Found out how to detach the original message from the signature.

public SignedCms (ContentInfo contentInfo, bool detached)
If the detached state is false (the default), the content that is signed is included in the CMS/PKCS #7 message along with the signature information. If the detached state is true, clients that cannot decode S/MIME messages can still see the content of the message if it is sent separately. This might be useful in an archiving application that archives message content whether the message sender can be verified for authenticity.

So, if use:

SignedCms sm = new SignedCms(contentinfo, true);
Then the original message will be automatically detached from the signature.

For example, when I try to sign this string:

“Germany is a country in central Europe and a member of the European Union. Official Name:: Bundesrepublik Deutschland”
Get the signature:

¬
MIICXAYJKoZIhvcNAQcCoIICTTCCAkkCAQExCzAJBgUrDgMCGgUAMAsGCSqGSIb3DQEHAaCCAZIwggGOMIIBOKADAgECAhEA5NA/Du9fokKfi6zibqtLMjANBgkqhkiG9w0BAQUFADAaMQswCQYDVQQGEwJOWjELMAkGA1UEAxMCZGUwHhcNMDYwODEwMDAwMDAwWhcNMDcwODA5MjM1OTU5WjAaMQswCQYDVQQGEwJOWjELMAkGA1UEAxMCZGUwXDANBgkqhkiG9w0BAQEFAANLADBIAkEA5pvNr3CaD9wnJasQ8wxApzMRk0dqXr0Yl006TTdlMS1uE1FWFAiOLekThMDR36qLIIZh3+tEGFcajD86dFl13wIDAQABo1kwVzAiBgNVHSMBAQAEGDAWgBRy9EiyonBGYxG1P8/g04299EEtUzAgBgNVHQ4BAQAEFgQUcvRIsqJwRmMRtT/P4NONvfRBLVMwDwYDVR0PAQH/BAUDAwCAADANBgkqhkiG9w0BAQUFAANBAKzvFoiN404mexOQ1ZsrEcCKbaty/L1yNQxg/cSpgpCuskZzGccwvgem6Kfo1F2e5uKS0U1od9aFWDw42vt8L/cxgZMwgZACAQEwLzAaMQswCQYDVQQGEwJOWjELMAkGA1UEAxMCZGUCEQDk0D8O71+iQp+LrOJuq0syMAkGBSsOAwIaBQAwDQYJKoZIhvcNAQEBBQAEQKy8T2Pog2iTC1g44w/hKX5170+YzQcSzJdgHbj4d1/YPGNaSArfhX5H4m0jgvmXNZvbBUMueMUgKOSLzKkvoJ0=
However, the signature then cannot be verified after the original message was detached.

Solution:

// Create a ContentInfo object from the inner content obtained // independently from encodedMessage.
ContentInfo contentInfo = new ContentInfo(innerContent);
// Create a new, detached SignedCms message.
SignedCms signedCms = new SignedCms(contentInfo, true);
// encodedMessage is the encoded message received from // the sender. signedCms.Decode(encodedMessage);
// Verify the signature without validating the // certificate.
signedCms.CheckSignature(true);
That was suggested in MSDN. But the problem is the parameter ‘innerContent’ that was used to create ContentInfo. The only clue it gave is “the inner content obtained independently from encodedMessage.”.

There is only one constructor for ContentInfo that accepts one parameter and the parameter is a byte array. So both the encodedMessage and the innerContent are an array of bytes. I tried to use encodedMessage as the innerContent but did not work. So the question is: Which part of the byte array ‘encodedMessage’ should be used as the ‘innerContent’ byte array?

MSDN did not mention at all nor gave any link. Very frustrating… as usual.

So I thought of another solution:

Use 2 SignedCms objects. One has the original message attached with the signature and this is used to verify the signature. The other one has the original message detached and this is used to extract the signature for later use (create multi-MIME).

I modified the SignMsg() method. Added a Boolean variable ‘detach’ to indicate if we want the returned byte array have original message in it nor not. Call the new static public byte[] SignMsg(

 bool detach,

 Byte[] msg,

 X509Certificate2 signerCert)

Twice with detach to be true and false. Get 2 byte arrays: encodedSignedCmsWithMsg and encodedSignedCmsWithoutMsg. encodedSignedCmsWithMsg is used to verify the signature.

encodedSignedCmsWithoutMsg is used to wirte to a file called signature.txt. We can use this to compose multi-MIME.
