MOBILE DEVICES AND SYNCHRONIZATION CONCEPTS
Research Report for e-asTTle

Yoon-young LEE

BTech IT Student Project

Table of Contents

1. Currently Available Mobile Devices and their Pros and Cons

 3

Differences between Palm and Pocket PC

 3

General Features – Pros and Cons

 4

Palm

 4

Pocket PC

 4

Tablet PC

 5

Synchronization Features

 6

Terms and Definitions

 6

Synchronization

 6

Palm

 6

Pocket PC

 7
2. Other Synchronization Options

 9

SyncML

 9

Types of Synchronization

12

Simple Architecture Example

13

Format of SyncML Messages

14

Web Services

15

Benefits of Web Services

15
3. Possible Development Tools

16

J2ME

16

Sync4J

17

J2ME Web Services APIs (WSA) - JSR 172

 18
4. References

20
1. Currently Available Mobile Devices and their Pros and Cons

The research effort was concentrated on a definite set of mobile devices - PDA (Personal Digital Assistants) and Tablet PC. A Tablet PC is essentially a notebook computer with the additional capabilities of handwriting recognition and/or a touch screen. A user can use a stylus and operate the computer without the use of a keyboard or mouse. PDA is a generalized term that encompasses a number of distinct groups of devices, namely Palm and Pocket PC. The main difference between the two types of PDA is the fact that they adopt different platforms – Pocket PC operates on the Windows for Pocket PC operating system, whereas Palm runs on an operating system called Palm OS (by PalmSource, Inc).
· Differences between Palm and Pocket PC [6]
· Palm and Pocket PC adopt different approaches in user interface development. Palm builds the interface from bottom up (screen look, nteraction, etc) whereas Pocket PC tries to employ users’ familiarity with Windows.

· Palm poses additional emphasis on application design. Most Palm applications are designed specifically and exclusively for the mobile use to provide best fit for user needs whereas Pocket PC largely bases on Windows applications, where the conversion of existing applications is the major focus.
· Palm tries to exclude as much as possible from the system except only the functions that are vital to users, whereas Microsoft tries to include as much as possible to the device.
· Palm preaches ‘simplicity’ as its main advantage, whereas Pocket PC proclaims ‘power’ instead.
· Palm has no explicit ‘file system’ and users normally don’t need to ‘save’ changes. Each application maintains its own set of information objects. Instead of putting ‘documents’ into ‘folders’, user can ‘categorize’ application’s information object by using categories list.
Some common, sometimes faulty, user opinions and/or perceptions on the two devices are as follows. [4]
· Palm is easier to learn and use

· Palm is more stable, Pocket PC crashes more often

· Pocket PC is more powerful

· Palm has more freeware and the software is cheaper

· Palm is an Organizer, Pocket PC is a Computer
General Features – Pros and Cons [1, 2, 3, 4, 5]

Palm
Pros:

· More third party software – the Palm OS has 72 percent of the worldwide PDA market (August, 2003) according to IDC (International Data Corporation – a global market intelligence and advisory firm in the information technology and telecommunications industries). As a result, there are significantly more applications available for palm devices than for Pocket PCs.

· Lower prices –Palm generally costs less than Pocket PC.

· Needs fewer resources – the no-frill Palm OS does not require a speedy processor and large memory to run efficiently, whereas Pocket PCs (with an operating system based on Windows) are more resource intensive and thus require faster processors and more memory (which drives up hardware costs).

· Easier (than Pocket PC) to use – Palm OS and the applications that run on it are designed to be more straightforward and simple, yet powerful enough, than their Pocket PC counterparts.

· There are many database applications, allowing creation of applications based on data collection in the field.

Cons:

· Stylus data entry is suitable for limited text entry only.

· Smaller screen.

· Less advanced graphics.

· Not as advanced peripherals compared to Windows CE.

· Multitasking not supported.

Pocket PC

Pros:

· More models and vendors – Pocket PC vendors include Asus, Casio, Dell, Gateway, Hewlett-Packard and Toshiba.

· Better Web browser – Pocket PC Internet Explorer, a minimized version of Windows Explorer, has advantages of being a familiar environment for users to interact with.

· Easier multitasking – Pocket PC can open more than one application at a time, unlike Palm devices. However only one Pocket PC application can appear on screen at a time. This makes it easier and faster to jump between applications, although it consumes more memory.

· CompactFlash and/or Secure Digital card slots allow for additional storage memory and peripheral hardware.

· Windows platform is user-friendly and familiar to users, thus easier for users less comfortable with computers.

· Microsoft is the main source of info and tools when developing for Pocket PC: developers must use Windows CE edition of the Visual Studio package, meaning that regular MSDN library can be used for reference.
Cons:

· Stylus data entry is suitable for limited text entry only.

· Smaller screen.

· Does not have built-in database or presentation solutions – these applications are available through third-party vendors.

· Battery life is relatively limited. Extensive use of Wi-Fi also reduces battery life.

· Some third-party programs don’t work well in Windows Mobile 2003 Second Edition.
· Big differences between versions
· Tends to crash often and have bugs leading to less third party support.

Tablet PC

Pros:

· Full functionality and feature of a laptop computer with the additional benefits of handwriting and speech recognition.

· Has all the features that PDA’s possess while providing the ability to work in full programs.

· Users can also use it with mouse and keyboard.

· Compatible with all MS and MS XP applications – no need to purchase additional software or worry about converting information.

· Larger screen size is easy to read and more information is visible.

Cons:

· It’s a Microsoft product and some people are not comfortable with all products from Microsoft.

· Cost significantly more than a PDA.

· May be more susceptible to virus.

Synchronization Features [6]

Terms and Definitions

ActiveSync:
ActiveSync is the data synchronization software for Windows CE operation system based Pocket PCs and Handheld PCs.

HotSync:

The synchronization process and software designed for Palm OS, by which data is synchronized between a Palm device and Palm’s desktop portal. The desktop portal runs on either Microsoft’s windows or MacOs. Using HotSync, you can send and retrieve information to and from your PC. It can also backup the data you have on your Palm.

Synchronization

Both Palm and Pocket PC platforms offer built-in instant synchronization of e-mail, contacts, appointments and notes. As for other user-specific applications, Palm and Pocket PC adopt different approaches. Both devices are usually synchronized using a cradle, which connects to either serial or USB port of the PC.

· Palm utilizes the concept of ‘conduits’. ‘Conduit’ is an intermediate application that works on the desktop PC, processing the data on their way from desktop to Palm and vice versa. The conduit makes the decision of which data is to be transferred and how they are presented. PalmOS just passes the data to the desktop and calls the conduit to process them. Sometimes conduits may be transparent to users, but in many cases the user must be aware of conduit’s presence and function.
· Pocket PC simply exchanges files between the desktop and handheld PC. User maintains a file system on the handheld device with traditional folders and document files. Files may be manually copied to/from or automatically synchronized. In other words, the conduit-like activities are kept transparent from the users. However, there is no standard way to define automatic file conversion for non-Microsoft third party applications.
Palm

Palm synchronization follows the IrDA (Infrared Data Association - a group of device manufacturers that developed a standard for transmitting data via infrared light waves) standards and thus provides compatibility with other devices at hardware level. However, it currently does not use open data format, thus it is impossible to synchronize it to anything else but the Palm’s desktop portal, or another Palm Pilot.

· Synchronization for Palm is based on ‘users’. Each Palm device knows its user’s name, except for the case when it was never synchronized before. Palm’s desktop software maintains its own list of users, unrelated to Windows/NT users. During sync process, the provided HotSync software matches username of the device with one of known usernames in its database.

· All the information up until last sync is kept, thus any new device may replace a lost device after a single sync.

· Palm’s HotSync software creates a directory tree on the disk where all data of all known PalmOS users are stored. This data structure is based only on files (no registry info), and therefore may be shared by several operating systems or even accessed concurrently through the network.

· Most cradles, cables and other devices that are used for sync have a special button that automatically invokes HotSync with necessary settings, removing the necessity of setting up the connection.

· Setting up HotSync on a desktop PC is relatively simple in most cases. Using serial port (which is genuinely supported by all operating systems) removes any necessity to install drivers, make settings, etc.
· User must be able to enable the port in BIOS and activate it in Windows in order to synchronize using infrared port. Windows will assign a serial port number to infrared and this number must be entered into HotSync software.

· USB connection is not supported in Windows NT. In Windows 95, user must install drivers for USB.

· Infrared syncronization is currently not supported in Windows 2000.
· It is capable of synchronizing any kind of data and application.

· In case of data synchronization conflicts, the client and server will have both the client and server version of conflicted files. Thus the user is responsible for solving any conflicts.
Pocket PC

· Sync process in Pocket PC is based on ‘partnerships’ rather than Palm’s ‘users’. ‘Partnership’ is an object in Window’s class hierarchy that represents a link between this specific installation of OS and one given handheld PC. Palm’s ‘user’ may be represented as ‘double-sided’, meaning that a Palm user has to be matched with a desktop user. In the same sense, Pocket PC’s ‘partnership’ is a ‘single-sided’ object, meaning the other side of the synchronization is always the user currently logged in. This has one flaw – when the device is transferred from one user to another and was not reset, then the data of the two users are mixed both on the desktop and on the Pocket PC.

· Users have many options for scheduling sync process: user may start sync process manually by running a program either on PC or on Pocket PC side; sync process may be started automatically when the device is inserted into the cradle, etc.

· A number of reports concerning computers being ‘frozen’ when synchronizing have been observed. ActiveSync seem a little unstable.

· ActiveSync is Microsoft’s proprietary synchronization system (not cross-platform). Thus, it is rather unlikely that a Linux or UNIX box could serve the role of a synchronization server.
· Pocket PC OS can be run on Compaq iPAQ, HP Jornada and Casio Cassiopeia, thus enabling synchronization between these machines. However, other devices cannot synchronize with Pocket PC without ActiveSync software.
2. Other Synchronization Options

It is important to note that both HotSync (for Palm) and ActiveSync (for Pocket PC) are proprietary systems and thus only work with the designed devices. In this section, research was carried out to find other available technologies/schemes for synchronizing data between a handheld device and a server machine. Two such methodologies were the focus of the research, namely SyncML and Web Services.

SyncML[7-14]
SyncML, short for Synchronization Markup Language, is an industry-wide effort to create a single, universal data synchronization protocol optimized for wireless networks. SyncML's goal is to have networked data that support synchronization with any mobile device, and mobile devices that support synchronization with any networked data. The SyncML structured data layer uses XML wherever appropriate. SyncML is intended to work on a diverse set of transport protocols, including HTTP, WSP (part of WAP) and OBEX, and with data formats ranging from personal data (e.g. vCard & vCalendar) to relational data and XML documents. The SyncML consortium was set up by IBM, Nokia and Psion among others. Symbian is a sponsor of the SyncML consortium.

· By definition, mobile users are not always connected to a network and its stored data. Users retrieve data from the network and store it on the mobile device, where they access and manipulate the local copy of the data. Periodically, users reconnect with the network to send any local changes back to the networked data repository.

· SyncML enables application, device and network independent synchronization to be performed in a standardized way.
· With one synchronization protocol and procedure to consider, it will be easier and less costly to install, configure, and operate synchronizable applications across the organization/system.

· The universal interoperability that SyncML enables is also important for application developers, allowing them to design device and network independent applications using only one synchronization protocol. This has the potential to simplify and reduce the cost of development process significantly, and facilitates updating or adding new applications.

· SyncML uses the industry-standard extensible markup language (XML) for specifying the synchronization messages (using either plain text or the wireless binary XML, WBXML, binary encoding technique employed by WAP), making it a future-proof synchronization platform.

· It operates effectively over wireless and wired networks: Wireless networks in particular suffer from high network latency, limited bandwidth, relatively high packet costs, and low reliability of data and connectivity. To handle these concerns, SyncML features a robust synchronization protocol, WAP Binary XML (WBXML) encoding of data and synchronization commands, and use of a single request-response pair of messages, where the request contains all updates and the response provides the updates with any conflicts already identified and possibly resolved. In addition, the synchronization process is designed to survive inadvertent disconnection, ensuring that the device and networked data stay consistent and progress resumes when the connection is reestablished.

· Supports a variety of network transport protocols: To ensure full interoperability, a range of transport protocols is supported. These include the WAP wireless session protocol (WSP), hypertext transfer protocol (HTTP) and OBEX (local connectivity using Bluetooth, IrDA and RS-232). SyncML can also be deployed over networks that use SMTP, POP3, IMAP, pure TCP/IP, and proprietary wireless communication protocols.

· Supports arbitrary network data: SyncML does not mandate how data must be represented on the device or within the network repository. It only describes how data formats are represented over the network. Supported formats include:

· Common personal data formats such as vCards for personal information

· Email and network news

· Relational data

· XML and HTML documents

· Binary data

· Supports data access from a variety of applications: SyncML makes no assumptions about the programming language, nor does it assume that both ends of the synchronization process share a language environment. That is, it is language-independent.
· Addresses the resource limitations of mobile devices: Exchanged data is generally binary-encoded to reduce the memory required to store synchronization messages and to reduce the resources needed to process this data.
Features and requirements defined by the SyncML synchronization protocol include:

· Change logs: Both the synchronization client and the server must maintain and preserver information regarding changes to the data in their databases, to be able to specify the changes in data items since the previous synchronization. The SyncML specification doesn't specify the format of the change log.

· Sync anchors: A sync anchor is a string representing a synchronization event. At the initialization stage of the synchronization process, two anchors, Last and Next, are sent to the receiving device. The Last sync anchor describes the last (previous) synchronization event, and the Next sync anchor describes the current synchronization event, both from the sending device’s point of view. The receiving device is to maintain each Next sync anchor it receives until the next synchronization. At that time, the receiving device compares these stored Next sync anchors with the sending device's Last sync anchor. If the Last and Next sync anchors match, the receiving device concludes that no failures have occurred since the last sync; if they don't match, the device can request a special action from another device, such as a slow sync, in which all items in the client databases are compared with.

· Mapping of data items: The client and the server may each have separate unique identifier for each data item in their databases. The client ID for an item is known as the Locally Unique ID (LUID), and the server ID is known as the Globally Unique ID (GUID). Because these IDs can differ, the server must maintain an ID mapping table. Note that LUIDs are always assigned by the client; if the server sends a new item to the client, the client assigns it an LUID and sends that local ID back to the server for mapping to a GUID.

· Conflict resolution: Conflicts arise when both the client and server makes changes to the same item. These are generally resolved by a synchronization engine on the server device. The protocol provides the functionality to notify the client of a resolved conflict, supplying one of the status codes for common resolution policies.
Types of Synchronization [9]
SyncML specifies seven different synchronization types, as follows:

· Two-way sync: Two-way sync is a normal synchronization type in which client and server exchange information about any modifications to the data each contains. The client always initiates this exchange by sending a request to the server. The server processes the synchronization request and the data from the client is compared and unified with the data on the server. After that, the server sends its modified data to the client device, which is then able to update its database with the data from the server. Once it has updated its database, the client sends back the server all the necessary mapping information.

· Slow sync: The slow sync is a form of the two-way synchronization in which all the items in the client databases are compared with all the items in the server databases on a field-by-field basis. A slow sync can be requested if the client and server sync anchors are mismatched or if the client or server loses its change log information. In practice, the slow sync means that the client sends all its data to the server and the server does a field-by-field analysis, comparing its own data with that sent by the client. After the sync analysis, the server returns all the modification information to the client. In turn, the client returns the mapping information for all data items added by the server.

· One-way sync from client only: This is a synchronization type in which the client sends its modifications to the server but the server does not send its modifications back to the client.

· Refresh sync from client only: Here the client exports all its data from a database to the server. The server is expected to replace all data in the target database with the data sent by the client.

· One-way sync from server only: With this, the client gets all modifications from the server but the client does not send its modifications to the server.

· Refresh sync from server only: In this scenario the server exports all its data from a database to the client. The client is expected to replace all data in the target database with the data sent by the server.

· Server-alerted sync: Here the server informs the client of the need to initiate a specific type of synchronization with the server.
Simple Architecture Example

[image: image1.png]Sync Client Application

Sync Client Agent

Transport

IrDA, USB,
RS, Bluetooth

4 4 B

Physical Medium

Mobile/terminal device Server device

SyncML Protocol Architecture

SyncML Client – a device (typically a PC, mobile phones or PDAs) containing a synchronization client agent and it usually sends the SyncML messages (operations), possibly including payload data. It must be able to receive responses from the SyncML server. In addition it might be able to receive some SyncML messages as commands from the server side.
SyncML Server – Typically a networked server or a PC containing a synchronization server agent and synchronization engine, and it usually receives the SyncML messages (operations), possibly including payload data from the SyncML client. The SyncML server must also be able to send responses to the commands if needed. In addition it might be able to send SyncML messages as commands to the client.

[image: image5.png]SyncML representation specification.

Format of SyncML Messages

The SyncML consists of two protocols: the SyncML representation protocol and the SyncML synchronization protocol. The former defines the XML representation format of SyncML messages, and the latter defines the actions between a SyncML client and a SyncML server. Together, they make available a consistent set of data on any device or application at any time.

[image: image4.png]Example of synchronization example
between amoblle phone and server.

‘SynehIL messages

SyncML server

'\ Responses

to messages

SyneML client

An XML SyncML message must be a well-formed XML document, but not necessarily a valid one (e.g. a well-formed XML document does not have to have a header defined, but a valid one does). The header, if present, contains information concerning routing and versioning, and the body contains one or more SyncML commands, defined by a set of request commands and a set of response commands. A small set of common data formats is also identified, and therefore a SyncML document can be interpreted as a Multipurpose Internet Mail Extension (MIME) content type. Indeed, a new MIME media type has been registered: application/vnd.syncml.

Web Services [15-18]
Web Service was another obvious choice to research as asTTle already has a number of Web Services defined. By utilizing Web Services for data synchronization, development effort could be narrowed which can lead to better management and easier future enhancements if needed. As with SyncML, Web Services are platform-independent.

Benefits of Web Services
Web Services provide a standard mechanism for communicating between applications. As it makes use of platform independent protocols such as SOAP and HTTP, it allows for multiple devices, networks and operating systems to interoperate seamlessly.
Web Services in some ways is the most flexible approach. The transparency of implementation details to the mobile clients allows for developers to use different server platforms (e.g. Linux) and different backend databases (mySQL, Oracle, etc). Clients and Servers pass data back and forth over the Internet (or Intranet) in the form of XML (text), complying the SOAP standard.

Web Services can serve a role of a control-layer between the mobile device (clients) and the enterprise database (using a Web server) where security and business logic can be controlled.
3. Possible Development Tools

J2ME[15, 19]
J2ME, short for “Java 2 Micro Edition”, is the Java-specification for small devices like mobile phones, smart phones and PDA’s. It provides all the advantages and features of the Java-technology, only adjusted and tuned for small devices.

The Java 2 Micro Edition contains three core concepts: configurations, profiles, and optional packages. They determine the features of Java, which APIs are available and the applications that are packaged. [19]
Configurations
J2ME defines two configurations, the Connected Limited Device Configuration (CLDC) and the Connected Device Configuration (CDC).
· CLDC: for very constrained devices - devices with small amounts of memory or slow processors. The VM used by the CLDC omits important features like finalization, while the set of core runtime classes is a tiny fraction of the J2SE core classes, just the basics from the java.lang, java.io and java.util packages, with a few additional classes from the new javax.microedition.io package.
· CDC: includes a full Java VM and a much larger set of core classes, so it requires more memory than the CLDC and a faster processor. The CDC is in fact a superset of the CLDC.

Profiles
A profile adds domain-specific classes to a configuration to fill in missing functionality and to support specific uses of a device. For example, most profiles define user interface classes for building interactive applications.
· Mobile Information Device Profile (MIDP): a CLDC-based profile for running applications on cell phones and interactive pagers with small screens, wireless HTTP connectivity, and limited memory.
· Personal Digital Assistant Profile (PDAP): another CLDC-based profile under development, which extends MIDP with additional classes and features for more powerful handheld devices.
· Foundation Profile (FP): a CDC-based profile that extends the CDC with additional J2SE classes

· Personal Basis Profile (PBP): a CDC-based profile that extends the FP with lightweight (AWT-derived) user interface classes and a new application model

· Personal Profile: extends the PBP with applet support and heavyweight UI classes.

Optional Packages

An optional package is a set of APIs in support of additional, common behaviors that don't really belong in one specific configuration or profile. Bluetooth support, for example, is defined as an optional package. Making it part of a profile wouldn't work, because none of the behaviors of a profile can be optional (if a device supports a profile, it must support the entire profile) and that would limit the profile to Bluetooth-enabled devices.
Sync4J – SyncML Support in J2ME [20]
Sync4j is an open source server and framework that implements the SyncML protocol for data synchronization. It is written entirely in Java programming language and complies with version 1.3 of the Java 2 Platform, Enterprise Edition (J2EE) specification, and it also is J2ME compatible. It complies with SyncML version 1.1 and supports several types of synchronization. It addresses the following aspects of synchronization:
· data synchronization
· application provisioning
· device management
Sync4j, as it is written in Java, is device and platform independent, running both in Windows and Linux. Sync4j includes three main components: [20]
1. SyncServer

2. SyncConnectors

3. SyncClients
SyncServer

SyncServer is implemented as a standard J2EE (Java 2 Enterprise Edition) application so that it can be deployed on top of any J2EE compliant application server or a standalone servlet.
SyncConnectors

Together with a SyncSource API that allows developers to build proprietary SyncConnectors, Sync4j provides standard connectors to enterprise data sources.

SyncClients

Since the SyncServer protocol is SyncML, it is able to dialogue with every SyncML compliant clients, such as the ones included in the latest cellular phones (e.g. Nokia, Ericsson, Siemens, Motorola...). However, these clients allow just for PIM (contacts, calendar, tasks, memo, etc.) synchronization.

J2ME Web Services APIs (WSA) - JSR 172[16, 21]
J2ME Web Services APIs (WSA) enable J2ME devices to be web services clients, providing a programming model that is consistent with the standard web services platform. The WSA implements functionality for XML-parsing (JAXP1 package) and remote services needed to use web services (JAX-PRC2 package).

WSA is designed to work with J2ME profiles based on either the Connected Device Configuration (CDC) or the Connected Limited Device Configuration (CLDC 1.o or CLDC 1.1). The remote invocation API is based on a strict subset of J2SE's Java API for XML-Based RPC (JAX-RPC 1.1), with some Remote Method Invocation (RMI) classes included to satisfy JAX-RPC dependencies. The XML-parsing API is based on a strict subset of the Simple API for XML, version 2 (SAX2).

The goal of WSA is to integrate fundamental support for web services invocation and XML parsing into the device's runtime environment, freeing developers from implementing such functionality for each application – an especially expensive proposition in resource-constrained devices like mobile phones and personal digital assistants.

JSR 172 specifies standardized client-side technology to enable J2ME applications to consume remote services on typical web services architectures, as the figure below illustrates:
[image: image2.png]Applcaion

SR IRCRRE
SubsetSub.

Jsmm2

JaxRpC
Subset

Runtime

JSRIT2
Web Service
Consumer

/@

Back-end Senvers

J2ME Web Services in a Typical Web Service Architecture

Organization of a typical JSR 172-based application:
[image: image3.png]JsRT2

[-+{ AP Subset|
Pl
——| | srm
USR172 JAGRPC [l JAX-RPC
Subsst Sub SubsetaPt
JSR1T2
JAXRPC Subset
Runtime
v

Moblle Information Device Profie,
Personsl Basis Profie

cLocicoc

Operating System

References
[1] http://www.pcworld.com/howto/article/0,aid,111825,00.asp

Mobile Computing: Palm vs. Pocket PC - The products are different, but also the same. How to choose?

James A. Martin

Published: August 21, 2003

[2] http://www.microsoft.com/atwork/getstarted/choose.mspx

Choosing the Right Computer or Mobile Device for You

Published: August 9, 2004

[3] http://mobileoffice.about.com/cs/mobilegear/a/pocketpcvspda.htm

Tablet PC or PDA - Which gadget is best for your mobile workers?

Catherine Roseberry

Published: 2005

[4] http://palmtops.about.com/cs/pdafacts/a/Palm_Pocket_PC.htm

Palm vs. Pocket PC-The Great Debate - Is there a right choice?

William Hungerford

Published: 2005

[5] http://www.pocketpcmag.com/_archives/Buy05/ppcProsCons.aspx

Pocket PC Pros and Cons

Published: 2004

[6] http://myalpha.dls.net/palm/pda.htm

Palm vs. Pocket PC - comparison of features and usability

Published: Oct 19, 2001

[7] http://www.ericsson.com/about/publications/review/2001_03/files/2001032.pdf

SyncML - Getting the mobile Internet in sync

Andreas Jonsson and Lars Novak

Published: 2001

[8] http://developers.sun.com/techtopics/mobility/midp/articles/syncml/

Getting Started with Data Synchronization Using SyncML

Qusay H. Mahmoud

Published: September 2004

[9] http://www-106.ibm.com/developerworks/xml/library/wi-syncml2/

SyncML Intensive

Chandandeep Pabla

Published: April 01, 2002

[10] http://xml.coverpages.org/SyncML-WhitePaper.pdf

Biluilding an Industry-Wide Mobile Data Synchronization Protocol - SyncML White Paper

Version 1.0

[11] http://www.tml.hut.fi/Studies/Tik-111.590/2001s/papers/kari_pihkala.pdf

Synchronization

Kari Pihkala

Published: 2001

[12] http://www.xml.com/pub/a/2000/12/27/syncml.html

Staying in Synch

Didier Martin

Published: December 27, 2000

[13] http://www-106.ibm.com/developerworks/wireless/library/wi-syncml/

Syncing data - An introduction to SyncML

Scott Stemberger

Published: Oct, 2001

[14] http://www.openmobilealliance.org/tech/affiliates/syncml/syncmlindex.html

SyncML documents - Specifications, White Papers, etc.

[15] http://www.niii.ru.nl/~marko/onderwijs/oss/CaseStudy.Accessing.Web.Services.from.J2ME.Devices.2004.12.13.FINAL.pdf

Accessing Web Services from J2ME Devices

Ravindra Kali, Roel Verdult

Published: Dec 13, 2004

[16] http://developers.sun.com/techtopics/mobility/apis/articles/wsa/

Introduction to J2ME Web Services

C. Enrique Ortiz

Published: April, 2004

[17] http://www.sark.com/cases/docs/Wireless%20and%20SOA%20Position%20Paper%20-%20Marketing%20Final.pdf

Mobile Application Development and Integration Enabled by Web Services and Service Oriented Architecture

Frank Fernandez

[18] http://www.itsc.org.sg/synthesis/2004/4_J2ME.pdf

Wireless Web Services Clients Development

Dilip Kumar Limbu, Lee Eng Wah and Cheng Yushi

[19] http://www.ericgiguere.com/articles/j2me-core-concepts.html

J2ME Core Concepts

Eric Giguere

Published: June 30, 2002

[20] http://sync4j.funambol.com/main.jsp?main=overview

The Sync4j Project

[21] http://java.sun.com/products/wsa/

J2ME Web Services APIs (WSA)

Published: 2004

PAGE
2

