AS-2
Implementation

[image: image24.jpg]

Name: (Deon) Guo Tian
ID: 3309011

UPI: tguo002
© EDIS Technologies Limited 2006

31.
Abstract

42.
Background

42.1 Who is AARN

52.2 Brief Introduction to EDIS E-commerce Trading System

62.3 Initiative for AARN

73.
Introduction to AS2

73.1 Overall Operation

93.1.1 The Secure Transmission Loop

93.2 Assumptions

93.2.1 EDI/EC Process Assumptions

103.2.2 Flexibility Assumptions

103.2.3 Permutation Summary

123.3 Structure of an AS2 Message

123.3.1 Headers

143.3.2 Message body

143.4 HTTP considerations

143.4.1 HTTP Response Status Codes

143.4.2 HTTP Error Recovery

153.5 Structure and Processing of an MDN Message

153.5.1 Required supports

153.5.2 Usage of the signed receipt

163.5.3 Processes on receiving an encrypted message

173.5.4 Usage of Signed MDN for the Sender of the EDI interchange

183.5.5 Synchronous and Asynchronous MDNs

204.
The AS2 Project

204.1 Project management

204.2 Architecture of the program

214.2.1 NetLib

214.2.2 AS2 Sender

234.2.3 AS2 Handler

234.2.4 Core Classes

254.3 Problems occurred & Design decisions

254.3.1 The decision of redesigning of the original program

264.3.2 Sending different messages

275.
Conclusion

276.
Next Step

277.
Acknowledgement

288.
Bibliography

289.
Appendix -- terms

1. Abstract

This report documents a new transmission protocol called Applicability Statement 2 (AS2) as well as the first half of the development process of the AS2 project.

Applicability Statement 2 (AS2) is a standard by IETF (Internet Engineering Task Force) which describes how to exchange structured business data securely using the HTTP transfer protocol. It is defined in the RFC 4130. Structured business data may be XML or other structured data formats. The data is packaged using standard MIME structures. Authentication and data confidentiality are obtained by using Cryptographic Message Syntax with S/MIME security body parts. Authenticated acknowledgements make use of multipart/signed Message Disposition Notification (MDN) responses to the original HTTP message. This applicability statement is informally referred to as "AS2" because it is the second applicability statement, produced after "AS1", which describes how to exchange structured business data securely using email protocols.

The implementation of AS2 was divided into 2 phases. The first phase is to get an AS2 program running. The client side should be able to connect to the server, construct and send AS2 messages. The server receives the AS2 message, processes it and sends back response to the client side. No security features are implemented at this stage. The second phase is to add standard AS2 security features into the program. Currently the project is up to the end of phase 1.
The project uses Microsoft Virtual Studio 2005 as development environment and the C# programming language. The AS2 sender is a standard .net application. On the Receiver side, Microsoft IIS is used to handle http request. The HTTP post method is used to send AS2 message to the Receiver and a corresponding response is sent back to the Sender.
2. Background

2.1 Who is AARN

AARN innovation is a software research and development organization. It provides complete, end-to-end, manufacturing and distribution e-commerce solutions that include both:
· Web-enabled applications that only require the user to have access to a
 web-browser and a connection to the Internet. The applications below are few examples of Web-enabled applications.
[image: image1.png]

[image: image2]
· Integrated translators that move information into and out of manufacturing and
financial systems. EDIS for Windows is one of them.

[image: image3]
AARN is the sponsor company for this AS2 project and EDIS for windows is one of AARN’s core e-commerce products. [4]
2.2 Brief Introduction to EDIS E-commerce Trading System

Computers have been used in the business world since the 1950’s. In the 1990’s, the focus shifted from enterprise computing to the internet. Recently, the idea of a computer-supported business between businesses (B2B) has attracted fresh interest.

EDIS for Windows is a message exchange system. Figure 3.1 below shows how EDIS works in the business world.

[image: image13.wmf]

Figure EDIS in business world

From the figure above, Business A and Business B both have their own ERP (enterprise resource planning) systems. The two ERP systems are different in most cases. EDIS sits in between the two ERP systems and handles the data exchange.

The figure below shows the structure of the EDIS for Windows systems. It consists of different modules, some of which form groups to perform discrete aspects of the system’s overall functionality.
[image: image14.png]Message
queue Scheduler
Incoming ! Transport’ Decoding
message || protocol b Analyser ™ script
—_— iRedirection
script
Outgoing | _|Transport_| :“7
message protocol
L=
Ll Encoding e Search
L seript seript

[image: image15.wmf][image: image16.png]HomePage POS LabelPrinters Surveilance PDT PaperProducts Support CompanyDetails Dealer Page

Epson printers

The Epson TMT8S Point of Sale Prirter is designed for heavy duty-
cycle environments.

Download $50550 [

It uses a low-cost replacable ribbon to provide economical printing
inthe most demanding envronments

[image: image17.png]Schechled everts

[image: image18.wmf]
[image: image4]

Figure Overview of the EDIS for Windows system [2]

The modules on the right hand side translate the messages and handle the data flow between the message queue and the ERP system. At the centre of this system is the Message Queue module. The modules on the left hand side (that are highlighted) handle incoming and outgoing messages and they are what this project is about: retrieve data from the database, format the message, securely connect to the server, send outgoing message, process incoming message, etc.
2.3 Initiative for AARN

AS2 presents both a major opportunity as well as a competitive risk to AARN Innovation. With the current global focus on e-commerce security and scalability, the traditional VAN model of e-business is being challenged. Worldwide, corporations are adopting communications protocols that utilize Digital Certificates to enhance security. They are also switching to a peer-to-peer network model that more closely emulates the Internet architecture than the traditional, proprietary, VAN communications platform.

Today, leading retailers and manufacturers are realizing the benefits of AS2. This list of companies includes: Wal-Mart, Shaw's, Target, Lowe's, Wegmans, Procter & Gamble, Hershey Foods, Campbell's and many others. Many of these organizations are actively requesting that all of their supply chain partners utilize this technology to communicate across the business community.
[image: image5.jpg]WAL*MART"
@TARGET owseimmas

@ Acenmiwaciru: ME‘IiER m
M ProderGamble ygs @B
SHieinz

Figure - companies using AS2 [1]
From November 2004 through to February 2005, AARN was privileged to be able to facilitate a research and development project at the University of Auckland. The three students produced development reports that provided valuable input into the decision-making process. This has resulted in AARN being able to determine that developing the software in-house is practical and that gaining an international AS2-compliance is achievable. [3]
3. Introduction to AS2

AS2 is Applicability Statement 2 for short. It describes how to exchange structured business data securely using the HTTP transfer protocol. Structured business data may be XML or other structured data formats. The data is packaged using standard MIME structures. Authentication and data confidentiality are obtained by using Cryptographic Message Syntax with S/MIME security body parts. Authenticated acknowledgements make use of multipart/signed Message Disposition Notification (MDN) responses to the original HTTP message. This applicability statement is informally referred to as "AS2" because it is the second applicability statement, produced after "AS1".
In this chapter AS2 is discussed in detail. There are mainly 5 aspects, that is: The overall operation of AS2, the assumptions (conditions) to be made for AS2, the structure of an AS2 message and MDN.
3.1 Overall Operation
The image below shows how AS2 works in a typical data exchange between two trading partners.
[image: image6.png]2 Reaers A sever
ercypts sgnsPOand
sndsto Sppler v HITP

3,452 senvremais essage
Dipostion ifcaion DN
foletRtaer ow PO mesage
s ez sl

(3)

HTTP server
==
st errats P,
acuments apped -
oDlandsent As2
0 EDUANT soutin i

B.AS2 e, i,
a0t fovarts 97 decment
Retaerva TP

HTTP Ierver
As2 Frietar)
Compliant akn

1O

8 Rl 52 s crys 997
andemaisNDN olet Supler kaow
957 message s e ool

Translator

ERP System 7. Realer's K2
s i 57
‘with PO and uploads

et anstr

Translator
5 Supplers ERP
st geertes ERP System
997 (unctinal
ackiovldgnent) and
sends tAS? server

Figure – data exchange between trading partners [1]
As shown in the figure above, there are usually 8 steps for one data exchange
	Step
	Task
	Location

	1
	Retailer’s ERP system generates PO (purchase order). The document is then mapped to EDI and sent to AS2 server
	Retailer side

	2
	Retailer’s AS2 server encrypts, signs the PO and sends to the Supplier via HTTP
	Retailer side – Internet

	3
	Supplier’s AS2 server receives the AS2 message from the Retailer and sends Message Disposition Notification (MDN) back to let the Retailer know that the PO message has been received.
	Supplier side -- Internet

	4
	Supplier’s AS2 server uploads PO into Supplier’s ERP (Enterprise resource planning) system.
	Supplier side

	5
	Supplier’s ERP system generates functional acknowledgement (997) and sends to the Supplier’s AS2 server.
	Supplier side

	6
	Supplier’s AS2 server encrypts, signs and forwards the 997 to Retail via HTTP
	Supplier side -- Internet

	7
	Retailer’s AS2 server reconciles the 997 with PO and uploads file to ERP
	Retailer side

	8
	Retailer’s AS2 server decrypts 997 and sends over MDN to let Supplier know that 997 message has been received.
	

An HTTP POST operation is used to send appropriately packaged EDI, XML, or other business data. The Request-URI identifies a process for unpacking and handling the message data and for generating a reply for the client that contains a message disposition acknowledgement (MDN), either signed or unsigned. The MDN is either returned in the HTTP response message body or by a new HTTP POST operation to a URL for the original sender.

This request/reply transactional interchange can provide secure, reliable, and authenticated transport for EDI or other business data using HTTP as a transfer protocol.

The security protocols and structures used also support auditable records of these document data transmissions, acknowledgements, and authentication.
3.1.1 The Secure Transmission Loop
In the transmission process, one organization sends a signed and encrypted EDI/EC interchange to another organization and requests a signed receipt, and later the receiving organization sends this signed receipt back to the sending organization. Such a process is called “Secure Transmission Loop” and its main steps are:
· The organization sending EDI/EC data signs and encrypts the data using S/MIME. In addition, the message will request that a signed receipt be returned to the sender. To support NRR, the original sender retains records of the message, message-ID, and digest (MIC) value.

· The receiving organization decrypts the message and verifies the signature, resulting in verified integrity of the data and authenticity of the sender.

· The receiving organization then returns a signed receipt using the HTTP reply body or a separate HTTP POST operation to the sending organization in the form of a signed message disposition notification. This signed receipt will contain the hash of the received message, allowing the original sender to have evidence that the received message was authenticated and/or decrypted properly by the receiver.

The above describes functionality that, if implemented, will satisfy all security requirements and implement non-repudiation of receipt for the exchange.

3.2 Assumptions

There were some assumptions made when AS2 was designed. These assumptions must be satisfied in implementation. The assumptions are mainly made in the aspect of EDI/EC Process and Flexibility.

3.2.1 EDI/EC Process Assumptions
· Encrypted object is an EDI/EC Interchange.

AS2 assumes that a typical EDI/EC interchange is the lowest-level object that will be subject to security services.

· EDI envelope headers are encrypted.

Congruent with the above statement, EDI envelope headers are NOT visible in the MIME package.

In many cases, some envelope information is set to be visible for Optimization purpose. In commercial EDI networks (Value Added Networks or VANs), the visible information of the envelope helps to optimize routing and makes it more efficient. However, AS2 does not support for this optimization. This means EDI envelope headers are not visible in the MIME package and no exception is allowwed.
3.2.2 Flexibility Assumptions
· Encrypted or Unencrypted Data

AS2 allows for EDI/EC message exchange in which the EDI/EC data can be either encrypted or not.
· Signed or Unsigned Data

AS2 allows for EDI/EC message exchange with or without digital signature of the original EDI transmission.

· Optional Use of Receipt

AS2 allows for EDI/EC message transmission with or without a request for receipt notification. A signed receipt notification is requested; however, a MIC value is REQUIRED as part of the returned receipt, except when a severe error condition prevents computation of the digest value. In the exceptional case, a signed receipt should be returned with an error message that effectively explains why the MIC is absent.

· Use of Synchronous or Asynchronous Receipts

In addition to a receipt request, AS2 allows the specification of the type of receipt that should be returned. It supports synchronous or asynchronous receipts in the MDN format.
· Hash Function, Message Digest Choices

When a signature is used, it is RECOMMENDED that the SHA-1 hash algorithm be used for all outgoing messages, and that both MD5 and SHA-1 be supported for incoming messages.

3.2.3 Permutation Summary

From the assumptions stated above, an AS2 transmission can be permuted with the 4 optional conditions: The message is signed or not, the message is encrypted or not, requests an MDN or not and the requested MDN is signed or not.

In summary, the following twelve security permutations are possible in any given trading relationship:
	Case
	Signed message
	Encrypted message
	Request MDN
	Signed MDN

	1
	No
	No
	No
	-

	2
	No
	No
	Yes
	No

	3
	No
	No
	Yes
	Yes

	4
	No
	Yes
	No
	-

	5
	No
	Yes
	Yes
	No

	6
	No
	Yes
	Yes
	Yes

	7
	Yes
	No
	No
	-

	8
	Yes
	No
	Yes
	No

	9
	Yes
	No
	Yes
	Yes

	10
	Yes
	Yes
	No
	-

	11
	Yes
	Yes
	Yes
	No

	12
	Yes
	Yes
	Yes
	Yes

Cases:
1. Sender sends un-encrypted data and does NOT request a receipt.

2. Sender sends un-encrypted data and requests an unsigned receipt. Receiver sends back the unsigned receipt.

3. Sender sends un-encrypted data and requests a signed receipt. Receiver sends back the signed receipt.

4. Sender sends encrypted data and does NOT request a receipt.

5. Sender sends encrypted data and requests an unsigned receipt. Receiver sends back the unsigned receipt.

6. Sender sends encrypted data and requests a signed receipt. Receiver sends back the signed receipt.

7. Sender sends signed data and does NOT request a signed or unsigned receipt.

8. Sender sends signed data and requests an unsigned receipt. Receiver sends back the unsigned receipt.

9. Sender sends signed data and requests a signed receipt. Receiver sends back the signed receipt.

10. Sender sends encrypted and signed data and does NOT request a signed or unsigned receipt.

11. Sender sends encrypted and signed data and requests an unsigned receipt. Receiver sends back the unsigned receipt.

12. Sender sends encrypted and signed data and requests a signed receipt. Receiver sends back the signed receipt.

Users can choose any of the twelve possibilities, but only the last case (12), when a signed receipt is requested, offers the whole suite of security features described in Section "The Secure Transmission Loop".

Additionally, the receipts discussed above may be either synchronous or asynchronous depending on the type requested. The use of either the synchronous or asynchronous receipts does not change the nature of the secure transmission loop in support of NRR.

3.3 Structure of an AS2 Message

The basic structure of an AS2 message consists of MIME format inside an HTTP message with a few additional specific AS2 headers.

3.3.1 Headers
Internet EDI MIME Message types and Content-type header
The EDI MIME message can be any of the following types:
· No encryption, no signature

· No encryption, signature

· Encryption, no signature

· Encryption, signature

· MDN over HTTP, no signature

· MDN over HTTP, signature

· MDN over SMTP, no signature

· MDN over SMTP, signature

Although all MIME content types should be supported, the following

MIME content types are essential and must be supported:
	Case
	Content-type

	1
	multipart/signed

	2
	multipart/report

	3
	message/disposition-notification

	4
	application/PKCS7-signature

	5
	application/PKCS7-mime

	6
	application/EDI-X12

	7
	application/EDIFACT

	8
	application/edi-consent

	9
	application/XML

Http headers
· Final Recipient and Original Recipient

The final and original recipient values SHOULD be the same value. These values MUST NOT be aliases or mailing lists.

· Message-Id and Original-Message-Id

Message-Id and Original-Message-Id is formatted as "<" id-left "@" id-right ">"

Message-Id length is a maximum of 998 characters. For maximum backward compatibility, Message-Id length SHOULD be 255 characters or less. Message-Id SHOULD be globally unique, and id-right SHOULD be something unique to the sending host environment (e.g., a host name).

When sending a message, always include the angle brackets. Angle brackets are not part of the Message-Id value. For maximum backward compatibility, when receiving a message, do not check for angle brackets. When creating the Original-Message-Id header in an MDN, always use the exact syntax as received on the original message; don't strip or add angle brackets.

· Host Header

The host request header field MUST be included in the POST request made when sending business data. This field is intended to allow one server IP address to service multiple hostnames, and potentially to conserve IP addresses.
· Content-Transfer-Encoding Not Used in HTTP Transport

HTTP can handle binary data and so there is no need to use the content transfer encodings of MIME. However, a content transfer encoding value of binary or 8-bit is permissible but not required. The absence of this header MUST NOT result in transaction failure. Content transfer encoding of MIME body parts within the AS2 message body is also allowed.

Additional AS2-Specific HTTP Headers
The following headers are to be included in all AS2 messages and all

AS2 MDNs, except for asynchronous MDNs that are sent using SMTP and

that follow the AS1 semantics.
· AS2 Version Header

To promote backward compatibility, AS2 includes a version header:

AS2-Version: 1.0
Used in all implementations of this specification. 1.x will be interpreted as 1.0 by all implementations with the "AS2 Version: 1.0" header. That is, only the most significant digit is used as the version identifier for those not implementing additional non-AS2-specified functionality. "AS2-Version: 1.0 through 1.9" may be used. All implementations MUST interpret "1.0 through 1.9" as implementing this specification However, an implementation MAY extend this specification with additional functionality by specifying versions 1.1 through 1.9. If this mechanism is used, the additional functionality must be completely transparent to implementations with the "AS2-Version: 1.0" designation.

AS2-Version: 1.1

Designates those implementations that support compression.
Receiving systems MUST NOT fail due to the absence of the AS2-Version header. Its absence would indicate that the message is from an implementation based on a previous version of this specification.

· AS2 System Identifiers
To aid the receiving system in identifying the sending system,

AS2-From and AS2-To headers are used.

 AS2-From: < AS2-name >

 AS2-To: < AS2-name >

These AS2 headers contain textual values, identifying the sender/receiver of a data exchange. Their values may be company specific, such as Data Universal Numbering System (DUNS) numbers, or they may be simply identification strings agreed upon between the trading partners.

There is no required response to a client request containing invalid or unknown AS2-From or AS2-To header values. The receiving AS2 system MAY return an unsigned MDN with an explanation of the error, if the sending system requested an MDN.

3.3.2 Message body
The message body is just stored as a string at this stage.
3.4 HTTP considerations
AS2 operations are all based on HTTP protocol so there are many HTTP issues that we must consider. A few of the most important HTTP considerations are listed below:
3.4.1 HTTP Response Status Codes
The status codes return status concerning HTTP operations. For example, the status code 401, together with the WWW-Authenticate header, is used to challenge the client to repeat the request with an Authorization header.
For errors in the request-URI, 400 ("Bad Request"), 404 ("Not Found"), and similar codes are appropriate status codes. A careful examination of these codes and their semantics should be made before implementing any retry functionality. Retries SHOULD NOT be made if the error is not transient or if retries are explicitly discouraged.

3.4.2 HTTP Error Recovery
If the HTTP client fails to read the HTTP server response data, the POST operation with identical content, including same Message-ID, SHOULD be repeated, if the condition is transient.

The Message-ID on a POST operation can be reused if and only if all of the content (including the original Date) is identical.

Details of the retry process (including time intervals to pause, number of retries to attempt, and timeouts for retrying) are implementation dependent. These settings are selected as part of the trading partner agreement.

Servers SHOULD be prepared to receive a POST with a repeated Message-ID. The MIME reply body previously sent SHOULD be resent, including the MDN and other MIME parts.
3.5 Structure and Processing of an MDN Message
In order to support non-repudiation of receipt, a signed receipt, based on digitally signing a message disposition notification, is to be implemented by a receiving trading partner's UA. The message disposition notification, specified by RFC 3798, is digitally signed by a receiving trading partner as part of a multipart/signed MIME message.

3.5.1 Required supports

The following support for signed receipts is REQUIRED:
	
	Support needed for signed receipts

	1
	The ability to create a multipart/report; where the report-type = disposition-notification.

	2
	The ability to calculate a message integrity check (MIC) on the received message. The calculated MIC value will be returned to the sender of the message inside the signed receipt.

	3
	The ability to create a multipart/signed content with the message disposition notification as the first body part, and the signature as the second body part.

	4
	The ability to return the signed receipt to the sending trading partner.

	5
	The ability to return either a synchronous or an asynchronous receipt as the sending party requests.

3.5.2 Usage of the signed receipt

The signed receipt is used to notify a sending trading partner that requested the signed receipt that:

	
	Usage of the Signed receipt

	1
	The receiving trading partner acknowledges receipt of the sent EC Interchange

	2
	If the sent message was signed, then the receiving trading partner has authenticated the sender of the EC Interchange.

	3
	If the sent message was signed, then the receiving trading partner has verified the integrity of the sent EC Interchange.

3.5.3 Processes on receiving an encrypted message
Regardless of whether the EDI/EC Interchange was sent in S/MIME format, the receiving trading partner's UA MUST provide the following basic processing:
[image: image19.wmf]
[image: image7]
Figure - Processes on receiving an encrypted message
1. If the sent EDI/EC Interchange is encrypted, then the encrypted symmetric key and initialization vector (if applicable) is decrypted using the receiver's private key.

2. The decrypted symmetric encryption key is then used to decrypt the EDI/EC Interchange.

3. The receiving trading partner authenticates signatures in a message using the sender's public key. The authentication algorithm performs the following:

a. The message integrity check (MIC or Message Digest), is decrypted using the sender's public key.

b. A MIC on the signed contents (the MIME header and encoded EDI object, as per RFC 1767) in the message received is calculated using the same one-way hash function that the sending trading partner used.

c. The MIC extracted from the message that was sent and the MIC calculated using the same one-way hash function that the sending trading partner used are compared for equality.

4. The receiving trading partner formats the MDN and sets the calculated MIC into the "Received-content-MIC" extension field.

5. The receiving trading partner creates a multipart/signed MIME message.
6. The MDN is the first part of the multipart/signed message, and the digital signature is created over this MDN, including its MIME headers.

7. The second part of the multipart/signed message contains the digital signature. The "protocol" option specified in the second part of the multipart/signed is as follows:

 S/MIME: protocol = "application/pkcs-7-signature"

8. The signature information is formatted according to S/MIME specifications.

The EC Interchange and the MIME EDI content header can actually be part of a multi-part MIME content-type. When the EDI Interchange is part of a multi-part MIME content-type, the MIC MUST be calculated across the entire multi-part content, including the MIME headers.

3.5.4 Usage of Signed MDN for the Sender of the EDI interchange
The signed MDN, when received by the sender of the EDI Interchange, can be used by the sender as follows:
	
	Usage of Signed MDN for the Sender

	1
	As an acknowledgement that the EDI Interchange sent was delivered and acknowledged by the receiving trading partner. The receiver does this by returning the original-message-id of the sent message in the MDN portion of the signed receipt.

	2
	As an acknowledgement that the integrity of the EDI Interchange was verified by the receiving trading partner. The receiver does this by returning the calculated MIC of the received EC Interchange (and 1767 MIME headers) in the "Received-content-MIC" field of the signed MDN.

	3
	As an acknowledgement that the receiving trading partner has authenticated the sender of the EDI Interchange.

	4
	As a non-repudiation of receipt when the signed MDN is successfully verified by the sender with the receiving trading partner's public key and the returned MIC value inside the MDN is the same as the digest of the original message.

3.5.5 Synchronous and Asynchronous MDN

The AS2-MDN exists in two varieties: synchronous and asynchronous.

The synchronous AS2-MDN is sent as an HTTP response to an HTTP POST or as an HTTPS response to an HTTPS POST. This form of AS2-MDN is called synchronous because the AS2-MDN is returned to the originator of the POST on the same TCP/IP connection.

The asynchronous AS2-MDN is sent on a separate HTTP, HTTPS, or SMTP TCP/IP connection. Logically, the asynchronous AS2-MDN is a response to an AS2 message. However, at the transfer-protocol layer, assuming that no HTTP pipelining is utilized, the asynchronous AS2-MDN is delivered on a unique TCP/IP connection, distinct from that used to deliver the original AS2 message. When handling an asynchronous request, the HTTP response MUST be sent back before the MDN is processed and sent on the separate connection.

When an asynchronous AS2-MDN is requested by the sender of an AS2 message, the synchronous HTTP or HTTPS response returned to the sender prior to terminating the connection MUST be a transfer-layer response indicating the success or failure of the data transfer. The format of such a synchronous response MAY be the same as that response returned when no AS2-MDN is requested.

The following diagram illustrates the synchronous versus asynchronous varieties of AS2-MDN delivery using HTTP:

Synchronous AS2-MDN
The sender sets up an HTTP connection to the receiver and sends over the AS2 message as the HTTP request. After the receiver received the message it immediately sends back an MDN in the same HTTP connection as the HTTP response. There is only one HTTP connection. The figure below shows the Synchronous AS2-MDN exchanging process.

[image: image8]

Figure - Synchronous MDN
Asynchronous AS2-MDN
The sender sets up an HTTP connection and sends over the AS2 message as the HTTP request. After the receiver received the message it however does not sends back the MDN immediately. Instead, the receiver waits for a while and sets up another HTTP connection to the sender and sends back the MDN as the new HTTP request. There are two HTTP connections.
The figure below shows the Asynchronous AS2-MDN exchanging process.

[image: image9]

Figure Asynchronous MDN

* Note: An AS2-MDN may be directed to a host different from that of the sender of the AS2 message. It may utilize a transfer protocol different from that used to send the original AS2 message.

The advantage of the synchronous MDN is that it can provide the sender of the AS2 Message with a verifiable confirmation of message delivery within a synchronous logic flow. However, if the message is relatively large, the time required to process this message and to return an AS2-MDN to the sender on the same TCP/IP connection may

exceed the maximum configured time permitted for an IP connection.

The advantage of the asynchronous MDN is that it provides for the rapid return of a transfer-layer response from the receiver, confirming the receipt of data, therefore not requiring that a TCP/IP connection necessarily remain open for very long. However, this

design requires that the asynchronous AS2-MDN contain enough information to identify the original message uniquely so that, when received by the AS2 Message originator, the status of the original AS2 Message can be properly updated based on the contents of the

AS2-MDN.

4. The AS2 Project
4.1 Project management
During the development of this project I worked closely with Christof, my academic supervisor as well as the chief designer of this AS2 project from AARN. In order to make sure the project meets the users’ expectation we meet frequently and shared every small progress we made, discussed about it, got feedback and then moved on to next task or made changes to the implemented.
In the kick-off meeting, the industry mentor Barry, academic mentor Christof, Gerald, Mano and I discussed the outline of this project. We set up the strategy and steps of this project and the deliverable of the first half of the project.

Also, there was a project meeting every week between Christof and me. We sat together discussing about the progress of the project. From the meeting we got a general idea about what we have achieved so far, what needs to be done in the next week, what issues we have to be careful with and so on. In a few of the meetings we reviewed the existing program and made some important decisions such as redesigning the architecture.
The weekly meeting with Christof is the key factor of this project. It guides me through the whole project step by step and provided me sufficient support.
4.2 Architecture of the program

[image: image20.wmf][image: image21.png]Stréam

[image: image22.png]

[image: image23.png]Geac ERP
S T
QC Tims

Figure System Architecture
As shown in the diagram, the system contains mainly 3 parts: AS2 Sender, which sends out As2 messages; AS2 Handler, which receives and processes incoming AS2 messages and MDN; and a library called NetLib.
4.2.1 NetLib

This is the library of this program. Most of the business logic is implemented here. It mainly contains 2 classes: AS2Message and MIMEMessage.

AS2Message class formats the message that is going to be sent, add proper headers to the message and creates a MIMEMessage as body. This class has many instance variables that holds the information of the message such as Signed, Encrypted as well as the information of the Sender and Receiver such as SendFrom, SendTo, etc. There are 2 different constructors for different use. The most important method of this class is the Send() method, which sends over the formatted message via an HTTP Post method. This method returns the corresponding HTTP response. There will be some detailed introduction to this class in next section.
4.2.2 AS2 Sender

The Sender has 2 layers: The user interface and the business logic that responds to the user interface and sends out messages.

The user interface is not fully designed yet at this stage but there is a very simple interface for testing purpose. It looks like this:

[image: image10.png]EEETE——— ol

Message to be sent

_ MDN Opton
™ Sined

Fem ° © Synchronized MDN
™ Encoypted

R —— € Aenchvonized MDN
Send

Response

Figure - test UI
The idea of the test program is to send different types of AS2 messages according to the permutation table. The corresponding response is sent back and shown on the user interface.
Controls:

	Control Name
	Control Type
	Usage

	txtMessageTo
	Text box
	The user types in message data

	txtResponse
	Text box
	The HTTP response received

	txtFrom
	Text box
	Specifies the identity of the partner that sends the message

	txtTo
	Text box
	Specifies the identity of the partner that the message is sent to

	ckbSigned
	Check box
	Specifies whether the message is signed or not

	ckbEncrypted
	Check box
	Specifies whether the message is encrypted or not

	ckbMDN
	Check box
	Specifies whether a MDN is requested or not

	grpMDN
	A group of radio buttons
	Specifies whether a synchronous or asynchronous MDN is requested

	btnSend
	Button
	Send the message

Process
The figure Test UI shows how the interface looks like initially. When sending a message, the user types in the message data into the text box: txtMessageTo, check the checkboxes indicating whether the message is signed, encrypted, request MDN, etc. When the send button is clicked, the message is constructed and sent to the server over an HTTP connection. The HTTP response is then shown in the text box: txtResponse.
There are 3 steps to send an AS2 message:
1. Construct an AS2Message object
An AS2Message object is constructed using the constructor AS2Message().

2. Set the value of the instance variables of the constructed AS2Message object.
The instance variables of the AS2Message object are set according to the controls. For example, if the check box: ckbMDN is checked then the instance variable: Boolean MDN is set to be true.

3. Send the message.
The instance method Send() is then called to send the AS2 message using an HTTP Post method.
4.2.3 AS2 Handler
Microsoft IIS IHTTP handlers are used to process received messages.
When a message is received

1. Construct an AS2Message object
When a message is received through HTTP request, an AS2Message object is constructed by using the constructor AS2Message(HttpRequest request).

2. Extract information from HTTP request.
This is actually a part of constructing an AS2Message object using the HttpRequest received. For example: AS2From = rs.Headers.Get("AS2-From");

AS2From is an instance variable of the AS2Message object. It is set by the value of the “AS2-From” header in the HttpRequest. After the AS2 object is constructed, the information then can be accessed through instance variables on the receiver side.

3. Save info into DB

The received message data and some information are then saved into the database

4. Construct and send MDN

If a MDN is requested, the handler will construct the MDN according to the requested MDN type and then send back to the sender.
4.2.4 Core Classes

[image: image11]
 Figure - AS2Message class diagram
Instance Variables
	Type
	Name
	Default Value
	Usage

	Uri
	AS2ToUri
	
	The uri of the receiver

	String
	AS2To
	“Sender”
	Sender’s identity

	String
	AS2From
	“Receiver”
	Receiver’s identity

	String
	AS2Version
	“1.1”
	AS2 version number

	String
	UserAgent
	“EDISAS2 Client”
	User Agent name

	String
	MDNToUri
	
	The uri for the MDN to be sent to

	MDNType
	MDN
	MDNType.None
	enum MDNType{
 None, Synchronous, Asynchronous

}

	Boolean
	MDNSigned
	False
	Whether the MDN is signed

	MIMEMessage
	MessageToSend
	Null
	The MIME Message

	String
	NonMIMEMessage
	“Test Message”
	The non-MIME Message

	Boolean
	Signed
	False
	Whether the message is signed

	Boolean
	Encrypted
	False
	Whether the message is encrypted

	String
	contentType
	“”
	Http Content type header

	String
	MessageID
	“id”
	The message’s identity

	Uri
	AsynchronousMDNtoUri
	
	The uri for the asynchronous MDN to be sent to

	String
	Data
	“Empty”
	The chunk of message data

Constructors
	Constructor
	Parameter
	Used by
	Note

	AS2Message()
	None
	Sender
	The sender needs to set instance variables specifically afterwards

	AS2Message(HttpRequest request)
	HttpRequest
	Receiver
	The instance variables are set automatically by the constructor.

Instance methods
	Instance methods
	Parameter
	Used by
	Return

	Send()
	None
	Sender
	HttpResponse

4.3 Problems occurred & Design decisions
4.3.1 The decision of redesigning of the original program
There is an existing version of the AS2 system. The project originally was to understand the existing system, refine it and add security features on top of it. However a few critical problems were identified, which lead to the decision of redesigning the system.
One problem of the original AS2 system is that the architecture is not well designed.

[image: image12]

Figure - original AS2 implementation architecture
As shown above, different layers are mixed together. For example, on client side, the User Interface code, Business logic code and Database Access code are all mixed together.

Another problem is the connections between components are not clear. For example, on the server side, the logic of processing received messages suggests that AS2Message contains MIMEMessage, however, AS2Message class is inside of the MIME folder. Also, in AS2Message class the MIMEMessage type instance variable is declared but was never used, which means there is no actual connection between MIMEMessage and AS2Message class. Further more, AS2Message variables were never used in the program although many were declared.
In addition, most variables are declared as global variables and the program would not compile, in fact, the compiler picked up over 100 errors.

Because of these, the decision of redesigning the system was made. The new system architecture is described in section 4.2.
4.3.2 Sending different messages
Due to the permutation of the variables: Signed, MDN, Encrypted, MDNSigned, Synchronous MDN, there are many different types of the AS2 message. See Assumptions—Permutation summary section.
In order to send different types of messages, the AS2Message class was designed to be:

Figure – old send methods
As shown above, there are more than one send methods and all of them are static. According to this design, the Sender does not need to construct any AS2Message object, instead the Sender can directly call the proper static send method to send the message.
However this design has a few disadvantages:

· The Sender has to decide which send method to use and the corresponding message types of each send method are not defined clearly. This increases complexity of the system.

· In order to call the send method, a lot of parameters are needed. This increases complexity and/or inconvenience too.

· The Sender does not actually need to use any of the instance variables. Because the Sender passes parameters to the send method. However, the parameters and the instance variables hold the same data. This means duplication of information.

Because of the considerations above, the class was redesigned to Figure - AS2Message class diagram. In the new design, the instance variables are fully made use of and there is only one send method which takes no parameter. The new design resolved the disadvantages stated above.
5. Conclusion
Applicability Statement 2 (AS2) describes how to exchange structured business data securely using the HTTP transfer protocol. Structured business data may be XML or other structured data formats. The data is packaged using standard MIME structures. Authentication and data confidentiality are obtained by using Cryptographic Message Syntax with S/MIME security body parts. Authenticated acknowledgements make use of multipart/signed Message Disposition Notification (MDN) responses to the original HTTP message.
The first half of the AS2 project went well and produced satisfying results:

· The system architecture is now redesigned to be clear and effective.

· The basic operations of AS2 data exchange are implemented and are running
6. Next Step
There are still a few things to do for the next half of the project.
Firstly, the AS2 program needs to be integrated into EDIS for windows system.
After that, standard security features will be implemented and added into the system.

In the end, there will be a few different types of testing to the system, such as integrated testing and individual functionality testing.
7. Acknowledgement
Firstly I have to thank my supervisor Christof, who guided me through the first half of this project and was always there to help and support.
Also thanks to my supervisor Dr. Gerald and Dr. Manoharan and industry mentor Barry for their support and information provided.
Special thanks to AARN for their remote help and technical support.
8. Bibliography

All the knowledge about AS2 stated above was learned from and based on D. Moberg, Cyclone Commerce and R. Drummond, Drummond Group Inc; “MIME-Based Secure Peer-to-Peer Business Data Interchange Using HTTP, Applicability Statement 2 (AS2)”,

RFC 4130, July, 2005

[1] http://www.ediuniversity.com
[2] “EDIS for Windows system analysis” Christof
[3] “AS2 Overview” Barry

[4] AARN presentation slides

9. Appendix -- terms

AS2: Applicability Statement 2
EDI: Electronic Data Interchange

EC:Business-to-Business Electronic Commerce

B2B: Business to Business

Receipt: The functional message that is sent from a receiver to a sender to acknowledge receipt of an EDI/EC interchange. This message may be either synchronous or asynchronous in nature.

Signed Receipt: A receipt with a digital signature.

Synchronous Receipt: A receipt returned to the sender during the same HTTP session as the sender's original message.

Asynchronous Receipt: A receipt returned to the sender on a different communication session than the sender's original message session.

Message Disposition Notification (MDN): The Internet messaging format used to convey a receipt. This term is used interchangeably with receipt. A MDN is a receipt.

Non-repudiation of receipt (NRR): A "legal event" that occurs when the original sender of an signed EDI/EC interchange has verified the signed receipt coming back from the receiver. The receipt contains data identifying the original message for which it is a receipt, including the message-ID and a cryptographic hash (MIC). The original sender must retain suitable records providing evidence concerning the message content, its message-ID, and its hash value. The original sender verifies that the retained hash value is the same as the digest of the original message, as reported in the signed receipt. NRR is not considered a technical message, but instead is thought of as an outcome of possessing relevant evidence.

S/MIME: A format and protocol for adding cryptographic signature and/or encryption services to Internet MIME messages.

Cryptographic Message Syntax (CMS): An encapsulation syntax used to digitally sign, digest, authenticate, or encrypt arbitrary messages.

SHA-1:A secure, one-way hash algorithm used in conjunction with digital signature. This is the recommended algorithm for AS2.

MD5: A secure, one-way hash algorithm used in conjunction with digital signature. This algorithm is allowed in AS2.

MIC: The message integrity check (MIC), also called the message digest, is the digest output of the hash algorithm used by the digital signature. The digital signature is computed over the MIC.

User Agent (UA): The application that handles and processes the AS2 request.

1. Decrypt the encryption key

EDIS

ERP

ERP

Business B

6. MDN as first part of the message

5. Create multipart/signed MIME message

4. Format MDN

7. Digital signature as second part of the message

3. Authenticate signatures (3 steps: a, b, c)

2. Use the key to decrypt the message

Business A

8. Format signature information

a. Decrypt MIC

b. Calculate MIC on the signed contents

c. Extract the MIC and compare equality

									Receiver side

Transport

Protocol

	 NetLib

uses

constructs

constructs

uses

	 MIME

	

	MIMEPart{ }

	MIMEMultiPart{ }

	User Interface

 MDN Receiver

 AS2Message Receiver

	AS2 Handler

	AS2 Sender

	AS2 Sender

AS2 Message

 AS2Message()

 Send()

	 NetLib

uses

Message

Sends over AS2 Message

Sends back AS2 MDN

Connection

HTTP Request

HTTP Response

Sender

(Peer 1)

Receiver

(Peer 2)

Receiver

(peer 2)

Sender

(peer 1)

Connection 1

Connection 2

Sends over AS2 Message

Sends back AS2 MDN

HTTP Request

HTTP Request

HTTP Response

HTTP Response

Outgoing

Message

Incoming

Message

AS2Message(HttpRequest rs)

static Send(String AS2To, String AS2From, string message, string uri, bool encryptedMessage, bool signedMessage)

static SendWithSynchMDN(String AS2To, String AS2From, String message, String receiverUrl, bool encryptedMessage, bool signedMessage, bool encryptedMDN, bool signedMDN)

static SendWithAsynchMDN(String AS2To, String AS2From, string message, string receiverUri, string receiptUri, bool encryptedMessage, bool signedMessage, bool encryptedMDN, bool signedMDN)

		 Instance Variables

 AS2Message

Business Logic

Database Access

Database Access

Business Logic

User Interface

AS2Message

MIME

Client

Server

uses

This class is the core of the system. Both Sender and Receiver need to construct an AS2Message object for each data exchange.

The instance variables hold necessary information of this AS2 message or the data exchanging process.

There are 2 constructors:

The one takes no parameter is used by the Sender. The client has to set instance variables of the AS2Message object.

The other one takes an HttpRequest type parameter. This constructor is used by the Receiver. It extracts information from the HttpRequest, set instance variables.

The instance method Send() basically sends the constructed AS2Message over and HTTP connection using a Post method. It also returns the HttpResponse of the corresponding HttpRequest.

AS2Message()

AS2Message(HttpRequest request)

Send()

AS2ToUri

AS2To

AS2From

AS2Version

UserAgent

MDNToUri

MDN

MDNSigned

MessageToSend

NonMIMEMessage

Signed

Encrypted

contentType

messageToSend

MessageID

AsynchronousMDNtoUri

Data

 AS2Message

Action performed

Transport

Protocol

MDN

Message

