosen two data sources from the Data Source Definition Tool and the grade data source is not chosen as the master data source. Therefore, the table model of this data source is stored in the parameter list of the master report for further recreation of this data source.

A JRParameter is constructed using the name of the parameter and the corresponding class type of that particular parameter. The actual value (or reference address) of each parameter in the list are stored in the first JRParameter: REPORT_PARAMETERS_MAP which is itself a JRParameter. This is a special parameter of type HashMap. Before the report is getting filled, this hash map is iterated through, and each value is assigned to the corresponding parameter if there is a match, otherwise, that parameter will have a null value. The follow diagram illustrates the structure of the parameter list:

[image: image16.emf]Vector<JRParameter>

REPORT_PARAMETER_MAP

java.util.HashMap

REPORT_CONNECTION

java.sql.Connection

REPORT_MAX_COUNT

java.lang.Integer

 … … … ...

REPORT_DATA_SOURCE …

JRDataSource

SUBREPORT_GRADEDATASOURCE_TABLEMODEL

 javax.swing.table.TableModel

HashMap

Figure.18 JRparameter list structure for master report
The sample of the above HashMap is shown in Figure.19

[image: image17.emf]REPORT_PARAMETER_MAP

java.util.HashMap@3f23a

REPORT_CONNECTION

null

REPORT_MAX_COUNT 15

 … … … ...

REPORT_DATA_SOURCE …

JRDataSource@4a3d2

SUBREPORT_GRADEDATASOURCE_TABLEMODEL

javax.swing.table.TableModel@3ea2c

HashMap

Figure.19 HashMap storing the actual value of JRParameters
6.2 Data Source Expression

Since iReport can only have one active connection at a time, therefore, when we are filling the sub-report with data, we need to create the data source for sub report at run time. The recreation of sub report data source is done through a feature called Data Source Expression provided in iReport. The following diagram is a screen-shot from iReport when the user is setting up the connection for sub-report, typically, we choose use data source expression.
[image: image18.jpg]Parameters Map Expression

Connection/Data Source Expression

RTableMode Lpatasourcel (5 (yTabletodel} |

=

Using cache

Figure.20 Set up connection for sub report
As we previously discussed, iReport uses JRDataSource when building the report, therefore, we need to create a JRDataSource object in order to fill the sub report. This JRDataSource is recreated every time the report is filled using the table model for that particular data source. The table model has been saved as a parameter of the master report that this sub report belongs to. The following screen-shot is the data source expression editor, where a new TableModelDataSource is created using the table model:
[image: image19.jpg]#a. Expression editor...

hew net.sf.jasperreports.engine.data.
TRTableMode 1DataSource (§P (SUBREPORT_GRADEDATASOURCE_TABLEMODEL})

Line 2, Column 2

Objects and expressions | yaldation errors

Breis XL_DATA DOCUVENT Forametr e] [oetveluent(rs,
2 PA_ENTITY_MANAGER. Parameter £ insser getColumnclass(i
getColumnCount() —

05 Formulas PA_QUERY_HINTS MAP. Parameter 1o
I3 Recent Expressions || MONDRIAN_CONNECTION Parsmeter Cormection

7 viards

getColumnName(i
getRowCount() v

AT

< m 1

Figure.21Data Source Expression Editor
In this example, we are building a JRTableModelDataSource using the table model passed as the parameter from the master report parameter list (shown in Figure.17).
After this data source expression is in place, every time the report is filled, the master report is filled with the data source in the active connection, and the sub-report is filled with this newly created JRDataSource.

6.3 Object Level Join when building Sub-report

When we build a sub-report, typically, there are some kind of relationship between the master report and the detail report. This is similar to a foreign constraint in relational databases. However, we use JRDataSource as our custom data source in creating reports; we therefore need to achieve the same type of join in object level.
Let us look at the following example, image we have two data sources displayed in JTable as follow:
Student Data Source

[image: image20.jpg]studentiD firstharme lastName
0000001 \James Bond
0000002 Bill Gates

Grade Data Source
[image: image21.jpg]studentiD course arade
0000001 (SEEET A
0000001 ca338 lax
0000001 cs3a0 A
0000001 caarz A
o000002 ECONTOT B
o000002 INFORSYS220 lc-
o000002 MATH208 far
0000002 cs101 B

And we want to build a report as shown in the diagram below:
[image: image22.jpg]0000001 James Bond

studentiD course grade
0000001 Cs334 A+
0000001 cs335 A+
0000001 Cs340 A
0000001 cs3n2 A
0000002 Bill Gates

studentiD course grade
0000002 ECON101 B+
0000002 INFORSYS220 c
0000002 MATH208 A+

0000002 Ccs101 B-

Figure.22 Sample sub report

As we can see in the above report, the student information is the master report and the corresponding student grade information for that particular student is displayed in the sub report. In order to achieve this, we have to do a join on the student ID between these two data sources when filling the sub report. If we were doing this in a relational database, the following SQL statement will apply:
	select GradeTable.studentID, GradeTable.course, GradeTable.grade

from GradeTable, StudentTable
where StudentTable.studentID = GradeTable.studentID

Figure.22 SQL for join between tables
This kind of join can be achieved in iReport by defining a filter expression on the sub report data source, the following diagram shows how such expression is defined:

[image: image23.jpg]fa. Expression editor... =

v 3ava, Loy s earlfoe (stwdentT0)) .2quata (52 (10 17

Line 1, Column 53

[bjectsand sxressons |valdtion s

il) hashCode i |4
gg:::‘i . course Feld string compareTo(iring) rt
- fiaip arsde. Field St compareTol object
(3 Recent Expressions. indexOF(int, int) int-

/' wizards index0f(int) rt

pa |

[import.] (_osport.] [checkbxresson [Coonty J [Cconel

Figure.23 Filter Expression

In the above filter expression, $F{studentID} represents the studentID in the Grade data source. $P{id} is the studentID from the student data source (the master data source) that we have to previously passed from the master report as a sub report parameter.
7. Conclusions
During the first half of the project, I have completed the tasks that outlined in the initial project plan. The development of the prototype version of the Data Source Definition Tool (using JTable) will be very useful when I convert the system into FlexibleTable version in the next semester.

I have now gained relatively good understanding of how iReport/JasperReport work, this must be a big advantage in the next a few iterations of this project.

In the next half of the project, I am planning to focus on the following issues:

· The parameter passing seems to be very complicated for users to be able to use easily, and therefore it is necessary to simply the process by making it more “automatic”.

· How the report definition efficiently so that the data sources can be retrieved back again if we want to re-run the report.

· Passing queries through to restrict the amount of data being retrieved

8. Acknowledgement

I wish to extend my great thanks to my supervisors: Gareth from Kiwiplan and Dr. Xinfeng Ye, for their continuous support throughout the first half of this project.
I would also like to thank Dr. S. Manoharan, the BTech coordinator, for providing lots of useful information on the BTech programme.
Many thanks to all the experienced programmers from Kiwiplan, for giving me lots of interesting and positive suggestions/advices, and for helping me fixing all kinds of small bugs in the code.

9. References

1. JasperReport Homepage, “JasperReports Documentation”, Available from: http://jasperforge.org/sf/wiki/do/viewPage/projects.jasperreports/wiki/HomePage. Accessed Apr 2007

2. Elizabeth Montalbano, “Eclipse Developers To Get Open-Source Reporting Tool. (Business Intelligence and Reporting Tool)”, Computer Reseller News Sept 13, 2004 p37.
3. iReport Home, “iReport Tutorial”, Available from: http://ireport.sourceforge.net/tutorial1.html. Accessed Apr 2007
� EMBED Visio.Drawing.11 ���

Design the Report

Choose a master data source

Preview the Data Source in JTable (FlexibleTable)

Filter Unnecessary Data from Data Source

Select Data

Source From Service

Select Data

Source Service(s)

Desgin the Report

Preview the Data Source in JTable (FlexibleTable)

Filter Unnecessary Data from Data Source

1

Select Data

Source Service(s)

� EMBED Visio.Drawing.11 ���

2

3

4

� EMBED Visio.Drawing.11 ���

� EMBED Visio.Drawing.11 ���

� EMBED Visio.Drawing.11 ���

PAGE
- 2 -

[image: image36.emf]Data source service:

Similar to a Data Repository

or a Data Warehouse.

[image: image37.emf]Data Source:

Table in relational DB

or a collection of java beans

_1242205617.vsd
Data Source:

Table in relational DB

or a collection of java beans

_1242225716.vsd
+getTableModel()
+supportsGetFieldsOperation()
+getTableModelName()
+getFields()
+create()
+dispose()

-tableDataSource
-table
-tableModel

TableModelDataSourceProvider

+next()
+getFieldValue()

<<interface>>
JRDataSource

+supportsGetFieldsOperation()
+getFields()
+create()
+dispose()

<<interface>>
JRDataSourceProvider

+moveFirst()

<<interface>>
JRRewindableDataSource

+next()
+getFieldValue()
+moveFirst()

-tableModel
-index
-columnNames

JRTableModelDataSource

provides

+getJRDataSource()
+getName()
+getProperties()
+loadProperties()
+setDataSourceProvider()
+getDataSourceProvider()
+disposeDataSource()

-tableModelDataSourceProvider
-tableModelDataSource

TableDataSourceConnection

+isJDBCConnection()
+isJRDataSource()
+getDescription()
+getConnection()
+getJRDataSource()
+getName()
+setName()
+getProperties()
+loadProperties()
+save()
+getSpecialParameters()
+disposeSpecialParameters()
+test()

IReportConnection

1

_1242238206.vsd
Just select and type text. Use control handle to adjust line spacing.

	ITEM	QTY.	PART NO.	DESCRIPTION

Vector<JRParameter>

REPORT_CONNECTION java.sql.Connection

REPORT_MAX_COUNT java.lang.Integer

 … … … ...

REPORT_DATA_SOURCE … JRDataSource

REPORT_PARAMETER_MAP java.util.HashMap

SUBREPORT_GRADEDATASOURCE_TABLEMODEL javax.swing.table.TableModel

_1242238410.vsd
	ITEM	QTY.	PART NO.	DESCRIPTION

REPORT_PARAMETER_MAP java.util.HashMap@3f23a

REPORT_CONNECTION 	null

REPORT_MAX_COUNT 	15

 … … … ...

REPORT_DATA_SOURCE … JRDataSource@4a3d2

SUBREPORT_GRADEDATASOURCE_TABLEMODEL javax.swing.table.TableModel@3ea2c

HashMap

_1242228742.vsd
FlexibleTableModelDataSourceProvider

+next()
+getFieldValue()

<<interface>>
JRDataSource

+supportsGetFieldsOperation()
+getFields()
+create()
+dispose()

<<interface>>
JRDataSourceProvider

+moveFirst()

<<interface>>
JRRewindableDataSource

FlexibleTableModelDataSource

provides

FlexibleTableDataSourceConnection

IReportConnection

1

_1242223658.vsd
+getTableModel()
+supportsGetFieldsOperation()
+getTableModelName()
+getFields()
+create()
+dispose()

-tableDataSource
-table
-tableModel

TableModelDataSourceProvider

+next()
+getFieldValue()

<<interface>>
JRDataSource

+supportsGetFieldsOperation()
+getFields()
+create()
+dispose()

<<interface>>
JRDataSourceProvider

+moveFirst()

<<interface>>
JRRewindableDataSource

+next()
+getFieldValue()
+moveFirst()

-tableModel
-index
-columnNames

JRTableModelDataSource

provides

_1242202179.vsd
+getSelectService()
+getSelectedDataSource()

DatasourceSelectionPane

+morePane()
+lessPane()
+getPaneList()

DatasourceSelectionPaneList

+actionPerformed()

DataSourceProviderPanel

JPanel

1

1

*

<<interface>>
IDataSourceServiceProvider

1

*

<<interface>>
ActionListener

_1242205616.vsd
Data source service:

Similar to a Data Repository

or a Data Warehouse.

_1242205615.vsd
Just select and type text. Use control handle to adjust line spacing.

_1242163114.vsd
+next() : bool
+getFieldValue(JRFeild field)() : object

<<interface>>
JRDataSource

_1242197082.vsd
Power User

_1242156462.vsd
Data

Cluster

Data Source Definition Tool

Database A

Database B

Produces

Custom Data Source(s)

Access

Produces

Report

Reporting Tool

Access

Raw Data Sources

