MOBILE DEVICES AND SYNCHRONISATION CONCEPTS
Research Report for e-asTTle

Yoon-young LEE

BTech IT Student Project

Table of Contents

Research Report Overview

 3

1. Currently Available Mobile Devices and their Feature Comparisons

 4
1.1. Comparisons between Tablet PC, PDA and Smartphone

 5
1.2. Comparisons between Palm and Pocket PC

 5

1.3. General Features

 6
A) Palm

 6

B) Pocket PC

 7

C) Tablet PC

 8
1.4. Synchronisation Features

 8

1.4.1. Terms and Definitions

 8

1.4.2. Synchronisation

 9

 A) Palm

 9

 B) Pocket PC

10
2. Other Synchronisation Options

12
2.1. SyncML

12

Types of SyncML Synchronisation

15

Simple Architecture Example

 16

Format of SyncML Messages

 16

SyncML Message Example

17
2.2. Web Services

18

Benefits of Web Services

18

Downsides of Web Services

18

Issues with Web Services for Mobile Data Synchronisation

19

Limitations of XML

20
3. Possible Development Tools

21
3.1. Application Development Platforms

21

A) CodeWarrior for Palm OS

21

B) NSBasic

21

C) Crossfire/MobileVB

22

D) CASL

22

E) J2ME

23

F) HotPaw Basic

24

G) SmallBASIC

24

H) PocketC

25

I) OnBoard C

25
3.2. J2ME

25
Rationale for Choosing Java (J2ME)

25

About J2ME

26
3.3. Sync4J – SyncML Support in J2ME

27
3.4. J2ME Web Services APIs (WSA) - JSR 172

 28
4. Development Suggestions

30
References

32
Research Report Overview

This research report explores the features of currently available mobile devices, including the synchronisation functionalities, as well as other external synchronisation mechanisms. The aim of this paper is to investigate and make a sound decision on available mobile devices and technologies to adopt and deploy in implementation of e-asTTle functionalities.
The first section of this paper examines and makes comparisons between a few groups of mobile devices – tablet PC, PDA and Smartphone. Their general and synchronisation features are listed and compared to one another. This section is followed by the research on external platform-independent synchronisation methodologies other than the built-in proprietary synchronisation functionalities of the devices. The third section looks at the development tools – Java 2 Micro Edition and it support for the external synchronisation methods - that can possibly be adopted in implementing the required functionalities of e-asTTle. Lastly, some suggestions are made based on the research results on what devices and technologies to adopt for the implementation of e-asTTle.
In researching the topics in this paper, the cross-platform capabilities of the technologies/methods were given the major focus as the e-asTTle has to support multi-platform operations of existing asTTle systems. For the development tool – the programming language – Java was chosen from a number of other possibilities, the main reason being that asTTle systems are written in Java. Such choice will narrow the development effort and the unified environment can promote easier maintenance and future improvements.
1. Currently Available Mobile Devices and their Feature Comparisons
The research effort was concentrated on a definite set of mobile devices - PDA (Personal Digital Assistants) and Tablet PC. A Tablet PC is essentially a notebook computer with the additional capabilities of handwriting recognition and/or a touch screen. A user can use a stylus and operate the computer without the use of a keyboard or mouse. PDA is a generalized term that encompasses a number of distinct groups of devices, namely Palm and Pocket PC. The main difference between the two types of PDA is the fact that they adopt different platforms – Pocket PC operates on the Windows for Pocket PC operating system called Windows CE, whereas Palm runs on an operating system called Palm OS (by PalmSource, Inc).
Another group of mobile device categorized as Smartphone was also researched. It is a combination of a mobile phone and a PDA – that is, it combines the functions of a cellular phone and handheld computer in a single device. Smartphones differ from normal phones in that they have an open operating system and local storage. [22]
BlackBerry [34] also are (a brand of) handheld wireless devices providing e-mail, telephone, text messaging and web browsing services. The devices are manufactured by the Canadian company Research In Motion (RIM). RIM provides a proprietary operating system (OS) for the BlackBerry, which makes heavy use of the device's specialized input devices, particularly the thumbwheel. The OS provides support for MIDP (Mobile Information Device Profile)
 1.0 and WAP (Wireless Access Protocol) 1.2. Previous versions allowed wireless synchronization with Microsoft Exchange Server's e-mail and calendar. The current OS 4 and later provides a subset of MIDP 2.0, and allows complete wireless activation and synchronization with Exchange's e-mail, calendar, tasks, notes and contacts. Own software can be written using these APIs, but needs to be signed by RIM first so that an application can be associated to a developer account at RIM.

BlackBerry however has a disadvantage in that it does not provide any Linux support
 (although it does provide support for Windows and Mac). This poses a major restriction in development of e-asTTle solutions as asTTle is to run on various platforms including Linux. For this reason BlackBerry was excluded from the further research.
1.1. Comparisons between Tablet PC, PDA and Smartphone
PDA is a handheld device that combines computing, telephone/fax, and networking features. A typical PDA can function as a cellular phone, fax sender, and personal organizer. In essence PDA is a minimized version of a personal computer, with much reduced functionalities. PDAs were originally designed as a PIM (Personal Information Manager) device, although recent developments in PDA technologies allow extended capabilities, for example implementation of custom applications.
Tablet PCs, on the other hand, provide full functionalities of notebook computers, with a pen-based user interface.
A smartphone is generally considered any handheld device that integrates personal information management and mobile phone capabilities in the same device. Often, this includes adding phone functions to already capable PDAs or putting "smart" capabilities, such as PDA functions, into a mobile phone. More accurately, the range of smartphones investigated in this research is the latter of the two. The former are simply considered as PDAs with additional phone capabilities rather than being classified as smartphones. The key feature of either variation of smartphone is that one can install additional applications to the device. The applications can be developed by the manufacturer of the handheld device, by the operator or by any other 3rd party software developer. The operating system platforms on which smartphones can run include Palm OS, Windows CE, Symbian OS
 and Linux. The latter variation of smartphone differs from PDAs largely in its physical features. It does not support touch screen with stylus so users need to enter input using the phone key pad. It also has smaller screen compared to PDAs, and consequently has more limited graphical features, with heavier constraints on display formats. Another key difference is that PDAs have comparatively more memory than smartphones. Simply put, smartphones are mobile phones with some (limited) PIM functionalities [23].
1.2. Comparisons between Palm and Pocket PC [6]
· Palm and Pocket PC adopt different approaches in user interface development. Palm builds the interface from bottom up (screen look, interaction, etc) whereas Pocket PC tries to employ users’ familiarity with Windows.

· Palm poses additional emphasis on application design. Most Palm applications are designed specifically and exclusively for the mobile use to provide best fit for user needs whereas Pocket PC largely bases on Windows applications, where the conversion of existing applications is the major focus.
· Palm tries to exclude as much as possible from the system except only the functions that are vital to users, whereas Microsoft tries to include as much as possible to the device.
· Palm preaches ‘simplicity’ as its main advantage, whereas Pocket PC proclaims ‘power’ instead.
· Palm has no explicit ‘file system’ and users normally don’t need to ‘save’ changes. Each application maintains its own set of information objects. Instead of putting ‘documents’ into ‘folders’, user can ‘categorize’ application’s information object by using categories list.
Some common user opinions and/or perceptions on the two devices are as follows. [4]
· Palm is easier to learn and use

· Palm is more stable, Pocket PC crashes more often

· Pocket PC is more powerful

· Palm has more freeware and the software is cheaper

· Palm is an Organizer, Pocket PC is a Computer
Given such findings on each of the mobile devices, it was decided to discontinue further research on smartphones. This was mainly due to PDAs having the same phone capabilities and having the same (or more) functionalities as smartphones. Furthermore, the phone-oriented user interface of smartphones seems less easy for e-asTTle users to interact with than those offered on PDAs.
1.3. General Features [1-5]

A) Palm
· More third party software – the Palm OS has 72 percent of the worldwide PDA market (August, 2003) according to IDC (International Data Corporation
). As a result, there are significantly more applications available for palm devices than for Pocket PCs. This includes a wide range of educational software designed for student-student interactive learning [31].
· Lower prices –Palm generally costs less than Pocket PC.
· Needs fewer resources – the no-frill Palm OS does not require a speedy processor and large memory to run efficiently, whereas Pocket PCs (with an operating system based on Windows) are more resource intensive and thus require faster processors and more memory (which drives up hardware costs).
· Apparently Palms have longer battery life compared to Pocket PCs. Independent tests indicate that Palm Powered handhelds last up to 2 weeks in a typical usage scenario.

· Easier (than Pocket PC) to use – Palm OS and the applications that run on it are designed to be more straightforward and simple, yet powerful enough, than their Pocket PC counterparts.
· There are many database applications, allowing creation of applications based on data collection in the field.
· Stylus data entry is suitable for limited text entry only.
· Smaller screen (≈320x240) compared to notebook and tablet PC.
· Less advanced graphics than Pocket PC.
· Not as advanced peripherals compared to Windows CE.
· Multitasking not supported.
B) Pocket PC
· More models and vendors – Pocket PC vendors include Asus, Casio, Dell, Gateway, Hewlett-Packard and Toshiba.
· Better Web browser – Pocket PC Internet Explorer, a minimized version of Windows Explorer, has advantages of being a familiar environment for users to interact with.
· Easier multitasking – Pocket PC can open more than one application at a time, unlike Palm devices. However only one Pocket PC application can appear on screen at a time. This makes it easier and faster to jump between applications, although it consumes more memory.
· CompactFlash and/or Secure Digital card slots allow for additional storage memory and peripheral hardware.
· Windows platform is user-friendly and familiar to users, thus easier for users less comfortable with computers.
· Microsoft is the main source of information and tools when developing for Pocket PC: developers must use Windows CE edition of the Visual Studio package, meaning that regular MSDN library can be used for reference.
· Stylus data entry is suitable for limited text entry only.
· Smaller screen (≈320x240) compared to notebook and tablet PC.
· Does not have built-in database or presentation solutions – these applications are available through third-party vendors.
· Battery life is relatively limited. Extensive use of Wi-Fi also reduces battery life.
· Some third-party programs don’t work well in Windows Mobile 2003 Second Edition.
· Big differences between versions of the OS.
· Tends to crash often and have bugs leading to less third party support.

C) Tablet PC
· Full functionality and feature of a laptop computer with the additional benefits of handwriting and speech recognition.
· Has all the features that PDA’s possess while providing the ability to work in full programs.
· Users can also use it with mouse and keyboard.
· Compatible with all MS and MS XP applications – no need to purchase additional software or worry about converting information.
· Larger screen size is easy to read and more information is visible.
· It’s a Microsoft product, with all the strengths and weaknesses inherent in that supplier
· Cost significantly more than a PDA.
· May be more susceptible to virus.
1.4. Synchronisation Features [6]

1.4.1. Terms and Definitions

ActiveSync:
ActiveSync is the data synchronisation software for Windows CE operation system based Pocket PCs.

HotSync:

The synchronisation process and software designed for Palm OS, by which data is synchronized between a Palm device and Palm’s desktop portal. The desktop portal runs on either Microsoft’s Windows or MacOs. Using HotSync, you can send and retrieve information to and from your PC. It can also backup the data you have on your Palm.
(Docking) Cradle:

A device used to connect a handheld to a PC for synchronisation and application downloads. The two are connected via the handheld’s communication port using a serial or USB cable. The cradle often doubles as a battery charger as well for PDAs with rechargeable batteries.
1.4.2. Synchronisation

Both Palm and Pocket PC platforms offer built-in instant synchronisation of e-mail, contacts, appointments and notes. As for other user-specific applications, Palm and Pocket PC adopt different approaches. Both devices are usually synchronized using a cradle, which connects to either serial or USB port of the host PC.

A) Palm
Palm utilizes the concept of ‘conduits’. ‘Conduit’ is an intermediate application that works on the desktop PC, processing the data on their way from desktop to Palm and vice versa. The conduit makes the decision of which data is to be transferred and how they are presented. PalmOS just passes the data to the desktop and calls the conduit to process them. Sometimes conduits may be transparent to users, but in many cases the user must be aware of conduit’s presence and function.

Palm synchronisation follows the IrDA standards (Infrared Data Association
). This provides compatibility with other devices at hardware level. However, it currently does not use open data format, therefore it is impossible to synchronize it to anything else but the Palm’s desktop portal, or another Palm Pilot (however Palm supplies a MS Outlook conduit so that all mail, calendar, tasks, contacts are synchronised between the PDA and the MS desktop).
· Synchronisation for Palm is based on ‘users’. Each Palm device knows its user’s name, except for the case when it was never synchronized before. Palm’s desktop software maintains its own list of users, unrelated to Windows/NT users. During sync process, the provided HotSync software matches username of the device with one of known usernames in its database.

· All the information up until last sync is kept, thus any new device may replace a lost device after a single sync.

· Palm’s HotSync software creates a directory tree on the disk where all data of all known PalmOS users are stored. This data structure is based only on files (no registry info), and therefore may be shared by several operating systems or even accessed concurrently through the network.

· Most cradles, cables and other devices that are used for sync have a special button that automatically invokes HotSync with necessary settings, removing the necessity of setting up the connection although the software must be setup.

· Setting up HotSync on a desktop PC is relatively simple in most cases. Using serial port (which is genuinely supported by all operating systems) removes any necessity to install drivers, make settings, etc.
· User must be able to enable the port in BIOS and activate it in Windows in order to synchronize using infrared port. Windows will assign a serial port number to infrared and this number must be entered into HotSync software.

· USB connection is not supported in Windows NT. In Windows 95, user must install drivers for USB.
· It is capable of synchronizing any kind of data and application.

· In case of data synchronisation conflicts, of which HotSync notifies the user, the client and server will have both the client and server version of conflicted files. Thus the user is responsible for solving any conflicts.
B) Pocket PC
Pocket PC simply exchanges files between the desktop and handheld PC. User maintains a file system on the handheld device with traditional folders and document files. Files may be manually copied to/from or automatically synchronized. In other words, the conduit-like activities are kept transparent from the users. However, there is no standard way to define automatic file conversion for non-Microsoft third party applications.
· Sync process in Pocket PC is based on ‘partnerships’ rather than Palm’s ‘users’. ‘Partnership’ is an object in Window’s class hierarchy that represents a link between this specific installation of OS and one given handheld PC. Palm’s ‘user’ may be represented as ‘double-sided’, meaning that a Palm user has to be matched with a desktop user. In the same sense, Pocket PC’s ‘partnership’ is a ‘single-sided’ object, meaning the other side of the synchronisation is always the user currently logged in. This has one flaw – when the device is transferred from one user to another and was not reset, then the data of the two users are mixed both on the desktop and on the Pocket PC.

· Users have many options for scheduling sync process: user may start sync process manually by running a program either on PC or on Pocket PC side; sync process may be started automatically when the device is inserted into the cradle, etc.

· A number of reports concerning computers being ‘frozen’ when synchronizing have been observed. ActiveSync seem a little unstable. [29, 30]
· ActiveSync is Microsoft’s proprietary synchronisation system (not cross-platform). Thus, it is rather unlikely that a Linux or UNIX box could serve the role of a synchronisation server.
· Pocket PC OS can be run on devices including Compaq iPAQ, HP Jornada and Casio Cassiopeia, thus enabling synchronisation between these machines. However, other devices cannot synchronize with Pocket PC without ActiveSync software.
2. Other Synchronisation Options

It is important to note that both HotSync (for Palm) and ActiveSync (for Pocket PC) are proprietary systems and thus only work with the designed devices. In this section, research was carried out to find other available technologies/schemes for synchronizing data between a handheld device and a server machine. Two such methodologies were the focus of the research, namely SyncML and Web Services. Providing support for cross-platform synchronisation capability is an important requirement for e-asTTle as asTTle itself is a cross-platform system.
2.1. SyncML [7-14]
SyncML, short for Synchronisation Markup Language, is an industry-wide effort to create a single, universal data synchronisation protocol optimized for wireless networks. SyncML's goal is to have networked data that support synchronisation with any mobile device, and mobile devices that support synchronisation with any networked data. The SyncML structured data layer uses XML wherever appropriate. SyncML is intended to work on a diverse set of transport protocols, including HTTP (HyperText Transfer Protocol), WSP (Wireless Session Protocol, part of Wireless Application Protocol) and OBEX
, and with data formats ranging from personal data (e.g. vCard & vCalendar) to relational data and XML documents. Utilising SyncML standards, mobile devices can be synchronised with host PCs with physical network connection.

· By definition, mobile users are not always connected to a network and its stored data. Users retrieve data from the network and store it on the mobile device, where they access and manipulate the local copy of the data. Periodically, users reconnect with the network to send any local changes back to the networked data repository.

· SyncML enables application, device and network independent synchronisation to be performed in a standardized way.
· With one synchronisation protocol and procedure to consider, it will be easier and less costly to install, configure, and operate synchronisable applications across the organization/system.

· The universal interoperability that SyncML enables is also important for application developers, allowing them to design device and network independent applications using only one synchronisation protocol. This has the potential to simplify and reduce the cost of development process significantly, and facilitates updating or adding new applications.

· SyncML uses the industry-standard extensible markup language (XML) for specifying the synchronisation messages (using either plain text or the wireless binary XML, WBXML, binary encoding technique employed by WAP), making it a future-proof synchronisation platform.

· It operates effectively over wireless and wired networks: Wireless networks in particular suffer from high network latency, limited bandwidth, relatively high packet costs, and low reliability of data and connectivity. To handle these concerns, SyncML features a robust synchronisation protocol, WAP Binary XML (WBXML) encoding of data and synchronisation commands, and use of a single request-response pair of messages, where the request contains all updates and the response provides the updates with any conflicts already identified and possibly resolved. In addition, the synchronisation process is designed to survive inadvertent disconnection, ensuring that the device and networked data stay consistent and progress resumes when the connection is re-established.

· Supports a variety of network transport protocols: To ensure full interoperability, a range of transport protocols is supported. These include the WAP wireless session protocol (WSP), hypertext transfer protocol (HTTP) and OBEX (local connectivity using Bluetooth, IrDA and RS-232). SyncML can also be deployed over networks that use SMTP, POP3, IMAP, pure TCP/IP, and proprietary wireless communication protocols.

· Supports arbitrary network data: SyncML does not mandate how data must be represented on the device or within the network repository. It only describes how data formats are represented over the network. Supported formats include:

· Common personal data formats such as vCards for personal information

· Email and network news

· Relational data

· XML and HTML documents

· Binary data

· Supports data access from a variety of applications: SyncML makes no assumptions about the programming language, nor does it assume that both ends of the synchronisation process share a language environment. That is, it is language-independent.
· Addresses the resource limitations of mobile devices: Exchanged data is generally binary-encoded to reduce the memory required to store synchronisation messages and to reduce the resources needed to process this data.
Features and requirements defined by the SyncML synchronisation protocol include:

· Change logs: Both the synchronisation client and the server must maintain and preserver information regarding changes to the data in their databases, to be able to specify the changes in data items since the previous synchronisation. The SyncML specification doesn't specify the format of the change log which can provide a flexible implementation options.
· Sync anchors: A sync anchor is a string representing a synchronisation event. At the initialization stage of the synchronisation process, two anchors, Last and Next, are sent to the receiving device. The Last sync anchor describes the last (previous) synchronisation event, and the Next sync anchor describes the current synchronisation event, both from the sending device’s point of view. The receiving device is to maintain each Next sync anchor it receives until the next synchronisation. At that time, the receiving device compares these stored Next sync anchors with the sending device's Last sync anchor. If the Last and Next sync anchors match, the receiving device concludes that no failures have occurred since the last sync; if they don't match, the device can request a special action from another device, such as a slow sync, in which all items in the client databases are compared with.

· Mapping of data items: The client and the server may each have separate unique identifier for each data item in their databases. The client ID for an item is known as the Locally Unique ID (LUID), and the server ID is known as the Globally Unique ID (GUID). Because these IDs can differ, the server must maintain an ID mapping table. Note that LUIDs are always assigned by the client; if the server sends a new item to the client, the client assigns it an LUID and sends that local ID back to the server for mapping to a GUID.

· Conflict resolution: Conflicts arise when both the client and server makes changes to the same item. These are generally resolved by a synchronisation engine on the server device. The protocol provides the functionality to notify the client of a resolved conflict, supplying one of the status codes for common resolution policies.
Types of SyncML Synchronisation [9]
SyncML specifies seven different synchronisation types, as follows:

· Two-way sync: Two-way sync is a normal synchronisation type in which client and server exchange information about any modifications to the data each contains. The client always initiates this exchange by sending a request to the server. The server processes the synchronisation request and the data from the client is compared and unified with the data on the server. After that, the server sends its modified data to the client device, which is then able to update its database with the data from the server. Once it has updated its database, the client sends back the server all the necessary mapping information.

· Slow sync: The slow sync is a form of the two-way synchronisation in which all the items in the client databases are compared with all the items in the server databases on a field-by-field basis. A slow sync can be requested if the client and server sync anchors are mismatched or if the client or server loses its change log information. In practice, the slow sync means that the client sends all its data to the server and the server does a field-by-field analysis, comparing its own data with that sent by the client. After the sync analysis, the server returns all the modification information to the client. In turn, the client returns the mapping information for all data items added by the server.

· One-way sync from client only: This is a synchronisation type in which the client sends its modifications to the server but the server does not send its modifications back to the client.

· Refresh sync from client only: Here the client exports all its data from a database to the server. The server is expected to replace all data in the target database with the data sent by the client.

· One-way sync from server only: With this, the client gets all modifications from the server but the client does not send its modifications to the server.

· Refresh sync from server only: In this scenario the server exports all its data from a database to the client. The client is expected to replace all data in the target database with the data sent by the server.

· Server-alerted sync: Here the server informs the client of the need to initiate a specific type of synchronisation with the server.
Simple Architecture Example

· SyncML Client – a device (typically a PC, mobile phones or PDAs) containing a synchronisation client agent and it usually sends the SyncML messages (operations), possibly including payload data. It must be able to receive responses from the SyncML server. In addition it might be able to receive some SyncML messages as commands from the server side.
· SyncML Server – Typically a networked server or a PC containing a synchronisation server agent and synchronisation engine, which usually receives the SyncML messages (operations), possibly including payload data from the SyncML client. The SyncML server must also be able to send responses to the commands if needed. In addition it might be able to send SyncML messages as commands to the client.
[image: image17.png]SyncML representation specification.

Format of SyncML Messages

The SyncML consists of two protocols: the SyncML representation protocol and the SyncML synchronisation protocol. The former defines the XML representation format of SyncML messages, and the latter defines the actions between a SyncML client and a SyncML server. Together, they make available a consistent set of data on any device or application at any time.
An XML SyncML message must be a well-formed XML document, but not necessarily a valid one (e.g. a well-formed XML document does not have to have a header [image: image1.png]Sync Client Application

Sync Client Agent

Transport

IrDA, USB,
RS, Bluetooth

4 4 B

Physical Medium

Mobile/terminal device Server device

SyncML Protocol Architecture

defined, but a valid one does). The header, if present, contains information concerning routing and versioning, and the body contains one or more SyncML commands, defined by a set of request commands and a set of response commands. A small set of common data formats is also identified, and therefore a SyncML document can be interpreted as a Multipurpose Internet Mail Extension (MIME) content type. Indeed, a new MIME media type of this type has been registered: application/vnd.syncml.
SyncML Message Example [12]
[image: image2.png]<SynchL>
<SyncHdr>
<VerDTD>1,0</VerDTD>
<VerProto 5y nebL/LO<erProto>
<SassionID>1</SassionID>
<MsgID> 2< MsglD>
<Target> <LocURI> IMEL; 4930051005 32800/ LocUR 1> </ Target>
<Sour e <LoclIRI=httpi /1w w.synerml.org/ sync-server </LocURI> </Source
</Synckidrs
<syncaady>
<status>
<MegRef> 2</MsgRaf> <CredRef>0< /CrrdRaf>< Crvd> Synzdr</Crd>
<TargatRafshttps . syncrrl or g/ syne-server < Torgethiak>
<Sour caRaf> IMEL;433005100592800</Sourceaf>
<Data>101¢/Data> <1

Status cods for Busy—>
</status>

</Synceody>

</SynetL>

In the example above, the device sending the SyncML message is a SyncML server identified by the <source> element. Source is a SyncML server permanently connected to the network and identified by a URI. It synchronizes its content with another device identified by the <target> element. Because the target device is not permanently connected to the network, its location identifier is proprietary. But the <target> element may be set if desired to a URI like <target>http://www.talvastudio.com/syncML<target>. The header also specifies the DTD version, the SyncML specification version, the session ID and the message ID. (Note the example message just tells the connected device that it cannot handle the synchronisation request because it is busy.)
2.2. Web Services [15-18, 24-27]
Web Service was another obvious choice to research as asTTle already has a number of Web Services defined. By utilizing Web Services for data synchronisation, development effort could be narrowed which can lead to better management and easier future enhancements if needed. As with SyncML, Web Services are platform-independent.
A web service is a self-describing, self-contained, modular unit of application logic that provides some business functionality to other applications through an Internet connection. Software applications written in various programming languages and running on various platforms can use web services to exchange data over computer networks like the Internet, in a manner similar to inter-process communication on a single computer. Applications access web services via ubiquitous web protocols and data formats, such as HTTP and XML, with no need to worry about how each web service is implemented. This interoperability (e.g. between Java and Python, or Windows and GNU Linux applications) is due to this use of open standards.
Benefits of Web Services
Web Services provide a standard mechanism for communicating between applications. As it makes use of platform independent protocols such as SOAP and HTTP, it allows for multiple devices, networks and operating systems to interoperate seamlessly. And By piggybacking on HTTP, web services can work through many common firewall security measures without requiring changes to their filtering rules.

Web Services in some ways is the most flexible approach. The transparency of implementation details to the mobile clients allows for developers to use different server platforms (e.g. Linux) and different backend databases (e.g. mySQL, Oracle, etc). Clients and Servers pass data back and forth over the Internet (or Intranet) in the form of XML (text), complying with the SOAP standard.

Web Services can serve a role of a control-layer between the mobile device (clients) and the enterprise database (using a Web server) where security and business logic can be controlled.
Downsides of Web Services
· Web Service has no built-in support for merge conflict resolution. An XML Web Service is purely a mechanism for transferring data between a client and Web server, so there is no sophisticated built-in support for data synchronisation, and programmers are required to code their own logic in the Web Service application on the server to handle merge conflicts (where two or more clients update the same data items simultaneously).

· XML Web Services encode data using standards such as the SOAP protocol and XML. This use of accepted standards gives the benefit of interoperability between systems built using different software technologies, but it is somewhat 'verbose'. It does mean that the amount of network traffic required to transfer a piece of data is much more than when a proprietary binary protocol is used, with consequential impact on performance.
· Web services suffer from poor performance compared to other distributed computing approaches such as RMI, CORBA, or DCOM. This is a common trade-off when choosing text based formats. XML explicitly does not count among its design goals either conciseness of encoding or efficiency of parsing.
· By piggybacking on HTTP, web services can evade existing firewall security measures whose rules are intended to block or audit communication between programs on either side of the firewall.
Issues with Web Services for Mobile Data Synchronisation [25]

The following characteristics of mobile devices make Web Services a well-suited technology.
· Heterogeneity. There is a very large range of mobile device and access point platform combinations. Web Services are particularly well-suited to providing an interface that is platform independent.
· Low Processing Power. Mobile devices may have very low processing power. Web Services allow for an application to be located at a non-mobile server, processing to be done there and for results to be retrieved to the mobile device and simply be displayed there.
· Low memory. The low memory capacity of mobile devices makes the storage of a large number of programs on devices potentially not possible. Web Services once again allow for applications to be instead resident on a remote server. These can then be called on a per-needs basis alleviating the need for an extensive software library on the device itself.
· Ability to compose custom services. It may be possible to link interface triggers such as buttons to very specific services provided from remote servers.

However, deploying Web Services for mobile applications has its possible limitations. Ideally, in implementing Web Services for mobile devices to consume, a reliable connection with high bandwidth and large processing power is assumed. This is to accommodate potentially large and complex requests and responses to and from Web Services which requires a lot of processing and parsing. However, none of these assumptions are guaranteed to hold true with a mobile device over a mobile network. This may not be of a critical issue in case of e-asTTle applications as the size of data packets are likely to be small and simple. But such restrictive assumptions can reduce any possible future expansion of the system.
An increasingly common architecture aimed to resolve such restrictions involves using a gateway or proxy server (for example, a WAP server) to act as a mediator between the cell phone and a Web service. In this design, the gateway takes the Web service or information sent by the Web service, makes it more compact so it can be delivered by the low-speed mobile network and reformats it so that it can be easily displayed on the mobile device's limited screen, using the mobile device's limited processing power. Then it sends the information to the mobile client. When the mobile client interacts with the Web service, the gateway does everything in reverse: It takes information sent by the mobile device and reformats it so that it can be understood by the Web service and sends it along. [28]
Limitations of XML
The use of XML in mobile computing poses following problems. As SyncML and Web Service both are based on XML, these issues apply to both of them.
· Need to process XML. Very limited processing power of mobile devices can pose a problem.
· Verboseness of XML. XML and SOAP are far more verbose than some formats used. Their verboseness is particularly a problem over mobile networks where bandwidth can be limited.
· Lack of mature standards. Some of the Web Services standards lack maturity and various other needed domain-specific standards do not yet exist.

· Support for transactions. The protocols are still emerging in this area.

3. Possible Development Tools

This section of the paper looks at available development tools – Java programming language for mobile devices and the libraries it supports. The research effort in this topic is concentrated only on Java as to maintain the consistency with existing asTTle systems which are written in Java. By developing e-asTTle in the same language, development effort can be converged allowing easier maintenance.

3.1 Application Development Platforms
A) CodeWarrior for Palm OS (http://www.metrowerks.com/) [32]
CodeWarior for Palm OS is the official development environment for the Palm OS. It has the distinction of being the most favoured environment by Palm Computing, simply because it is used for writing Palm OS. This commercial development environment allows you to create ANSI C and C++ programs on either Windows or Macintosh systems. It currently includes Palm's Conduit Software Development Kit, and Palm's own documentation assumes that the developers are using it. Therefore, because the code is written based on the Palm OS, no separate runtime component is installed on the device. As a result, the resulting application is usually small and efficient.

Advantages

The applications, in comparison to the other development environments, are typically smaller, more efficient, and run faster.

Disadvantages

It has the greatest learning curve of all the development environments. Although C and C++ are very efficient languages, they tend to be more difficult to learn than Java, Visual Basic, and scripting languages.
B) NSBasic (http://www.nsbasic.com/palm/) [32]
NSBasic is an Integrated Development Environment (IDE) based on the BASIC programming language and is very similar to Visual Basic. This IDE includes all the normal features, like source-code editing, but it's most useful aspect is the Visual Designer, which allows the developer to graphically lay out objects and set their properties. The language itself includes several groups of built-in functions and commands. The functions, which are add-ons to the standard BASIC language, provide additional support for math, file I/O (input/output), serial I/O, graphics and windowing functions. Additional commands provide support for advanced graphical user interfaces (GUI's) and to show input and output objects and dialog boxes.

When the development process is complete, NSBasic produces a standard Palm executable (PRC file). The PRC files will work on all devices running Palm OS 3.0 or later. The files also run properly under OS 2.0, but some features, such as the additional fonts included with OS 3.x, are not available.
Advantages

The biggest advantages of NSBasic are its ease of use and small learning curve.

Disadvantages

The main disadvantage of NSBasic is that it compiles a program into pseudo-code (p-code). As a result, a runtime component is required to convert the p-code into Palm's native code. Therefore, application performance is not as good as a comparable application written in C. However, most programs written in NSBasic appear to run at a speed equivalent to the built-in Palm applications. Operations that involve activities like updating the screen are approximately the same speed as any Palm application, but performance decreases when doing CPU-intensive mathematical computations. This limitation is minor for most applications, but might be a problem for complex mathematical applications.
C) Crossfire/MobileVB (www.appforge.com/products/small-business/) [32]
AppForge's Crossfire and MobileVB are the leading mobile and wireless application solution for Microsoft Visual Basic developers. Crossfire integrates directly into Visual Basic .NET while MobileVB integrates directly into Visual Basic 6.0 enabling the developer to immediately write applications, using the Visual Basic programming language.

Visual Basic is a powerful programming language that is easy to learn, and Crossfire/MobileVB works in the same way and includes many of the same functions and methods as Visual Basic. To develop a program, the user interface is first created by "drawing" controls, such as text boxes and command buttons, on a form. Next, properties for the controls are set to specify values such as caption, color, and size. Finally, code and functionality are added to the program. A completed program is compiled into a PRC file for use on a Palm. To run this program on the Palm a program called Booster is required to convert the VB code to Palm's native code.
Advantages

It has a small learning curve, great support, and a fast development life cycle.

Disadvantages

It requires a runtime component (Booster) installed on the Palm (which requires buying a licence for each device using the program), and the cost to get this application up and running (it is an expensive program).

D) CASL (http://www.caslsoft.com) [32]
CASL (Compact Application Solution Language) is a Windows based rapid application development (RAD) tool that enables developers to easily create their own PDA applications. The CASL language is similar to Visual Basic and it allows developers to create programs that take advantage of the graphical user interface found on today's PDA's.

Like NSBasic and Crossfire/MobileVB, CASL's code is compiled into p-code, which gets interpreted by a separate 44 KB Palm runtime. CASL also has a Pro version (CASLpro) that takes CASL code and compiles it to C code, which is then compiled by the open source PRC - Tools compiler to a native Palm OS program. This means that no runtime is required on the Palm and the application will, therefore, run faster.

Advantages

It is easy to use and application development time tends to be fast. With an easy to use GUI and many built in functions, developers can create applications in relatively short period of time.

Disadvantages

It requires a runtime that will slow the application down, and that can be eliminated by using the CASLpro version. Also, it lacks the documentation for the language. There are no dedicated textbooks on this language, and fewer web resources are available in comparison to the other languages covered in this document.

E) J2ME (http://java.sun.com/j2me/) [32]
J2ME (Java 2 Micro Edition) is the Java platform for consumer and embedded devices. The J2ME architecture defines configurations, profiles and optional packages as elements for building complete Java runtime environments that meet the requirements for a broad range of devices. Each combination is optimized for the memory, processing power, and I/O capabilities of a related category of devices. The result is a common Java platform that fully leverages each type of device to deliver a rich user experience.

The configuration that was developed for PDAs and mobile phones is the Connected Limited Device Configuration (CLDC). The CLDC combined with its profile - Mobile Information Device Profile (MIDP) - is the Java runtime environment for today's mobile information devices such as phones and entry level PDAs.

To develop a PDA application, there is a toolkit (J2ME Wireless Toolkit) available that contains both the CLDC and the MIDP. This toolkit provides the emulation environment, documentation and examples needed to develop PDA applications.

Programs compiled using the Wireless Toolkit can be converted into a PRC file for use on a PDA. However, in order to run this program, the PDA must also have a virtual machine (runtime component) installed. This virtual machine is only a few kilobytes in size, and its function is to convert the Java bytecode into the Palm’s native code. Because this conversion of code has to take place, the applications performance will be slightly slower. As explained in the NSBasic section, this may or may not have a noticeable impact on performance. It all depends on how CPU-intensive the program is.
Advantages

The advantages of using Java's J2ME are its cost (free) and its cross platform portability. A Java program written using the J2ME Wireless Toolkit will run on any mobile information device that has a virtual machine.
Disadvantages

Java's J2ME has three disadvantages: a steep learning curve, slower application development, and slower application performance. As explained in this section, J2ME for PDAs is composed of the CLDC and the MIDP, and learning the functionality of these API's takes time to learn and develop. The J2ME also requires a virtual machine on the device that will slow the application down.

	
	NSBasic
	Crossfire/
MobileVB
	CASL
	J2ME
	CodeWarrior

	Programming Language
	Basic
	Visual Basic
	Similar to VB
	Java
	C / C++

	Steep Learning Curve
	No
	No
	No
	Yes
	Yes

	Development Time
	Fast
	Fast
	Fast
	Average
	Slow

	Runtime (VM) Required
	Yes
	Yes
	Yes (Std)
No (Pro)
	Yes
	No

	Cost
	Moderate
	Expensive
	Cheap (Std)
Moderate (Pro)
	Free
	Moderate

F) HotPaw Basic [33]
HotPaw claims to implement over 95% of the ANSI/ISO Basic Programming Language Standard. As well, HotPaw supports most GW-Basic functions and statements. As with other modern versions of Basic, HotPaw uses structured programming constructs rather than the old-fashioned line numbers and GOTOs. HotPaw supports color; custom forms and dialogs; serial, IR, and IP communication; access to several database formats; and both double precision and transcendental mathematical functions (using the LGPL MathLib.prc, which is also used by other programming environments).
G) SmallBASIC [33]
SmallBASIC is another Basic environment, under GPL license and also available for Linux/SVGALib and Linux/SDL environments. SmallBASIC is a code interpreter, rather than a native compiler. SmallBASIC supports a good variety of functions. One can draw graphic primitives to screen, create sounds, output texts in different fonts, get keyboard input, and basically everything you need for a useful application. Although the underlying language does not use more modern structured programming techniques (OOP and FP are two much to wish for), but SmallBASIC is still a good way to quickly write ad hoc Palm-hosted applications.
H) PocketC [33]
PocketC is a C-like language for the PalmOS, with versions of the same compiler available for Win32 and WinCE. The Win32 "Desktop" version lets developer target PalmOS and WinCE handhelds. The language is basically C, but a number of functions for the Palm, and a few C++ syntax conventions were added. It also supports some features typical of bytecode languages, such as a string data type and garbage collection. Being a PalmOS application, some extra functions for graphics, sounds, database I/O, and form I/O are included in the "standard library." Writing an application consists largely of calling these Palm-specific functions, but with flow control in a familiar C style.

While PocketC is nice for C programmers, apparently it seems that C is inherently more verbose than this niche requires. The high-level functions, string types, and garbage collection of PocketC save a bit of code length.
I) OnBoard C [33]
OnBoard C aims at a different target than the other development environments introduced so far. It supports true native compilation of source code to PRC executables or HackMaster hacks, rather than using a virtual machine and bytecodes. Moreover, OnBoard C is a real project-based IDE, with a choice of source code and resource editors, and the ability to include a variety of "files" in a given project. The source code editors supported by OnBoard C include pedit, pedit32, QED, SmartEdit and Memo Pad. The applications written in OnBoard C can, therefore, be distributed without including any sort of runtime or library (other than the Palm ROM's API).

3.2. J2ME
Rationale for choosing Java (J2ME)

Based on the outcomes of the research, it was decided to use J2ME for e-asTTle solution development. Following are the reasons for the choice.

1. asTTle is written in Java.

Using Java (J2ME) for e-asTTle solution development thus seems an obvious choice that ensures compatibility between the host system and mobile devices. It will eliminate the possibility of any unforeseen compatibility issue that may occur if a different language is adopted.

2. It is a free-ware.

J2ME is distributed free of charge.

3. It will pose a lower learning curve compared to other languages.

Out of all the languages researched, Java is the language that the developer is the most familiar with. With the timeframe of the project in consideration, eliminating any pre-development tasks can be very beneficial.

4. Java is a platform-independent language.

With such portability, proper functioning across different operating systems are assured, which is an important aspect for asTTle as it is to be deployed under various platforms.

5. Java would be more robust compared to other languages.

Although it is also a free-ware, J2ME inherits the robustness of Java (J2SE/J2EE) while other free languages can not be assured of robustness to such degree.

6. Java provides more extensive documentation compared to other languages.

Implementation of the solution can become much easier and faster with a better API for the developer.

7. The size of Java Virtual Machine, although may be slightly large, is not too restrictive.

For example, mobile phones with Java capability (e.g. Motorola V550) do not show any hindrance or difficulty in proper functioning. Slowing of application performance is less likely to be clearly noticeable.
About J2ME [15, 19]
J2ME, short for Java 2 Micro Edition, is the Java-specification for small devices like mobile phones, smartphones and PDAs. It provides all the advantages and features of the Java-technology adjusted and tuned for small devices.

The Java 2 Micro Edition contains three core concepts: configurations, profiles, and optional packages. They determine the features of Java, which APIs are available and the applications that are packaged. [19]
A) Configurations
J2ME defines two configurations, the Connected Limited Device Configuration (CLDC) and the Connected Device Configuration (CDC).
· CLDC: for very constrained devices - devices with small amounts of memory or slow processors. The Virtual Machine used by the CLDC omits important features like finalization
, while the set of core runtime classes is a tiny fraction of the J2SE core classes, just the basics from the java.lang, java.io and java.util packages, with a few additional classes from the new javax.microedition.io package.
· CDC: includes a full Java VM and a much larger set of core classes, so it requires more memory than the CLDC and a faster processor. The CDC is a superset of the CLDC.

B) Profiles
A profile adds domain-specific classes to a configuration to fill in missing functionality and to support specific uses of a device. For example, most profiles define user interface classes for building interactive applications.
· Mobile Information Device Profile (MIDP): a CLDC-based profile for running applications on cell phones and interactive pagers with small screens, wireless HTTP connectivity, and limited memory.
· Personal Digital Assistant Profile (PDAP): another CLDC-based profile under development, which extends MIDP with additional classes and features for more powerful handheld devices.
· Foundation Profile (FP): a CDC-based profile that extends the CDC with additional J2SE classes

· Personal Basis Profile (PBP): a CDC-based profile that extends the FP with lightweight (AWT-derived) user interface classes and a new application model

· Personal Profile: extends the PBP with applet support and heavyweight UI classes.

C) Optional Packages

An optional package is a set of APIs in support of additional, common behaviours that don't really belong in one specific configuration or profile. Bluetooth support, for example, is defined as an optional package. Making it part of a profile wouldn't work, because none of the behaviours of a profile can be optional (if a device supports a profile, it must support the entire profile) and that would limit the profile to Bluetooth-enabled devices.
3.3. Sync4J – SyncML Support in J2ME [20]
Sync4j is an open source server and framework that implements the SyncML protocol for data synchronisation. It is written entirely in Java programming language and complies with version 1.3 (and later) of the Java 2 Platform, Enterprise Edition (J2EE) specification, and it also is J2ME compatible. It complies with SyncML version 1.1 and supports several types of synchronisation. It addresses the following aspects of synchronisation:
· data synchronisation
· application provisioning
· device management
Sync4j, as it is written in Java, is device and platform (operating systems) independent, running both in Windows and Linux (and also Mac and Novell). Sync4j includes three main components: [20]
1) SyncServer: SyncServer is implemented as a standard J2EE (Java 2 Enterprise Edition) application so that it can be deployed on top of any J2EE compliant application server or a standalone servlet.
2) SyncConnectors: Together with a SyncSource API that allows developers to build proprietary SyncConnectors, Sync4j provides standard connectors to enterprise data sources.
3) SyncClients: Since the SyncServer protocol is SyncML, it is able to dialogue with every SyncML compliant clients, such as the ones included in the latest cellular phones (e.g. Nokia, Ericsson, Siemens, Motorola, etc.). However, these clients allow just for PIM (e.g. contacts, calendar, tasks, memo, etc.) synchronisation.
3.4. J2ME Web Services APIs (WSA) - JSR 172[16, 21]
J2ME Web Services APIs (WSA) enable J2ME devices to be web services clients, providing a programming model that is consistent with the standard web services platform. The WSA implements functionality for XML-parsing (JAXP1 package) and remote services needed to use web services (JAX-PRC2 package).

WSA is designed to work with J2ME profiles based on either the Connected Device Configuration (CDC) or the Connected Limited Device Configuration (CLDC 1.o or CLDC 1.1). The remote invocation API is based on a strict subset of J2SE's Java API for XML-Based RPC (JAX-RPC 1.1), with some Remote Method Invocation (RMI) classes included to satisfy JAX-RPC dependencies. The XML-parsing API is based on a strict subset of the Simple API for XML, version 2 (SAX2).
The goal of WSA is to integrate fundamental support for web services invocation and XML parsing into the device's runtime environment, freeing developers from implementing such functionality for each application – an especially expensive proposition in resource-constrained devices like mobile phones and PDAs.

JSR 172 specifies standardized client-side technology to enable J2ME applications to consume remote services on typical web services architectures, as the figure below illustrates:
[image: image3.png]Applcaion

SR IRCRRE
SubsetSub.

Jsmm2

JaxRpC
Subset

Runtime

JSRIT2
Web Service
Consumer

/@

Back-end Senvers

J2ME Web Services in a Typical Web Service Architecture

Organization of a typical JSR 172-based application:
[image: image4.png]JsRT2

[-+{ AP Subset|
Pl
——| | srm
USR172 JAGRPC [l JAX-RPC
Subsst Sub SubsetaPt
JSR1T2
JAXRPC Subset
Runtime
v

Moblle Information Device Profie,
Personsl Basis Profie

cLocicoc

Operating System

4. Development Suggestions
In this section, some suggestions on which device and synchronisation methods to adopt in e-asTTle are made based on the information gathered in the research. The suggestions are made by taking into consideration the required e-asTTle functionalities, user interaction, ease of deployment and the possibility of future improvements.
Firstly, Palm is recommended over Pocket PC. This is because Palm is found to be more compact and exclusive in implementing custom mobile applications, whereas Pocket PC has many unnecessary built-in applications such as Microsoft Word. Such applications can consume large memory space compared to Palm. Also, Pocket PC is seemingly less stable when synchronising data with host PC, and because Pocket PC is a Microsoft product, its vendor-specific features (including the synchronisation) can have potential problems when interacting with other platforms such as Linux. As for Palm, because its operating system is not of a mainstream PC platform, it is likely that it will pose fewer problems when interacting with host PC platforms.
There are three main functionalities that e-asTTle is to provide for its users, which are:

· Students to view and answer questions on a mobile device
· Students to record their answers to certain test questions (questions delivered on paper and pencil)

· Teachers to record observations for certain test questions

The number of users involved in the function can have an effect on which synchronisation method to deploy, because SyncML and conduit both require physical network connection to the host PC. For a teacher (or small number of teachers) collecting student marks, it is viable that a mobile device (or a small number of mobile devices) be connected to the host PC for synchronisation. However, synchronising potentially large number of students’ test answers may be impractical – it will be time-consuming and bothersome to provide physical network connection to each of the devices. In such a case, mobile devices invoking Web Services simultaneously will be more feasible approach. Handling of multiple users must thus be supported by the invoked Web Services.
As for the functionalities where students are to sit tests on mobile devices, use of PDAs may be too restrictive. In case where students record their answers in a mobile device the user interface of PDAs may suffice, but if students are to view questions on screen as well, display will be very restricted. This may hinder possible future improvements, for example, providing images with questions on screen. Also, mobility would not be a feature that is as desirable as with the functionality where teachers observe student works and record marks. With such assumption, it is possible to provide tests on-line (e.g. on LAN) and allows students to sit tests using notebook/PC with network connection (or wireless connection). If however such mobility is required, tablet PC could prove useful. Handwriting recognition capabilities of tablet PC could also be of an advantage, for example, requesting students to show calculation working, which could be transferred to host PC as an image.
In conclusion, the functionality of e-asTTle for teachers could make use of SyncML standards or conduits for synchronisation. For students, if the number of students sitting a test at a given time is likely to be small, using mobile devices with SyncML or conduit synchronisation option can be a reasonable approach. If however the number of students is likely to be large, using Web Services on PC/notebook may be of more viable approach. It should be noted that invoking Web Services from mobile devices will result in slow application performance which may be less desirable in testing situations. Thus if the Web Services are to be deployed, it would be more feasible to provide tests on-line so that students can take the tests using PC, notebook, tablet PC.
References
[1] http://www.pcworld.com/howto/article/0,aid,111825,00.asp

Mobile Computing: Palm vs. Pocket PC - The products are different, but also the same. How to choose?

James A. Martin

Published: August 21, 2003

[2] http://www.microsoft.com/atwork/getstarted/choose.mspx

Choosing the Right Computer or Mobile Device for You

Published: August 9, 2004

[3] http://mobileoffice.about.com/cs/mobilegear/a/pocketpcvspda.htm

Tablet PC or PDA - Which gadget is best for your mobile workers?

Catherine Roseberry

Published: 2005

[4] http://palmtops.about.com/cs/pdafacts/a/Palm_Pocket_PC.htm

Palm vs. Pocket PC-The Great Debate - Is there a right choice?

William Hungerford

Published: 2005

[5] http://www.pocketpcmag.com/_archives/Buy05/ppcProsCons.aspx

Pocket PC Pros and Cons

Published: 2004

[6] http://myalpha.dls.net/palm/pda.htm

Palm vs. Pocket PC - comparison of features and usability

Published: Oct 19, 2001

[7] http://www.ericsson.com/about/publications/review/2001_03/files/2001032.pdf

SyncML - Getting the mobile Internet in sync

Andreas Jonsson and Lars Novak

Published: 2001

[8] http://developers.sun.com/techtopics/mobility/midp/articles/syncml/

Getting Started with Data Synchronisation Using SyncML

Qusay H. Mahmoud

Published: September 2004

[9] http://www-106.ibm.com/developerworks/xml/library/wi-syncml2/

SyncML Intensive

Chandandeep Pabla

Published: April 01, 2002

[10] http://xml.coverpages.org/SyncML-WhitePaper.pdf

Building an Industry-Wide Mobile Data Synchronisation Protocol - SyncML White Paper

Version 1.0

[11] http://www.tml.hut.fi/Studies/Tik-111.590/2001s/papers/kari_pihkala.pdf

Synchronisation
Kari Pihkala

Published: 2001

[12] http://www.xml.com/pub/a/2000/12/27/syncml.html

Staying in Synch

Didier Martin

Published: December 27, 2000

[13] http://www-106.ibm.com/developerworks/wireless/library/wi-syncml/

Syncing data - An introduction to SyncML

Scott Stemberger

Published: Oct, 2001

[14] http://www.openmobilealliance.org/tech/affiliates/syncml/syncmlindex.html

SyncML documents - Specifications, White Papers, etc.

[15] http://www.niii.ru.nl/~marko/onderwijs/oss/CaseStudy.Accessing.Web.Services.from.J2ME.Devices.2004.12.13.FINAL.pdf

Accessing Web Services from J2ME Devices

Ravindra Kali, Roel Verdult

Published: Dec 13, 2004

[16] http://developers.sun.com/techtopics/mobility/apis/articles/wsa/

Introduction to J2ME Web Services

C. Enrique Ortiz

Published: April, 2004

[17] http://www.sark.com/cases/docs/Wireless%20and%20SOA%20Position%20Paper%20-%20Marketing%20Final.pdf

Mobile Application Development and Integration Enabled by Web Services and Service Oriented Architecture

Frank Fernandez

[18] http://www.itsc.org.sg/synthesis/2004/4_J2ME.pdf

Wireless Web Services Clients Development

Dilip Kumar Limbu, Lee Eng Wah and Cheng Yushi

[19] http://www.ericgiguere.com/articles/j2me-core-concepts.html

J2ME Core Concepts

Eric Giguere

Published: June 30, 2002

[20] http://sync4j.funambol.com/main.jsp?main=overview

The Sync4j Project

[21] http://java.sun.com/products/wsa/

J2ME Web Services APIs (WSA)

Published: 2004
[22] http://en.wikipedia.org/wiki/Smartphone
Wikipedia, the free encyclopedia

Published: April 12, 2005
[23] http://msdn.microsoft.com/msdnmag/issues/03/03/Smartphones/default.aspx
Design Robust Apps that Take Advantage of Windows CE-powered Smartphone Devices
Published: March, 2003

[24] http://en.wikipedia.org/wiki/Web_Service
Wikipedia, the free encyclopedia

Published: April 12, 2005

[25] http://www-staff.it.uts.edu.au/~rsteele/mobilewebservices.pdf
A Web Services-based System for Ad-hoc Mobile Application Integration

Robert Steele
[26] http://www.w3schools.com/soap/soap_example.asp
SOAP Example

Published: 2005

[27] http://www.intel.com/cd/ids/developer/asmo-na/eng/52893.htm?prn=Y
Data Synchronisation – which technology?

Mark D. Sutton
[28] http://searchwebservices.techtarget.com/tip/1,289483,sid26_gci948545,00.html
Mobile Web services: Theory vs. reality
Preston Gralla
Published: Feb 10, 2004
[29] http://flaphead.dns2go.com/blog/archive/2004/12/02/648.aspx
ActiveSync Troubleshooting Guide - Synchronisation Errors
[30] http://mbizsolutions.com/features/articles/activesyncguide/
ActiveSync Troubleshooting Guide
Eriq Cook
Published: September 25, 2002

[31] Klopfer, E., Yoon, S., & Rivas, L. (in press). Comparative Analysis of Palm and Wearable Computers for Participatory Simulations. Review for Journal of Computer Assisted Learning. Klopfer, E., Yoon, S. & Perry, J. (in press) Using Palm Technology in Participatory Simulations of Complex Systems: A New Take on Ubiquitous and Accessible Mobile Computing. Journal of Science Education and Technology
[32] http://handheld.medicine.dal.ca/software/appdev.htm
[33] http://gnosis.cx/publish/programming/palm_languages.html
[34] http://en.wikipedia.org/wiki/BlackBerry
Wikipedia, the free encyclopedia

Published: 28 Apr 2005[image: image5.png]

[image: image6.png]

[image: image7.png]

[image: image8.png]

[image: image9.png]

[image: image10][image: image11][image: image12][image: image13][image: image14][image: image15][image: image16.png]

� It is a specification put out by Sun Microsystems for the use of Java on embedded devices such as cell phones and PDAs.

� http://www.blackberry.net/developers/forum/threadMode2.jsp?message=10511&forum=1&thread=3240

� Symbian OS is an operating system with associated libraries, user interface frameworks and reference implementations of common tools, produced by Symbian.

� a global market intelligence and advisory firm in the information technology and telecommunications industries

� http://www.palmone.com/us/products/compare/palmos-vs-pocketpc.html

http://www.geekzone.co.nz/content.asp?contentid=873

http://www.factsandcomparisons.com/assets/hospitalpharm/may2002_pda.pdf

� a group of device manufacturers that developed a standard for transmitting data via infrared light waves

� Object Exchange: a set of high-level protocols allowing objects such as vCard contact information and vCalendar schedule entries to be exchanged using either IrDA (IrOBEX) or Bluetooth (A short-range wireless specification that allows for radio connections between devices within a 30-foot range of each other).

� A method that the garbage collector must run on the object prior to freeing the object.

PAGE
2

