Final Report for BTECH 450
2005
Haoqing (Horace) Guo
ID: 9896771
UPI: hguo006

Abstract
This is a summary report for the BTECH 450 project in 2005. Firstly, it provides some background information about this project, such as company information and project description and schedule. Then, it introduces the Applicability Statement 2 (AS2), a transmission protocol, including its primary features, operation mechanism and potential shortcomings. According to the project schedule, main achievements are divided into 3 parts. Each part contains brief phase introduction, main work completed and a summary for the phase. After summary of achievements, learning from this project as well as issues encountered during this project are discussed. At last, the whole project is summarized and possible future tasks of this project are presented briefly.
Table of Contents
41.
Introduction

41.1
The Company

41.2
The Project

61.3
People Involved

61.4
Methodology

71.5
Objectives

82.
About AS2

82.1
Brief Technical Aspects of AS2

82.2
History of AS2

92.3
Main Sponsors and Authorities

92.4
Main Features of AS2

92.4.1
The Use of Receipt based on MDN

102.4.2
Capability of Digital Certificate Handling

112.4.3
Potential Cost Reduction

112.4.4
Use of HTTP/S and S/MIME

112.4.5
Other Useful Features

122.5
Operation Mechanism of AS2

122.5.1
Sending of Message

122.5.2
Processing of Message

122.5.3
Returning of Receipt

132.5.4
Summary

132.6
Potential Shortcomings

132.6.1
Possible Conflicts with firewall

132.6.2
The Costs of AS2 Software

132.6.3
The Need of New Skill Sets

142.6.4
Cost Efficiency

143.
Achievements in the First Stage

143.1 Brief Phase description

153.2 Relevant Documents

173.3 Primary Reading and Researching

183.3.1 Internet Draft Document for AS2

213.3.2 RFC 3798: Message Disposition Notification (MDN)

243.4 Summary of Achievements

244. Achievements in the Second Stage

244.1 Brief Phase Description

244.2 About the Tester Program

274.3 Operation of the Tester Program

314.4 Implementation of MIME encapsulation

314.4.1 Brief introduction of MIME

314.4.2 Design

324.4.3 Implementation

334.5 Setting up of a CVS server

344.6 Summary of Achievements

345 Achievements in the Third Stage

345.1 Brief Phase Description

345.2 Background Knowledge

345.2.1 Introduction of PKI

355.2.2 The digital certificate

355.2.3 Main types of X.509 digital certificates

375.2.4 The certification authority

375.2.5 Asymmetrical Cryptography and digital signature

375.3 How to obtain an X.509 certificate

385.3.1 Introduction of Microsoft security tools

395.3.2 Creation of testing certificates

415.4 Certificate management and management tools

415.4.1 Importing & exporting of certificates

425.4.2 WseCertificate2.exe

435.4.3 Certmgr.exe

435.4.4 Certificates snap-in

445.5 Implementation of cryptographic functions

445.5.1 Programming environment

455.5.2 Related namespaces, classes and methods

475.5.3 Certificates and Certificate Stores

485.5.4 The Security Module

505.6 Summary of Achievements

506.
Learning & Issues

506.1
Learning

516.2
Issues

527.
Future Tasks

538.
Conclusion

539.
References

1.
Introduction

1.1
The Company

The name of the company I am currently working for is AARN Innovation, Ltd. It is actually a very young company. It was strategically separated out as a sister company from EDIS International, Ltd recently. It performs the main product development and major research & development for EDIS International, Ltd. It provides complete, end-to-end, manufacturing and distribution electronic commerce solutions; it manages mission-critical e-business requirements, including end-to-end integration into its clients ERP and financial systems. The primary products developed by AARN include:

· EDIS i-commerce™, a complete e-business messaging and document translation application that is used in over 150 companies throughout New Zealand and Australia.

· XAS™, a web-based asset management and preventative maintenance application used by large corporate users throughout New Zealand.

· EDIS hub™, a Value Added Network provides of e-commerce communications services managed by AARN Innovation for EDIS clients. This service is built on EDIS i-commerce™ applications and provides secure international commerce interconnects for New Zealand clients to their overseas business partners. EDIS hub™ manages links to other networks including GXS, InfoXchange and Sterling Commerce.
The markets for AARN products include manufacturing, food distribution, power station maintenance and paper manufacturing.
1.2
The Project

Before I dive straightly into the project context, there is some background information I need to introduce. Before this project BTECH project, I have been working for EDIS International in the ICT Academy in summer. I have done a research report [ICT Report] about AS2, its current application status and some advantages and drawbacks of it. That report served as an information repository assisted the board of executives to evaluate the options of development. After analyzing the information available, EDIS International decides to take a step further in research and development of AS2. This is some how and why behind this BTECH project.
This project is expected to run for one year, managed by a team of two senior AARN developers. The project will further investigate the secure AS2 protocol and development in AARN environment. This project is a typical research and development project. It involves the following distinct stages:
· Project specification and AS2 protocol specification

This phase examines the primary RFCs (Request For Comment) utilized by the AS2 protocol and how the primary exchange of data between peer-to-peer client is performed. It requires the examination of fundamental peer-to-peer TCP/IP concepts within a Microsoft® .NET environment.

Key milestones involved:
1. Project setup, including creation of BTECH university website

2. Correct identification and document abstracts of the relevant RFCs

3. Primary protocol specification and documentation

· Project test harness coding and evaluation

This phase generates a test harness that incorporates all the functionality required to implement a peer-to-peer exchange of data between the server and the client applications.
This will be supervised by AARN programmers to assist with coding and TCP/IP functionality. An additional network specialist from AARN will also be available for assistance of configuration and testing.

Key milestones involved:
1. Test harness creation
2. Application of the protocol and application for the production development team

· Digital Certificate implementation

This phase extends the test harness to incorporate all the functionality required to use digital certificate to secure messages.

Key milestones involved:

1. Extension of the test harness to include interaction with digital certificate

2. Creation of digital certificate for use with the project

3. Research into the establishment of a CA (Certificate Authority) business model for implementation by AARN

· PKI exchange

Seeing the problems and risks of users exchanging the keys over unsecured links, AARN wishes to develop a proprietary key exchange mechanism.
Key milestones involved:

1.
Design of a PKI key exchange mechanism for implementation by the design team

2.
Coding of a PKI exchange test harness
1.3
People Involved

There are 6 group members, including myself, participating in this project. They are:
· Barry Dowdeswell

He is our project manager and supervisor. He is the co-founder of EDIS international and AARN Innovation, Ltd and has been a director and developer in both companies. He has been the chief designer and project manager for all of the EDIS e-business products since 1985. He can be reached by [Barry].
· Dr Gerald Weber

He is an academic staff of computer science department. Basically, he is supervising two software engineering students working in the team and acting as a consultant for both research and development issues and the coalition to university for the team. His detailed information can be found at [Gerald].
· Christof Lutteroth
He is a current PhD student in computer science department. He is our general “architect” for the whole project. He is in charge of designing and blueprinting the test harness and other artifacts. Additionally, he is responsible for the organization issues and coordination tasks for the team members. He can be contacted by [Christof].
· Anthony, Howell and myself

We three are final year undergraduate students studying in software engineering and bachelor of technology respectively. Our primary tasks include: doing the main research, writing the codes for the artifacts and evaluation of artifacts.
1.4
Methodology

This is a typical research and development project. It will follow the classic arrangement of stages in software development life cycle. The generalized approach will include the following distinct stages:
1. Specification, documentation and research reading the relevant documents, including information from other resources

2. Designing and modeling a specific solution for the specific problems and requirements based on real situation
3. Building an intended solution based on the blueprints from designing stage in a planned manner
4. Testing and debugging the generated programs and other artifacts.
Basically speaking, the phases of this project are deliberately planned based on the stages listed above.
Additional to the layout of project phases, there are some other details I need to point out. Since this is a relatively large development team, a regular meeting is proposed at the beginning of the project to coordinate activities of all the members. The meeting will be held every Wednesday. Every member will attend the meeting, if there is no emergency and conflict. The primary purposes for the meetings are: exchanging information and discussing issues and findings generated in the previous week, co-planning and assigning tasks to different members for the next week. This arrangement of regular meetings is very helpful in the context of this project. It serves as a direct and effective way to facilitate better interaction within the team compared with emails and telephones. Problems and questions will be raised in front of all the members and will be discussed then and there. Findings and ideas will be exchanged to achieve better coordination and collaboration. Further more, additional meetings can also be arranged by any member to meet various kinds of needs, e.g. demonstration and debugging of code snippet and discussion of specific obstacles.

In the group, every member has his own role towards the team. We have defined the role for each member and some other aspects associated with the role in the project setup stage. Having done this, every member becomes clear about his own tasks and responsibilities from the beginning of the project. This facilitates improved integration of single member into the whole team and better organization and management of members later in the project.

Moreover, a CVS server is being set up to facilitate better document sharing and team collaboration. This server is temporarily residing in university-wide network. Since, at this stage, members, especially undergraduate students are mainly working in university, setting up server this way will enable a huge saving on students’ internet accessing fee. When project moves into phase of extensive coding, it will be moved into company server. From then on, student programmers will be working in the company to access it.
1.5
Objectives
By doing this project, I wish to gain:

· General workplace communication skills

There are various kinds of communication scenarios and styles involved in this project. E.g. when attending regular meetings, presentation and discussion skills are needed; when writing up a report for company or department, strong report writing skills are really helpful. These skills will be highly appreciated by me and employer later in my career.
· General and particular software research and development skills and experience

This project is a research and development one. It includes a set of typical stages in software lifecycle. By participating in this project, I can grasp a relatively detailed idea and a sound understanding of some how and why of the operation and management of the project. And it also provides an excellent opportunity of applying what I have learned from university courses into real life context.
· Exposure to electronic commerce related technologies and ideas

The topic of the project is about a recently emerged internet data transmission protocol. It involves lots of knowledge in both transferring and security of data exchange from low levels to high ones. This will expose me to all sorts of knowledge and issues in the problem domains of both data transmission and electronic commerce.

· Most importantly, this project will give me a fairly considerable amount of real life industry experience that will be highly appreciated by me and the employer in my future career.

2.
About AS2

2.1
Brief Technical Aspects of AS2

The full name of AS2 is Applicability Statement 2. It is a messaging standard that is rapidly being adopted by many key players in the market, such as Wal-Mart and Cole Myer in the US.
AS2 uses Multipurpose Internet Mail Extensions (MIME) or secured MIME (S/MIME) if necessary and the HTTP or secured HTTP (HTTP/S) if necessary. It is a specification about how to create connection and transport data, not how to vali​date or process data. AS2 provides authentication for the transport payload through digital certificates and digital signatures, Data encryption ensures secure and reliable delivery of business data. There is another feature called Non-Repudiation that is considered valuable from business perspective. It means that a party that has taken part in a communication should not be able to falsely deny the truth or validity of the communication or its parts [Some Guidelines]. The use of Message Disposition Notification (MDN) or receipt conveys the status of message during delivery. Data compression could be applied to AS2 applications as well, but it’s not an actual part of the specification [Draft 2004].
2.2
History of AS2

In 1996, the Electronic Data Interchange-Internet Interchange (EDIINT) Working Group under The Internet Engineering Task Force (IETF) over the Internet was formed and initially focused on technologies needed to transfer existing EDI documents between existing EDI Trading Partners without the use of Value Added Networks (VANs) for the domestic and international users. They have developed three protocols, which are AS1, AS2 and AS3. The main difference between these initiatives is the protocols they use [EDIINT]:

· AS1 uses Simple Mail Transfer Protocol (SMTP)

· AS2 is based on Hypertext Transfer Protocol (HTTP)

· AS3 operates over File Transfer Protocol (FTP)

Currently, the status of AS2 is just an internet draft. However, it has already been submitted to IESG [IESG] for consideration as a Proposed Standard [EDIINT]. Draft AS2 documents are still being tested and evaluated. As problems arise or as clarifications are needed, these documents are updated, although no major changes have been made in the last year.
2.3
Main Sponsors and Authorities
· AS2 is developed under the Electronic Data Interchange-Internet Integration (EDIINT) Charter by the Internet Engineering Task Force (IETF) [EDIINT].
· The interoperability and conformance tests of various AS2 products are sponsored by Uniform Code Council (UCC) [UCC] in cooperation with Drummond Group, Inc, which are performed every 6 to 9 months [Drummond]. This is a very important test to AS2. This test program allows vendors to test the interoperability of their AS1 and AS2 products with those of other vendors in a setting that reproduces a typical customer environment.
· Main suppliers of complete AS2-compliant applications are: Cleo, Global eXchange Services (GXS), Inovis, iSoft corporation, Sterling Commerce, etc [Drummond].
2.4
Main Features of AS2
[Draft 2004] explained the important technical characteristics of AS2 and cited the following features as being of importance:
2.4.1
The Use of Receipt based on MDN
MDN is short for Message Disposition Notification. It is a MIME content type that may be used by a mail user agent (MUA) or electronic mail gateway to report the disposition of message after it has been successfully delivered to a recipient [RFC 3798]. Simply put, it is just a receipt sent back from the recipient to message originator. The AS2-specic receipts are designed and constructed based on MDN. In some cases, terms MDN and AS2-MDN can be used interchangeably. It is one of the most important and helpful features of AS2. An AS2 MDN could be either synchronous or asynchronous in its nature of transmission [Draft 2004]. Furthermore, it can be returned either digitally signed or unsigned. Generally, MDN receipt is produced at the receiving end and sent back to the original sender after the receiving party has finished the processing of sent document. When successfully returned to the sender, a signed MDN can be used to:

· Acknowledge that the document sent was delivered and acknowledged by the receiving trading partner.
· Acknowledge that the integrity of the sent message was verified by the receiving trading partner.

· Acknowledge that the receiving trading partner has authenticated the sender of the document.
· Be used as a non-repudiation of receipt for the message sender as well as receiver.
Aside with digital signature in MDN, Message Identification Codes (MIC) are also used to enhance the verification and security. MIC, or “message digests," are hash values computed using the standard Secure Hash Algorithm 1 (SHA-1) [SHA1] or optional Message Digest 5 (MD5) [MD5] algorithm based on the content of the sent message and the recipient’s private key. The MIC can be sent to the sender in the MDN, or receipt, so that the sender can verify that the received message was the same as the sent message.

2.4.2
Capability of Digital Certificate Handling

In cryptography, a digital certificate (or public key certificate) is a certificate which uses a digital signature to bind together a public key with an identity — information such as the name of a person or an organization. The common way of using it is to attach it to a message before sending. The most common function of digital certificates is to verify the sender of the message is who he or she claims to be, and to provide means for the receiver to encode the reply.

The apparent benefits of using digital certificates in business data transmission are:

· provides easy authentication of sender’s identification

· enables asymmetrical cryptography for better security

Handling of digital certificates is fully implemented in AS2. It supports the following ways of managing digital certificates:

· Relying on a Certificate Authority (CA) to manage the certificates authentication.

Certificate Authority is an entity (typically a company) that issues digital certificates to other entities (organizations or individuals) to allow them to prove their identity to others. The Certificate Authority's chief function is to verify the identity of entities and issue digital certificates attesting to that identity. Furthermore, the CA can also renew, update or revoke the certificate if necessary.

Therefore, using a CA can simplify the management of digital certificates and build more trustable trading environment among trading partners with the cost of the annual service fees.

· Generating digital certificates and managing the certificates repository all by company itself.

This involves generating the digital certificates with the public key and distributing them among the trading partners.
Using this approach may save the service fees from not contracting to CA, at the other hand; it may potentially affect the security and trust among the trading partners. Additionally, the usage of digital certificates might be limited as well.

2.4.3
Potential Cost Reduction
AS2 is operating over the widespread internet standard HTTP, not within VANs. This could enable potential long-term cost savings over data transmission when the volume of data flow meets the threshold. For small vendors, AS2 may not be a matter of savings, but rather a way to interact securely with a larger supply chain. For larger enterprises, AS2 can have a significant ROI (Return On Investment). Once AS2 is in place, the costs to the enterprise are only on going support costs (server maintenance, support personnel, etc.) and internet traffic costs [EDI over the Internet FAQ]. For example, Piggly Wiggly Carolina Co. has cut their costs by 70% since going from a VAN to AS2 with 20 of its 600 trading partners, according to Kathy Davis, a lead systems analyst at the Charleston-based grocer [AS2 for retailers].
2.4.4
Use of HTTP/S and S/MIME

AS2 can work with secured HTTP and secured MIME to achieve even higher security standards [Draft 2004].

HTTP/S is a variant of HTTP used for handling secure transactions. Simply put, it is a HTTP protocol running above SSL. Hence, it adds another security layer on top of ordinary HTTP transactions. S/MIME is a specification for secure electronic mail. It is designed to add security to e-mail messages in MIME format. The security services offered are authentication (using digital signatures) and privacy (using encryption). Therefore, with both HTTP/S and S/MIME, the security of business data transmission in AS2 can be significantly enhanced [FOLDOC].

2.4.5
Other Useful Features

· AS2 works with some of the strongest encryption such as Triple DES and RC2128 [RC2128] and digital signature algorithms, which will offer privacy during transmission and the confidence that the documents will remain secure.
· AS2 supports various data types, although it is designed for E-Business transaction. Since the content is not the concern of it, the focus is on the transport. Typical data types in payload AS2 messages are: XML-related content types and Electronic Data Interchange (EDI) content types.
By having this great capability, AS2 can not only be applied in domain of electronic commerce, but also in many other territories where security and efficiency are prioritized, such as confidential documents transferring between government departments and information transmission in military applications.
2.5
Operation Mechanism of AS2

The general transmission loop of AS2 involves three parts: message originator sending the message, receiver processing the received message and generating receipts for the sender and receiver returning the receipt to original sender [Draft 2004].

2.5.1
Sending of Message

The organization sending EDI/EC data signs and encrypts the data using S/MIME with the sender’s own private key and the public key in the digital certificate. In addition, the message will request a signed receipt to be returned to the sender of the message for the acknowledgements of various objectives. Although unsigned receipt is also supported, it is not recommended for reasons of security and efficiency.

To support Non-Repudiation, the original sender retains records of the message, message-ID, and digest (MIC) value.

2.5.2
Processing of Message

The receiving organization decrypts the message with the receiver’s own private key and the public key transferred in the digital certificate with the sent message. After decryption, the receiver verifies the signature for authenticity of the sender. And then, calculation of the hash value with SHA1 [SHA1] (or optional MD-5 [MD5]) hash algorithm and receiver’s private key based on the received message content takes place to generate the MIC value.

2.5.3
Returning of Receipt

The receiving organization then returns a signed receipt using the HTTP reply body (synchronous) or a separate HTTP POST session (asynchronous) to the sending organization in the form of a signed Message Disposition Notification (MDN). This signed receipt will contain the MIC value as calculated just now, allowing the original sender to have evidence that the received message was authenticated and decrypted properly by the receiver.

2.5.4
Summary

The above describes functionality which, if implemented, will satisfy all the security requirements and implement non-repudiation of receipt for the transmission. This specification of AS2, however, leaves full flexibility for users to decide the degree to which they want to deploy those security features with their trading partners [Draft 2004].

2.6
Potential Shortcomings

According to Data Interchange PLC [DIP], there are also some potential shortcomings of AS2:

2.6.1
Possible Conflicts with firewall
The need to have permanent access to the Internet can conflict with corporate firewall restrictions. Running of AS2 needs consistent internet connection and at least one open port for inbound connections. These may violate the security rules of corporate firewalls.

2.6.2
The Costs of AS2 Software
The price of a software package with full functionalities can easily get over hundreds of thousand dollars. For instance, the price of WebSphere Business Integration Connect Advanced Edition is $NZD 113,627.50 [Software Price]. Hence, the purchasing cost of AS2-compliant software might be prohibitive to small companies.
2.6.3
The Need to Learn New Skill Sets
Understandably, the deployment and maintenance of AS2 involves some new knowledge and skills to develop and maintain the regular operation of the software. This may be another stopping factor preventing adoption of AS2 by small companies.
Features such as handling of digital certificate can be very awkward to deal with at some time. Successful setting up and trouble-free transaction alongside with digital certificate requires various skills and knowledge. For instance, this may involve building up the non-existing trust relationship with a CA and dealing with various certificate-related issues and problems, e.g. revocation of an expired certificate and safe storage of certificates of both sides of transaction.

One possible solution for this problem could be outsourcing the job of development, deployment and maintenance of IT department to an e-commerce company. As the complexity of application software grows, many small to medium-sized companies are outsourcing their IT services and requirements to those professional electronic commerce companies, such as EDIS International. By doing this, companies do not need to concern about the technical side of their IT services. Also, once the IT services are in the hands of professional e-commerce companies, the quality and standard of the services will definitely be improved. On the other hand, this will incur another stream of expenses, which will contribute to the factor of Cost Efficiency.
2.6.4
Cost Efficiency
Return On Investment is very closely linked to the transaction volume. Only if the volume of data transmission reaches a certain level, the benefits of running AS2 will outweigh the running costs.

Only simple mathematics is needed here. Simply put, ROI is the costs saved by adopting AS2 minus the costs of deployment of new system and regular maintenance. Some typical ways of normal VAN service provider charging the service of document delivering include: based on the size and number of documents transferred, based on the total amount of currency involved in the document, e.g. an order. According to above information, transaction volume largely determines the costs of transaction. Therefore, only when the volume of transaction meets the carefully calculated threshold, savings will be incurred over using AS2.

Additional, there may be other AS2-related expenses. For example, as the second factor pointed out, costs of AS2 software are not as persuasive as its features. The cost efficiency of adoption of AS2 for various size of company deserves a further study.

3.
Achievements in the First Stage
3.1 Brief Phase description
The first stage of this project is called project specification and AS2 protocol specification. This phase examines the primary RFCs utilized by AS2 protocol and how the primary exchange of data between peer-to-peer TCP/IP clients is performed. The main steps of it include:
· Set up project, introduce members to each other, establish websites for the team, including BTECH website

· Search for, Identify and select the primary RFCs utilized by AS2 protocol, abstract the brief description and main points of them for better understanding

· Document specification and documentation, discuss the selected documents in a teamed manner, experiment with code snippet if necessary
3.2 Relevant Documents

In the second step listed above, one of the main jobs is looking for the relevant documents recommended or related in [Draft 2004]. Since AS2 and the features of it are built on various internet protocols, a handful of relevant documents of internet standards required by or involved in the AS2 protocol have been discovered and documented. RFCs are most of them. RFCs play a very important role in software development. An RFC is a document describing a specific standard that makes internet work [RFC.NET]. To give a well-grounded general view of the outcome of this step, the names of relevant RFCs in AS2-compliant software development and their brief summaries are listed below:
· RFC 2616 Hypertext Transfer Protocol--HTTP/1.1

Summary: The Hypertext Transfer Protocol is an application-level protocol for distributed, collaborative, hypermedia information systems. HTTP has been in use by the World-Wide-Web global information initiative since 1990 [RFC.NET]. This document specifies how data is transferred using HTTP V1.1. Since AS2 is built on top of HTTP, it is very important to understand the foundation of it thoroughly.

· RFC 1847 Security Multi-parts for MIME: Multipart/Signed and Multipart/Encrypted

Summary: This document defines a framework within which security services may be applied to MIME body parts. MIME defines the format of the contents of Internet mail messages and provides for multi-part textual and non-textual message bodies. The new content types are subtypes of multipart: signed and encrypted [RFC.NET]. Since MIME is one of the fundamental protocols of AS2, it is necessary to master this specification.

· RFC 3462 The Multipart/Report Content Type for the Reporting of Mail System Administrative Messages

Summary: The Multipart/Report MIME content-type is a general "family" or "container" type for electronic mail reports of any kind. This document defines the use of the Multipart/Report content-type with respect to delivery status [RFC.NET]. This is the base that the MDN (RFC 3798) builds upon.
· RFC 3798 Message Disposition Notification (MDN)

Summary: This document defines a MIME content-type that may be used by a mail user agent (MUA) or electronic mail gateway to report the disposition of a message after it has been successfully delivered to a recipient. The purpose is to extend Internet Mail to support functionality often found in other proprietary messaging systems, such as X.400. Additional message headers and attributes are also defined to permit Message Disposition Notifications (MDNs) to be requested by the sender of a message [RFC.NET]. This is one of the key features provided by AS2.

· RFC 2045 2046 and 2049 MIME (Part 1, 2 and 5)

Summary: These are the basic MIME standards, upon which all MIME related RFCs build. Key contributions include definition of "content type", "sub-type" and "multipart", as well as encoding guidelines, which establishes 7-bit US-ASCII as the canonical character set to be used in Internet messaging [Draft 2004].

· RFC 3851 secure MIME (S/MIME) Version 3.1 Message Specifications
Summary: This document defines Secure/Multipurpose Internet Mail Extensions (S/MIME) version 3.1. S/MIME provides a consistent way to send and receive secure MIME data by utilizing digital signature, encryption and/or compression [RFC.NET]. This is an option of communication protocols of AS2 used to achieve higher security standard.

· RFC 3852 Cryptographic Message Syntax (CMS)

Summary: This document describes the Cryptographic Message Syntax (CMS). This syntax is used to digitally sign, digest, authenticate, or encrypt arbitrary message content [RFC.NET].

· RFC 1767 MIME Encapsulation of EDI Objects

Summary: This RFC defines the use of content type “application” for ANSI X12 (application/EDI-X12), EDIFACT (application/EDIFACT) and mutually defined EDI (application/EDI-Consent) [Draft 2004].

· RFC 3023 XML Media Types

Summary: This RFC defines the use of content type “application” for XML [Draft 2004]. It standardizes five new media types – text/xml, application/xml, text/xml-external-parsed-entity, application/xml-external-parsed-entity, and application/xml-dtd – for use in exchanging network entities that are related to the Extensible Markup Language (XML) [RFC.NET]. This document also standardizes a convention for naming media types outside of these five types when those media types represent XML MIME entities [RFC.NET].

· RFC 2660 The Secure Hypertext Transfer Protocol (HTTP/S)

Summary: This document describes the syntax for securing messages sent using the HTTP/S protocol, which provides independently applicable security services for transaction confidentiality, authenticity/integrity and non-repudiation of origin [RFC.NET].
· RFC 2559 Internet X.509 Public Key Infrastructure Operational Protocols – LDAPv2
Summary: The document describes the protocol which is designed to satisfy some of the operational requirements within the Internet X.509 Public Key Infrastructure (PKI). Specifically, it addresses requirements to provide access to PKI repositories for the purpose of retrieving PKI information and managing that same information [RFC.NET].
· RFC 3280 Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile

Summary: This RFC profiles the X.509 v3 certificate and X.509 v2 CRL for use in the internet. The X.509 v3 certificate format is described in detail, with additional information regarding the format and semantics of internet name forms. The X.509 v2 CRL format is also described and a required extension set is defined as well [RFC.NET].

· RFC 2560 X.509 Internet Public Key Infrastructure Online Certificate Status Protocol – OCSP

Summary: This document specifies a protocol useful in determining the current status of a digital certificate without requiring CRLs [RFC.NET].

· RFC 2510 Internet X.509 Public Key Infrastructure Certificate Management Protocols

Summary: This document describes the Internet X.509 Public Key Infrastructure (PKI) Certificate Management Protocols. Protocol messages are defined for all relevant aspects of certificate creation and management [RFC.NET].
· RFC 2528 Representation of Key Exchange Algorithm (KEA) Keys in Internet X.509 Public Key Infrastructure Certificates

Summary: This specification profiles the format and semantics of fields in X.509 v3 certificates containing KEA keys [RFC.NET].

3.3 Primary Reading and Researching
Almost every document involved in reading and researching is quite long. For instance, the RFC2616 that is for HTTP/1.1 has almost 180 pages!! Reading and discussion of every single word or statement will not be allowed in the time frame. The general way of reading and researching a document applied in this project is described as follows:

1. Firstly, members especially project students give it a very quick browse to get a general idea of the contents and structure of the document

2. After the first browse, questions and understandings are raised either in a meeting or by circulating a group email.

3. Lastly, according to the real development context of this project, determine and document the important points of the document for better understanding and later reference

Apparently, careful reading and correct understanding of all the listed relative documents above in two months is virtually unachievable. To simplify the tasks while not sacrificing the outcome, only those most important key RFCs have been picked out and thoroughly studied and discussed. The rest of the relevant documents are not going to be forgotten. They will be studied and examined at a proper time when there is a need.
The selected primary RFCs will be discussed in reasonable depth at below:
3.3.1 Internet Draft Document for AS2
This is the only “official” document for AS2. Its full title is: MIME-based Secure Peer-to-Peer Business Data Interchange Using HTTP, Applicability Statement 2 (AS2). There are a series of these drafts. Each of them has production and expiration times. Once expired, it will be substituted by a new revised one. The one studied in this project is numbered 20 in its series. It was written at late December 2004, and it expires in May 2005.
The main components of it are summarized below:

· Introduction
A list of applicable RFCs and their titles are introduced. Some key terms used in this draft are expanded and explained, e.g. CMS and MDN
· Overview

A very short description of general operations is presented at the beginning of the section. Some AS2 definitions and purposes of specific designs are discussed in a broad scope, e.g. definition of receipts. Moreover, a set of required assumptions under different running modes are introduced, e.g. assuming that EDI envelope headers are encrypted
· Referenced RFCs and their contributions
Here is another more detailed description of relevant RFCs in AS2 protocol and their roles played in development.
In fact, the relevant RFCs discussed earlier in section 3.1.2 are identified from this chapter. It serves as a very important entry point for developers who are studying the technical information of AS2 and its functionality.

· Structure of an AS2 message
In this section, various types of AS2 messages transferred over either HTTP or SMTP and the content types associated with them are listed. Additionally, the relevant RFCs for particular cases are pointed out, e.g. specification of receipt MDN transferred over HTTP with no signature can be found at RFC 2126 and RFC 3798, also, a number of MIME content types which must be supported by AS2 protocol are listed neatly afterwards
· HTTP considerations

There are a number of in-depth discussions about various kinds of issues and potential configurations when dealing with AS2 in reality, such as approaches for unused MIME headers and operations, exceptions of various popular HTTP headers used in AS2, e.g. content length and host, HTTP response status codes and mechanism for HTTP error recovery
· Additional AS2 specific HTTP headers

A very important part for actual development, it explains some key headers introduced by AS2 and their usages. For example, AS2-From and AS2-To are used to indicate the originator and intended recipient
· Structure and processing of an MDN message
Another essential chapter that focuses on the processing, generating and transferring of receipt for the message sender, different transferring modes, applicable encryption and signature allowed and a number of MDN-specific headers are described in reasonable detail. Because MDN is one of the core features of AS2, it is deliberately expanded and explained in more depth in RFC3798.
· Public key certificate handling

A brief introduction of handling of digital certificate in AS2, which is explained in more detailed way in some other RFCs, as well as annotations and recommendations for using digital certificate in AS2 transmissions.
· Security considerations
Suggestions and remarks of security handling plus some extractions from other RFCs are given.
By applying the approach of reading and researching introduced earlier in section 3.1.3, the main understanding of the draft can be drawn briefly to the following points:
· AS2-specific headers

Since AS2 is an extension to normal HTTP protocol, most of the headers and message architecture are the same as those of HTTP. However, there are differences between them. One of the differences is the set of AS2-specific headers. They add additional services and indication specifically for AS2 transaction. They can be divided into 3 groups: AS2 Version Headers, AS2 System Identifiers and MDN-specific headers. Most of them are very similar to HTTP headers in terms of structure and usage. Most of them share the “field name: field value” pattern, which is inherited from HTTP. Take AS2-Verison for an example, it is used as the version indicator in an AS2 message. It has 2 variants: AS2-Version: 1.0 and AS2-Version: 1.1. The biggest difference between them is that version 1.1 designates those implementations which support compression defined by RFC 3274.
Apparently, nothing else in normal HTTP headers can substitute this functionality. It is specifically designed and added by AS2 designers. Therefore, thorough understanding of their usage and their functionality is vital to the development.
· HTTP features including headers used by AS2 protocol

Since AS2 is primarily based on HTTP, it reuses the existing HTTP architectures and most of the headers. For example, AS2 uses POST and optionally over HTTP/S to transfer messages. The majority of AS2 headers are normal HTTP headers. Also, it follows the rules and interpretations of status codes of HTTP. The document has pointed out some very valuable suggestions as well as some reminders in section HTTP Considerations. Again, understanding them with the assistance of team members and other references is going to be quite helpful in later development phase.
· MIME content types

Since AS2 is MIME-based, MIME and optional S/MIME play an extremely important role in AS2 protocol. In addition to all the MIME content types which SHOULD be supported by AS2, there are a number of extra ones MUST be supported by AS2. Some examples are: multipart/signed, message/disposition-notification, application/EDI-X12 and many more. For example, when sending MDN over HTTP with signature, there will be three content types involved. They are: Content-Type: multipart/signed, message/disposition-notification and application/pkcs7-signature. If no encryption and no signature is needed, the content type could be as simple as application/EDI-X12. From these 2 examples, it is obvious to see the complexity of the problem in the real transmission of AS2 messages and the development of AS2-compliant software.
Therefore, full comprehension the content types and the usage of them, especially the extra ones, is a very basic but indispensable step of development of AS2-compliant software.
· MDN

As stated earlier, MDN is one of the core features that AS2 is built on. MDN is a very efficient and important means to handle non-repudiation, message integrity check and acknowledgement of successful receiving of message. This document covers quite a broad range of MDN-related issues. They are listed quite briefly below:
· There are some compulsory functions and processing that MUST be implemented at the receiving side. E.g. the receiver MUST have the ability to create a multipart/signed content with the message disposition notification as the first body part, and the signature as the second body part, and also MUST have the ability to return the MDN in either synchronous or asynchronous manner.
· MDNs can be divided into two distinct groups, synchronous and asynchronous, according to the nature of the returning mechanism. Different kinds of MDNs are employed to meet different kinds of real situations and requirements. The advantage of the synchronous MDN is that it can provide the sender of the AS2 message with a verifiable confirmation of message delivery within a synchronous logic flow. The advantage of asynchronous MDN is that it does not require a TCP/IP connection to stay open for very long duration. It can especially useful when the processing time is unpredictable or message originator is not online when MDN is being sent.
· Obviously, requesting syntaxes for different kinds of MDNs are also distinct. E.g. the line requesting synchronous MDN is something like Disposition-notification-to: xxx@example.com, while for asynchronous one, it should look like Receipt-Delivery-Option: http://www.example.com/Path.
· There are a lot of conventions and rules that must be followed when requesting a signed MDN. E.g. items such as signed-receipt-protocol and signed-receipt-micalg must be set if a signed MDN is required. The first one stands for the protocol that will be used to sign the message; the latter one indicates the message hash algorithm that will be used to calculate the MIC value.
· There are a lot of AS2-MDN specific formats and fields. Many extra header field names and field values are added based on normal MDN syntax. They follow this generalized form: AS2-disposition-field = "Disposition" ":" disposition-mode ";" AS2-disposition-type ['/' AS2-disposition-modifier]
· There are many Disposition Modes, Types and Modifiers for AS2-MDN. Situations include: successful processing status indication, unsuccessfully processed content, unsuccessful non-content processing, warnings processing as well as backward compatibility. They all require quite differed values for various fields of disposition.
Since MDN is a big topic in AS2, there is a separate RFC, called RFC 3798, specifically written for issues dealing with MDN. Because this RFC is selected as one of the primary RFCs, more detailed description of MDN-related topics can also be found in section 3.1.3.2 in this report.
· Implementation digital certificate
Capability of using digital certificate to handle encryption and signature is another great feature of AS2. Basically, digital certificate is used to encrypt and/or sign a block of data asymmetrically. In general, asymmetrical encryption facilitates better security compared with symmetric counterpart, however, with increased complexity. Handling of digital certificate involves a lot of issues, such as secured storage of certificates, renewing and revocation of certificates and relationship with CA.
Because of the high complexity and importance of digital certificate handling, there are a number of RFCs referenced by this document to explain it in more depth, e.g. RFC 2559 and RFC 3280.
3.3.2 RFC 3798: Message Disposition Notification (MDN)

This is the formal specification of MDN. It was collaboratively composed by AT&T Laboratories and Lucent Technologies in May 2004. This document defines a MIME content-type that may be used by a mail user agent (MUA) or electronic mail gateway to report the disposition of a message after it has been successfully delivered to a recipient [RFC 3798]. Since MDN is the basis where AS2 receipts are based on, this RFC is chosen for better understanding of the underlying structure of AS2-MDN.
The main chapters which are considered useful for the project are generalized as follows:

· Introduction
It contains some very basic purposes of MDNs, requirements of a MDN and interpretation of basic terms appeared in this document.
· Requesting Message Disposition Notifications

It mainly describes and discusses usage of various headers which could be used in requesting normal MDNs. They include: Disposition-Notification-To, Disposition-Notification-Options and Original-Recipient. In addition, the Message/Partial content type and its handling in requesting MDNs are also explained.
· Format of a Message Disposition Notification

A number of header fields and content types under message/disposition-notification are discussed, and examples are made to give better explanations. Additionally, some extension fields are introduced for a more complete view. The discussed headers contain: original and final recipient fields, MDN-gateway fields for routing messages, disposition fields as well as many failure, warning and error fields.
· Timeline of Events

It illustrates the sequence of events involved in processing of a message and generation of an MDN. It is very helpful, as it gives a bird view of the development of the whole process.
· Security Considerations
This part primarily presents some recommendations and conventions in handling MDNs. Topics include: threats of forgery, issues of privacy, non-repudiation and mail bombing.
· Example
An example as well as some brief explanations of parts of it is given for better understanding through using of concrete instances.
As stated earlier, MDN was originally designed to be used in electronic mail systems. However, AS2 has adopted it as its receipting mechanism. This RFC is mainly used as an understanding and reference document for AS2-MDN. Therefore, it is not as important as [Draft 2004]. Still, it is a helpful explanation of what is under AS2-MDN. The major understanding of this document can be concisely generalized as the follow points:
· Order of processing events
Thanks to chapter 4 Timeline of Events, it gives a very helpful general view of the order of events in processing and generating an MDN. The sequence can be summarized as follows according to [RFC 3798]:
1. sender composes message

2. sender sends message to an MTA

3. MTA relays message to another MTA, until final MTA receives the message

4. Final MTA delivers message to MUA
5. MUA performs automatic processing and generates corresponding MDNs

6. MUA displays list of messages to sender

7. Sender selects a message and requests that some action to performed on it

8. MUA performs requested action, and with sender’s permission, sends an appropriate MDN

9. Sender can perform other actions on message, but no further MDNs will be generated

· Format of a normal MDN

MDN is just a composition of various headers and content types as well as a message body. Simply put, an MDN is a MIME message with a top-level content-type of multipart/report [RFC 3798]. It can be divided into many components:
· The first component is the human-readable explanation and description of the MDN

· The second component is of content-type message/disposition-notification

· If exists, the third component will contain the original text or portions of original text.

Easy to tell, the most important part of an MDN is the second part. That is where lots of important fields and values come into play. Some of the most essential fields are:
· Optional Original-Recipient field and compulsory Final-Recipient field

Obviously, the former indicates the original recipient address; the latter one suggests the recipient for which the MDN is being issued.
· Disposition fields

This is a compulsory field in an MDN. It indicates the action performed by the Reporting-MUA on behalf of the user. Because of its functionality, it can be considered as the core field in an MDN. The generalized syntax is: disposition-field = "Disposition" ":" disposition-mode ";" disposition-type [“/" disposition-modifier *("," disposition-modifier)]. It contains many modes, types, modifiers and modifier extensions.
· How to request an MDN

To the simplest form, MDNs are requested by including a Disposition-Notification-To header in the message. It is definitely the most important header when requesting an MDN. The syntax of the header is: mdn-request-header = "Disposition-Notification-To" ":" mailbox *("," mailbox). A user agent MUST NOT issue more than one MDN on behalf of each particular message recipient. A message that contains Disposition-Notification-To header should also contain Message-ID header to facilitate correlation of the MDN and the original message.
Additionally, there are many other headers can be used to supplement the operation, such as Disposition-Notification-Options and Original-Recipient.
3.4 Summary of Achievements

Before any reading and researching, an extensive searching of relative documents has been done. This results in a large selection of related documents. After that, careful identification and selection of key papers have taken place. Lastly, reading and researching of selected documents carried out.
In this phase, my task was mainly researching and understanding of AS2-related issues for later implementation.

4. Achievements in the Second Stage

4.1 Brief Phase Description
According to the project schedule, the second stage is planned for project test harness coding and evaluation. This phase generates a test harness that incorporates all the functionality required to implement a peer-to-peer exchange of data between the server and the client applications. This is the phase in which knowledge gathered from the previous stage is applied into concrete implementations.
The key milestones involved in this phase are:

· Test harness creation

· Documentation of the protocol and application for the production development team

4.2 About the Tester Program
Since the project is just at the entry point of this phase, there is still no executable program to comment or demonstrate by far. However, there is one thing that may worth some attention. That is the successful execution and evaluation of a tester program from an open source project website [OpenAS2].

Here is some background information about the tester program. An open source web site called “Open AS2” [OpenAS2] was found and commented in the [ICT Report]. It was founded by a group of amateur programmers. They share the same aim, which is developing an AS2-compliant communication application. There already is a nearly-finished program called “OpenAS2” in that website. It has been tested and commented by many programmers. The latest and current version number is 0.9.3. Because the nature of this program is shareware, there is no licensing fee and/or other obstacles for the project team to test it and use it.
The main advantages of the OpenAS2 program are:

· very light-weight
It has been written in pure JAVA. It is implemented as two stand-alone communication applications listening at two different ports on the same machine or different machines if desired and configured properly. The speed of the program is very high.

· Full functionality

It provides almost everything supported by AS2, such as digital certificate, both symmetric and asymmetric encryptions and signatures with digital certificate. It even supports sending error message or MDN through email by accessing a SMTP server if available.

· Sufficient execution information for diagnosis of problems and future analysis

It automatically logs numerous kinds of system and application information while program is executing. These log files can be very useful if a user wants to study the underlying data transferring, or if some exceptions are thrown by the system.
The information the program collects while running include:
· Various kinds of headers

This include: headers of original messages, headers of successful and failed MDNs. These would be very useful if one wishes to obtain some information of what has happened on wire.
· Various kinds of exceptions

AS2 employs many processing procedures, e.g. encrypting and signing. The Whole program may not perform correctly, if any tiny bit of it goes wrong. Clear exception annotation and explanation are very helpful here, especially when the code is not written by the testing person.

On the other hand, there are some annoying weaknesses found in the program. They are:

· Very poor user interface

It actually does not contain a user interface, let alone graphical one. All sorts of execution information are displayed in a primitive command prompt under DOS mode. The only way to interact with the program is modifying the values of 3 XML files in the same folder, which served as configuration windows by users.

· Very poor documentation

This could be considered as the biggest and most frustrating drawback of this program. In fact, there is hardly any formal documentation goes with the software!! All a new user can do is browsing through the forums in the project website and trying to extract some useful information from other one’s posts and answers. Imaginably, this is very cruel for an inexperienced user who tries to test it at the first time.
· Still very rudimentary

The development of the program is still at a very low level. The storage of digital certificates is lacking of care and security. Configuration of application is not straightforward. Customization is another issue. There is a long way to work if the final goal is commercialization.
The potential benefits can be gained from the tester program include:

· It can be used as a valuable simulation and teaching tool
People learn best from concrete examples. This rule also applies here. Since the program keeps plenty of execution information, those all sorts of recorded headers are invaluable learning resources. The practical examples of structure and usage of message headers are first-rate compliments to the theoretical statements found in formal documents.
· It can be employed as a testing counterpart in future stages
In later planned stages, the testing of compatibility of the developed products is absolutely unavoidable. Proper testing is not only for the functionality and compatibility, but also for formal certification of the developed products with other authorities. This tester program can be a very good first testing counterpart before the official testing against other commercialized products.
4.3 Operation of the Tester Program

Using this program is easy. It follows the following steps:
1. First of all, correct configuration according to the testing platform is very important.

Firstly, simply open up the given XML files with a text editor. Modify the default values if needed to match the settings of the local testing machine. Lastly, save them properly. The edition could be similar as the screenshot below.
[image: image1.png]TextPad - [C:\Documents and Settings' istrator\Desktop\Project -[ol x|
Fle Edi Seorch Vew Toos Mecos Corfigwe Window Hep NEET]

NEH|BERE| B[22

2O (@Y HR(EEHE] 0o » W
2 [k =
‘commands.xml <multicommand name="cen"
config.sml description="Certificate commands">
partnerships.sml <command classname="org.openas2 app.certimporCenCommand”/>
<command classnarmie-*org openias? app cett ListCantCommand>
<command classnarmie-*org openias? app cer DeleteCentCommand>
<command classnarme-*org openias? app cert ClesrCantsCommand'/>
<command classnaime-"0rg.openias? app cert ViswCertCommand>
</multicommand>
<multicommand name="part"
description="Partnership commands">
<command classname="org.openas2.app.partner RefreshPartnershipsComm
</multicommand>
2l
[R5 Choracios] | <fcommands>
= =
o]
=
o
e
=
&
o
i
2
M
4

I [T [z Fesd fovr [oock Fovme oo oo

2. Start both servers by double-clicking the batch files in different folders.
There should be no exception available in the command window. The correctly started server window could be similar with the following screenshot.

[image: image2.png]C: \Documents and Settings\Administrator\Desktop\Project\A\bin>set Javall
sdict - 4.2_88\jrebinjava

[c:\Docunents and Settings\Adninistrator\Desktop\Project \Abin>C:\j2sdk
e \bin\java ~Xns32n —Knx384nm —cp . jactivation.jarimail.jar;beprou=jdid]
henail-jdki4-125. jar;OpenAS2-8.9. jar;openas2-1ih. jar org.openas2.app.o|
or .. \config.xnl

Starting Server..
Loading configuration. ..

Loading Command Processor. ..

Registering Session to Command Processor.
starting Active Modules...

openns2 started

06.,28,/85 11:02:48 — OpenAS2 Started —

3. Once servers have been started properly, create a simple text file. Put a simple line into that file. Save it.
[image: image3.png]test.txt - Notepad

this is a test!|

4. Now, it is the transferring step. Simply drag and drop the created text file from last step into the appropriate folder. For example, if the text is created at server “OpenAS2A”, and the other server is named “OpenAS2B”, there will be a folder called “toOpenAS2B” in the root directory if configuration is carried out properly. The sending server will automatically poll that folder; here is the “toOpenAS2B” folder. If any thing is detected new, server will start processing and transferring the message all by itself. The command window when message has been successfully transferred is at below. Notice there is a line of command indicates that MDN is received from the recipient.
[image: image4.png]062885 11:22:47 AS2DirectoryPollingModule: processing C:\Documents af
s \Adnin istrator\Desktop\Project \ANbin\. . \toOpenAS2B\1og-85292085 . txt
[06./28,/85 11:22:58 As2SenderModule: message submitted [<OPENAS2-2806200]
[00-647680penAS2A_OpenAS2B>1

[06/28,/85 11:23:04 AS2Sendertodule: signed data [COPENAS2-2886200511225
[600penAs2A_openns2B>1

[06/28,/85 11:23:07 AS2SenderModule: encrypted data [COPENAS2-2886208511)
647680penAS2a_OpenAs2B>1

[06/28,/85 11:23:07 AS2SenderModule: connected to http://localhost:10881
|-28062005112258-8700-647680penAS2A_OpenAS2B>1

[06/28,/85 11:23:08 AS2SenderModule: transferred 9134 hytes in 0.18 seco
1016 KBps [<OPENAS2-28062085112258-6708-647680penAS2A_OpenAS2B>
[06./28,/85 11:23:09 AS2SenderModule: received MDN Lautomatic-action/MDN-|
aticallys processed] [<OPENAS2-28062005112258-B780-6476B0penAS2A_Opend)
[06/28,/85 11:23:09 AS2SenderModule: message sent [COPENAS2-280620851122
[7680penAS2A_OpenAS2B>1

06./28,/85 11:23:09 AS2DirectoryPollingModule: deleted C:\Docunments and
dninistrator Desktop\Project \A\bin . . \toOpenAS2B\log-B5292005 . txt

The command window of receiver is also shown below for better view of operation. Notice that message and message headers are stored at different folders and the returning of MDN.

[image: image5.png][openns2 Started
06.,28,/85 11:21:53 — OpenAS2 Started —

incoming connection [127.8.8.1 19111
06/28,/85 11:23:08 AS2Receiverfodule: received 9135 hytes in B.371 seconds at 24.
47 XBps [127.8.0.1 19111 [<OPENAS2-28062085112258-0706-647660penAS2A_OpenASZB>]
06,/28,/85 11:23:08 AS2Receivertodule: decrypting [COPENAS2-28862005112258-8708-64]
[7680penAS2A_OpenAS2B> 1
06.,/28,/85 11:23:08 AS2ReceiverModule: verifying signature [COPENAS2-2886208511225|
8-6760-647680penAS2a_OpenAS2B>1
06/28,/85 11:23:08 MessageFileModule: stored message to C:\Documents and Settings|
\adninistrator\Desktop\Project \B\bin\. . \inbox\0OpenAS2A-OpenAS2B-_OPENAS2-2806200|
5112258-0708-647680penAS2A_OpenAS2B_ [<OPENAS2-28062005112258-B700-647680penAS2A|
| Openas2B>1
06./28,/85 11:23:09 MessageFileModule: stored headers to C:\Documents and Settings|
\adninistrator\Desktop\Project \B\bin\. . \inbox\nsgheaders \2085\06 \OpenAS2A-Opens|
[2B-_OPENAS2-28062085112258-8700-647680penAS2A_OpenAS2B_ [<OPENAS2-28062005112258]
|-0708-647600penAS2A_OpenAS2B>1
06./28,/85 11:23:09 AS2ReceiverModule: sent MDN Lautomatic-action/MDN-sent-automat|
ically; processed] [127.9.8.1 19111 [<OPENAS2-28062085112258-B780-647680penAS2A
openns2B>1

5. Since the tester message has been successfully transmitted to the desired location, verification of correct receiving of message and retrieval of logged message headers and body at the receiving party can be done here and now. Furthermore, if sender has requested an MDN, received MDN can be found at sender side in the appropriate folder. To do those, just go to the explicitly named folders, such as “inbox” and “mdn”, received message and message headers will be found there. Noticeably, message body and headers are split automatically and stored at different places for better future examination.
An example of message headers retrieved from the “inbox” folder at receiver side.

[image: image6.png]=lolx|

Fle Edt Seach Wew Tods Mamos Corfigwre window Hob _18/x]

NEHBERB|IBR|2 2|
TR HR R T o

L

2lxl
Opend52ADpen
Opent524-Open

2lx

[ANSI Characters

User-Agent OpenAS2 AS2Sender

Date: 777722, 06 702? 2005 11:23:07 PDT

Message-ID: <OPENAS2-28062005112258-0700-6476@0penAS2A_OpenASzB>
Mime-Version: 1.0

Contentype: application/EDHX12

AS2Version: 1.1

RecipientAddress: hfp:/localhost 10081

AS2-To: OpenAS2E

AS2-From: OpenAS2A

Subject From OpenAS2A to OpenAS2E

From OPENAS2A@address

Disposition-Notification-Options: signed-receiptprotocal-optional, pkes7-signature: sign
Cache-Control: no-cache

Pragma: no-cache

Host localhost10081

Accept texthtml, image/gt image/ipes,
Content-Length: 3135

P a=2

Attibutes

destination_port 10081
HTTP_REQUEST_URL:/
source_port 1911
HTTP_REQUEST_TYPE: POST
source_ip: 127.001
destination_ip:/127.0.0.1

[T [T [Fesd fowr [oock e o [ooms

Note:
· The above example has implemented full functionality of AS2, including encryption, signature and requesting and returning an MDN.

· The details of handling of digital certificate are omitted, e.g. setting up the public and private keys.

· Message transmission between two differently located machines may involve firewall interaction and manipulation.
4.4 Implementation of MIME encapsulation

In the arrangement of second phase of this project, a testing harness of peer-to-peer data exchange is required. In this coding part, programming tasks are allocated over 3 student members. The MIME encapsulation module was one of the programming tasks assigned to me in this phase.
4.4.1 Brief introduction of MIME

MIME is short for Multiple Internet Mail Extension. It is mainly used in email transmission. Virtually, all emails are transmitted in MIME format via SMTP servers. The typical format of a MIME message is comprised of 2 parts, header part and body part. There are a number of compulsory and optional header fields from MIME specification, such as MIME Version header and content type header. The body part is a little more complicated. There are 2 possible formats of body part. One is single part body; the other is body in multiple parts. For the body in single part, the whole body part is a data unit without any separation. While, for multi-parted body, there are more than one parts of different data encapsulated. To facilitate separation of data, a boundary string is used to indicate the boundary of different data sections in body in multi-part format.
4.4.2 Design

Having noticed the relationship between body in single part and multi-parts, I decided to use inheritance to organize different body formats. The base class is single part body. It takes in the given headers and body and returns the formatted string of MIME message. A new class which represents message in multi-parts inherits the base class. In multi-parted message, every part will be considered as a single part body which has its own header values and body data. When a multi-parted message is created, the header part and a single part body will be created. This single part body will be treated as a container later when user inserts more body parts into this message. When inserting, user just creates and adds another single parted body with the specified sub-header fields and into that multi-parted “container”. Generally, this design can reduce the code size and improve code efficiency with the cost of slightly increased complexity.
Another design feature is the OUT parameter in C#. Because the limit of only one return value, it is virtually impossible to return the header values and body data at the same time. With OUT parameter, this problem has been solved. Using this kind of parameter is easy. I just need to declare a variable before hand, mark the variable as OUT type and put it in normal parameter brackets. After executing, the normal return value as well as the out parameter will be ready to use.
Recursion is also used in this module. It is mainly happening in creation of new single parted body when multi-parted body is being constructed. More details can be found in the explanation of “MIMEPart” class.
4.4.3 Implementation

There are 3 classes in the MIME formatting module. They are “MIMEMessage”, “MIMEPart” and “MIMEMultiPart”.
· MIMEMessage

This is the class encapsulating all the MIME Parts. There are only 2 methods in this class. One method is “encode”, the other is “decode”.

· “encode” method
This method is mainly used to read out the header fields and body data. The parameter is an out-typed WebHeaderCollection. This will be used to hold the header values. The normal return type used to store body information which is in type string. Before returning the message headers, a new MIME-Version header will be added. The body is retrieved by calling “encode” method in “MIMEPart” class, which will be discussed later.
· “decode” method
“decode” method is used to return the formatted MIME message. The parameters include the intended headers and the body data in byte array. The return value is the constructed “MIMEMessage” instance. After constructing an empty instance of “MIMEMessage” class, the byte array is converted into string. Then, message body is created by calling the constructor in “MIMEPart” class with the given headers and body as parameters. Finally, the filled “MIMEMessage” instance will be returned.
· MIMEPart

This class represents a single part body in a MIME message. It contains 1 constructor and 2 methods. One method is called “encode”, the other is “decode”. The constructor simply passes the given parameters to the local variables.
· “encode” method
It simply returns the headers and body data to user. It has an out parameter for headers as well as a normal return value for body data.

· “decode” method

This is the most important and complicated method in the MIME module. This is a static method, which means it can be called without an instance. It takes in WebHeaderColletion as header values and a byte array as body data. The return value is of type “MIMEPart”. Firstly, it checks if the header value contains boundary string. If not, it is a single parted message. Program simply creates an instance of “MIMEPart” with the given parameters and returns it back. If it is a multi-parted message, it creates an instance of “MIMEMultiPart” with the given headers as the parameter. Afterwards, it gets the boundary string. Then, a loop will be used to go through all the body parts. Once a new part is found, it modifies the boundary string appropriately. And then, it gets all the part headers and part body. Finally, it calls “decode” method again in “MIMEPart” class to construct a new single part body and adds it into the body of the multi-parted message. This is where recursion is applied.
· MIMEMultiPart

This class represents a multi-parted body. This class inherits the “MIMEPart” class. Hence, it reuses some of the components in “MIMEPart” class, such as “decode” method. It has an arraylist for storing parts and boundary string as a static variable. It has a constructor and a “decode” method. The constructor simply calls up to its parent class with the given headers as parameter.
· “encode” method

Again, “encode” method is used to return part information, including headers and body data. The signature of this “encode” method is the same as the ones in the “MIMEMessage” and “MIMEPart” classes. Firstly, it constructs the boundary string for separation of body sections. Then, it adds the boundary string into the content type header field. A loop is used to go through all the parts in the body section. As I mentioned, every part in multi-parted body will be treated as a single part body. In the loop, a new instance of “MIMEPart” is created, its “encode” method is called to retrieve the information. Finally, the body information together with the boundary string will be appended in the body string, which will be returned back to user.
4.5 Setting up of a CVS server

To achieve better team cooperation and coordination as well as more advanced documents sharing, a Subversion CVS is installed and being tested within university network. The benefits of doing this are quite apparent:
· It can improve team collaboration by better information provisioning compared with email and telephone. Group members can create and send messages in many ways, such as private forums and message boards. The intended receiver can retrieve the message asynchronously.
Moreover, it offers some incomparable features that email can hardly provide. For example, the limits of size and type of message attachments can be eliminated, which will offer greater usability and flexibility.
· It offers better documents sharing. This is quite obvious. It provides a centrally-administrated repository for all the members to store and/or retrieve documents under certain security assumptions. Virtually, members can access the server at any time any location to read and/or write documents. This provides better accessibility, which will results in improved working efficiency.

In addition, it can also provide versioning control of code snippets as well as documents. It organizes and manages the development of documents and programs for clearer vision from users and less confusion when access them.
4.6 Summary of Achievements

The first outcome of this stage is the successful evaluation and execution of a tester program from an open source website. It has very important and positive effects toward the future development. Secondly, I developed a MIME encapsulation module which can be used to hold multi-parted message for AS2. Apart from MIME encapsulation module, I performed some other programming tasks and supports, such as debugging, testing and integrating of team’s work. Furthermore, a CVS server is setup for better team collaboration and improved documents sharing. The benefits of having it will be enjoyed with no surprise in later development phases.
5 Achievements in the Third Stage

5.1 Brief Phase Description
Originally, this phase is planed to extend the test harness which was finished in last summer ICT. However, we decided not to program with CAPICOM any longer as the project moved into this phase. Hence, the arrangement of this phase is slightly adjusted.
After adjustment, the new plan mainly involves research in certificate-based cryptography and development of a new test harness. Main topics include:
· Coding of a new test harness that provide certificate-based security services without CAPICOM
· Creation of testing certificates for use with this project

· Research into other certificate-related issues

The key milestones involved in this phase are:

· Test harness creation

· Creation of testing certificates
5.2 Background Knowledge

5.2.1 Introduction of PKI

In cryptography, PKI stands for Public Key Infrastructure. A PKI is NOT an authentication method; rather it is an infrastructure that utilizes digital certificates as an authentication mechanism and is built to provide better management of certificates and the associated keys. PKI utilizes asymmetrical encryption/decryption to provide authentication. It is believed that asymmetrical cryptographic technique is more secure than symmetrical counterpart. There are two mathematically related keys used in this scheme, public key and private key respectively. One of them can be used to encrypt, while, strictly, the other one must be used to decrypt the message. Apparent from their names, public keys can be made known to the transacting partners; private keys must be kept strictly secret to other communicators.

A PKI can be implemented within an organization, for the use of the users on its network, or it can be a commercial entity that issues certificates to Internet users, for example. Either way, the PKI consists of the following components [Understanding]:

· At least one certification authority (CA) to issue certificates.

· Policies that govern the operation of the PKI.

· The digital certificates.

· Applications that are written to use the PKI.
5.2.2 The digital certificate

The problem with public key encryption is the difficulty of knowing whether a public key is really owned by the person it is claimed to belong to. A user could falsely claim that a public key belongs to Joe Jones when in fact it doesn’t; that user could then intercept messages intended for Joe Jones and decrypt them with the private key belonging to the key pair. Thus, a method was needed for verifying the identity of the holder of key pairs.
That’s where digital certificates come in. A trusted third party, called a certification authority, issues a certificate associated with a key pair to a user or computer whose identity it has already verified. Then other users or computers can rely on the veracity of the key holder’s identity. This works somewhat like the issuance of identification cards by governmental entities or employers. The issuer has already checked out the identity of the person to whom the card is issued, so others (for example, stores to which the card holder writes checks) depend on the issuer’s certification that the card holder is really whoever he/she claims to be.
Digital certificates contain information about the holder, the holder’s public key (perhaps with private key), an expiration date, and the digital signature of the issuer (the certification authority). Managing digital certificates and their associated keys is complex, so the PKI was created to provide a framework for the issuance, renewal, revocation and management of certificates. Industry standard PKIs and their certificates are built on the X.509 specifications of the International Standard organization.
5.2.3 Main types of X.509 digital certificates
Basically, there are 4 types of popular X.509 digital certificates [X.509 certificate in .NET]. Some of them are used for cryptography in context of this project. They are:

1. DER Encoded Binary X.509

2. Base64 Encoded X.509

3. PKCS #7 / Cryptographic Message Syntax Standard

4. PKCS #12 / Personal Information Interchange

DER Encoded Binary X.509

DER stands for Distinguished Encoding Rules for ASN.1. It is a method to encode a data object. It is defined in ITU-T recommendation X.509. It is based on BER, which is another encoding method. DER is the same thing as BER with all but one sender's options removed.
It provides platform-independent encapsulation of certificates and their attributes for transmission of sensitive data and information among different end users. This format could be used by those CAs (Certification Authority) who are not based on Windows 2000 to provide interoperability and compatibility. This is the only format .NET 1.0/1.1 supports. The file extension used by this format can be either .CER or .DER.

Base64 Encoded X.509

Base64 is a standard encoding method developed to transfer emails among different clients based on different platforms. It mainly used with MIME and S/MIME messages. Since the popularity of wide adoption of it, Base64 is used as an encoding method for digital certificates among MIME-capable clients. The file extension of Base64 Encoded X.509 is either .PEM or .CER.

PKCS #7 / Cryptographic Message Syntax standard

PKCS simply stands for Public key Cryptography Standard. There are a series of different standards of digital certificates under this general category.

Certificates of this type can be used to encrypt and/or decrypt messages with the public key included. In addition, this type of digital certificate can be a transfer container of other certificates which are in its certification path. Furthermore, it added some other attributes, such as countersignature which associated with signature and signing time that can be authenticated along with message content. It is compatible ITU-T standards. Typically, it has .P7B or .P7C as its file extensions.

PKCS #12 / Personal Information Interchange Syntax Standard

This is an industry standard which handles transfer, backup and recovery of certificates and the associated private keys among same or different vendors. To be more secure, private keys are password-protected when read or written. To use this type of certificate, the cryptography service provider must be able to recognize the certificates and private keys as exportable. Because exporting a private key might expose it to unintended parties, the PKCS #12 format is the only format supported in Windows XP for exporting a certificate and its associated private key[X.509 certificate in .NET]. The possible extensions for this standard are .PFX and .P12.

5.2.4 The certification authority

Certification authority can be abbreviated as CA. It simply is a trusted third party who issues digital certificates to them for use with other exchanging partners. The CA might be an external company like Verisign and Thawte; or it can be an internal department of an organization. Its main job is verification of requester’s identity and issuing of digital certificates to verified clients. Besides, CA performs a set of other management tasks, such as revocation of invalidated certificates and reissuing new certificates.

5.2.5 Asymmetrical Cryptography and digital signature
Asymmetrical encryption and digital signature are two main features of PKI. As discussed earlier, Asymmetrical encryption involves a pair of distinct but mathematically related keys. The usage of them is fairly predefined. One of them can be used to encrypt/sign messages; while strictly only the corresponding private key can be used to decrypt/verify messages. This provides greater security under the premises of that private key is stored securely and only known to its owner.

Digital signature (or public key digital signature) is a type of method for authentication of digital information analogues to ordinary physical signature on paper. It can be used to verify authenticity of origin, integrity of received message and as proof of non-repudiation of sender. It is implemented based on asymmetrical encryption. This is why user needs one of the two keys to sign/verify signatures.

The digital signature is created as follows:

1. message sender firstly applies a hash algorithm on the message to get a message digest

2. then he/she encrypts the message digest with his/her private key to form up the unique digital signature

Upon receiving, the receiver decrypts the message with the public key of the sender to get the encrypted message digest. Then, the received message will be hashed with the same hashing algorithm used by the sender. Lastly, receiver can compare the two digests to decide whether the received message is from the claimed sender and its content is intact.

5.3 How to obtain an X.509 certificate
Generally, a valid certificate must be issued by one of the trusted certification authorities, such as Verisign and Thawte. However, this project does not involve real transactions among real trading partners. Therefore, self-generated testing certificates will meet all the requirements of experimentation and testing in the context of this project. The approach taken by me to generate testing certificates is detailed in the following sections.
5.3.1 Introduction of Microsoft security tools

Fortunately, Microsoft has already provided a set of security-related tools to support testing and debugging. Most of them are console-based utilities applications and either obtainable from Microsoft site or included in .NET SDK package.

In the context of this project, only certificate-related tools are concerned and discussed. They are:

· Makecert.exe

It is a certificate generation tool that generates X.509 certificates for testing only. It creates public and private key pair and store them in a certificate file. This tool also associates the key pair with a specified publisher’s name and creates an X.509 certificate that binds a user-specified name to the public key. It can be reached at: http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cptools/html/cpgrfcertificatecreationtoolmakecertexe.asp
· Cert2spc.exe

The full name of this tool is software publisher certificate test tool. It creates a Software publisher Certificate (SPC) for one of more certificates. Because .NET 1.0/1.1 supports only DER Encoded Binary X.509 certificates, software publisher certificate can be used to work around that limitation. More information can be found at: http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cptools/html/cpgrfsoftwarepublishercertificatetesttoolcert2spcexe.asp
· Pvkimprt.exe

This tool is originally designed for VBA digital signature in Microsoft Office 2000. In this project, it basically combines SPC certificate and PVK file together to create a PFX certificate. It can be found at: http://www.microsoft.com/downloads/details.aspx?FamilyID=F9992C94-B129-46BC-B240-414BDFF679A7&displaylang=EN
Notes:

Due to a difference in default lengths of keys between Windows Millennium/Windows XP and other versions of Windows, the pvkimprt.exe utility may fail when used to import keys between Millennium or XP and other Windows platforms.

The possible workaround is:

1. Use pvkimprt.exe to export the .PVK and .SPC files (which was generated by Certespc.exe) as type .PFX on a version of Windows where the keys were generated

2. Import the generated .PFX certificate using one of the certificate management tools

· Selfcert.exe
This tool is included with Microsoft office suite. It is used to create a self-signed testing certificate. The default location is C:\Program Files\Microsoft Office\OFFICE11. More information is at: http://msdn.microsoft.com/library/default.asp?url=/library/en-us/sdsdk/html/sdconTestingSigningXEPWithTestCertificate_HV01074372.asp
5.3.2 Creation of testing certificates

As there are fairly a big number of variants of digital certificates, creation of only a few kinds of them, especially the ones that are used in this project, will be presented here. They are .CER, .SPC and .PFX certificates.

In this project, .CER certificates are mainly used to distribute public keys to other users or devices. The generation of them is actually quite easy. It can be done with just a line of command. One simple example command line is: makecert.exe test.cer. After running this command, there should be a digital certificate named “test.cer” in the same folder of makecert.exe. This is the simplest and quickest way to make a testing certificate. All the attributes of the certificate will be set to default values. If more detailed generation is required, there are a number of additional attributes can be used to specify the various fields of the generated certificate.

Another good example of using makecert.exe would be: makecert.exe –r –n “CN=AARN” –b 15/9/2005 –e 01/01/2015 AARN.cer. This line will make a certificate with name “AARN.cer”, “AARN” as subject information, “15/9/2005” as the generation date and “1/12015” as the expiration date. As can be easily seen, some additional command options are used. Although official discussion can be found through the links listed in the above section, the most frequent used options are generalized below for quick reference:

· -r

create self-signed certificate

· -n

specifies the subject's certificate name. This name must conform to the X.500 standard. The simplest method is to specify the name in double quotes, preceded by CN=; for example, "CN=myName"
· -b

specifies the start of the validity period. Defaults to the certificate's creation date
· -e

specifies the end of the validity period. Defaults to 12/31/2039 11:59:59 GMT.

· -sv

specifies the subject's .pvk private key file. The file is created if none exists.
The creation of a PFX certificate is a bit more complicated. The biggest difference between them is that it has the associated private key. It can be generated by the following steps:

1. makecert.exe –r –n “CN=AARN” –b 15/9/2005 –e 01/01/2015 –eku 4.1.2.1.6.6.7.3.7 –sv AARN.pvk AARN.cer

This line of command will generate a certificate named “AARN.cer” with attributes such as subject string set to “AARN”. In addition, it extracts the associated private key and stores it in the .PVK file named “AARN.pvk”.

2. cert2spc.exe AARN.cer AARN.spc

A SPC certificate named “AARN.spc” will be created based on “AARN.cer”. This is actually a “packing” process, in which “AARN.cer” will be packed into “AARN.spc” for transport or storage. This SPC certificate will contain a folder which holds all the packed certificates.

3. pvkimprt.exe –pfx AARN.spc AARN.pvk

A PFX certificate will be created by combining the SPC certificate and the PVK file. The new PFX certificate will be called “AARN.pfx”. The command option “-pfx” specifies that the output certificate needs to be a .PFX one.

As mentioned earlier in tools section, there is another useful application called “selfcert.exe”. It is actually packaged with Microsoft Office suite. This will create a self-signed testing certificate with both public and private keys.

Using it is quite easy. After double-clicking it, type in the intended certificate name. An informational message will be shown if the certificate has been generated and loaded successfully.

[image: image7.png]& Create Digital Certificate

This program creates a sef-signed digtal certficate that bears the name you
type below, This ype of certficate daes not verky your dentity.

Since & sef-signed digtal certficate might be a forgery, users wil receive
Securty warning when they apen a il that contains a macra project wth a
<elF-signed signature,

Office wil oty allow you to trust sef-signed cerficate on the machine on
whichit was created.

& self-signed certfcateis oly for personal use. 1 you need an authenticated
code signing certficate for sigring commercialor broadly distributed macros, you
wilneed to contact a certicaton autharty.

Click here for s of commercial certicate authorites

Your certficate’s name:

Northwind Traders

After successful execution, the certificate will be loaded automatically in an appropriate certificate store.

Notes: Although it contains both public and private keys, the certificate created by this tool can not be exported as a PFX file, which means private key part can not be exported.

5.4 Certificate management and management tools
Management of digital certificates involves a set of functions and tasks, including viewing certificates and the associated attributes, importing/exporting certificates and removing certificates from certificate stores.

5.4.1 Importing & exporting of certificates

Most of certificates can be accessed directly from certificate file. However, due to security concerns of private key, PFX certificates are not accessible before they have been installed properly. Certificates need be installed appropriately into local certificate store before applications can access and use it. Certificate store provides a logical storage unit for certificates as well as a range of functions related with them. The term for certificate installation is import. At the other hand, export of certificates simply duplicates the selected certificate in store and save it in a file format. This enables transfer of a certificate among devices. Also, certificates can be removed from certificate store when, for example, expired.

Importing of a digital certificate can be done by one of the following ways:

· Double clicking on the certificate will bring up a window, which will assist installation of the certificate into an intended store

· Certmgr.exe enables certificate installation by providing users a set of certificate-related functions. Once the window is shown, clicking the “Import” button will bring up the import window.

· Internet Explorer provides access to certificate manager as well. The detailed path is: “Tools –> Internet Options –> Content –> Certificates”. The window displayed is actually the window of certmgr.exe.
Exporting a certificate is as easy as importing. Most certificate management tools provide certificate exporting function. However, care should be taken when exporting a certificate with a private key.

Notes: Because of the importance and sensitivity of the private key, user can choose whether to mark the private key exportable or not when importing a PFX certificate. Marking private key exportable will allow backing up and transport of it at a later time. When exporting a PFX certificate, user will be asked whether to export the private key. If option “do not export private key” is selected, private key will not be in the newly created certificate file. Therefore the type of the exported file is .CER or .P7B. At the other hand, if “export private key” is ticked, a new PFX certificate will be created in specified location. To enable better protection of private key, a password can be assigned for access control. If a password is set, it needs to be provided when both importing and exporting.

5.4.2 WseCertificate2.exe
The X.509 Certificate tool is shipped with WSE 2.0. WSE 2.0 is free for download from MSDN site. Once WSE 2.0 is installed properly, this tool can be found by following: Start (All Programs (Microsoft WSE 2.0 (X.509 Certificate Tool. Therefore, using this tool requires WSE2.0 being installed in the local machine. The X.509 Certificate tool displays details about X.509 certificates stored on the local computer. This information helps you diagnose configuration issues related to X.509 certificates. It can be used to view either details of an X.509 certificate or attributes of the file containing the private key for an X.509 certificate. It can

[image: image8.png]Choase Cerlficas

Cetficate Location Cunent User

Store Name. Other People

Cetficate Propetes

Subject
CN=WSE20uickStarClient

Key dentiiers

RFC3280 Key Identifer (Basef4 Encoded)
y0ZaLG)F dADPWEBagRIePdsTs=

Windaws Key Identfr (Basefd Encodec)
Bfo1 47MBCKnT BEMS UMY 4=

Piivate Key File

View Fivate Key File Propeties.

-|o

Open Carticate

There are 3 foms of Key Identfier The most
reliable source s from the Subiect Key Idertier
extensian in the cericate f this extension is
present. orly a single Key Identiier wil be shown. If
the estension is ol presert, two values willbe
showr; AFC3280 and Windows. The FFC3280
form offers best ineroperabiity and can be ensbled
using the useRFC3280 configualio seting. See
U tadne im and wee ondfles o er
etas

The private key fle i used by Windows to enciyat
data and very signatures. The spplcation mst
have permission to access this e, Use the key
file propeties 1o ad the appropiate permisions.

5.4.3 Certmgr.exe
The certificate Manager Tool manages certificates, certificate trust lists and certificate revocation lists. Through this tool, complete information of various kinds of certificates in all the certificate stores of local machine can be displayed. Furthermore, it can import new certificates, export certificates and remove any of them from any certificate store. There are some command line options to specify actions and attributes. It is one of the .NET security tools as well. It is shipped together with .NET 1.0/1.1. Actually, there is another shortcut to this tool. User can get the default (no options specified) certificate manager window from Internet Explorer following: Tools (Internet Options (Content (Certificates. This will bring up exactly the same form as does certmgr.exe when no options specified. More in-depth description is located at [certmgr.exe].

5.4.4 Certificates snap-in

This is another powerful certificates management tool. It is actually an instance of the Microsoft management Console, which is a built-in tool provided by Windows operating system. There are a set of steps needed to construct a console for certificate management purpose before using this snap-in. The steps are listed below [How to]:

· Click Start, and then click Run.

· In the Run box, type mmc, and then click OK.

· On the File menu, click Add/Remove Snap-in, and then click Add.
· Under Snap-in, double-click Certificates.
· Click My user account, and then click Finish.

Notes: This allows you to manage certificates for the current user.
Certificates – Current User appears on the list of selected snap-ins for the new console.
· Under Snap-in, double-click Certificates.
· Click Computer account, click Next, click Local computer, and then click Finish.

Notes: This allows you to manage local computer certificates.
· Click Close, and thenclickOK.
· To save this console, on the File menu, click Save.
This is the screen shot of it when running.

[image: image9.png]T fmm G o ol b |5/
o o[mE 2
3 Console Roat) [1ssuedTo Tssued By B
= D) Certificates - Current User [Easa.ECOM Root CA ABA,ECOM Root CA

=@ personal Eautoridad Certficadora dela Asodl... Autoridad Certficadora de la Asoci

Certficates
Trusted Root Certification Au

Enterprise Trust

rtermediate Certfication Aul
ctive Directory User Object
Trusted Publishers

Untrusted Certificates
Third-Party Root Certifcation
Trusted Peaple:

Other Peaple:

My.cer

Certificate Enrollment Reques
System

teststore

Certficates (Local Computer)
Personal

Trusted Root Certification Au v

<« |

Elautoridad Certificadora del Colegi,
(Eeatimore £2 by DST

(Elgelgacom E-Trust Primary CA

B cauw HKT Securshiet CA Class A
B cauw HKT Securehist CA Class B
B caw HKT Securehist CA Root.

(B cauw HKT Securshiet CA SGC Root
Blcat

Elcertiposte Classs A Persorne.
Elcertiposte Serveur

B cCertisign - Autoridads Certiicador.
B cCertisign - Autoridads Certiicador.
(Ecertisign Autoridade Certficadora
(Ecertisign Autoridade Certficadora
B Class 1 Primary CA

[E=Class 1 Public Primary Certification.

[E=)Class 1 Public Primary Certification.
< i

Autoridad Certficadora del Colegio
Baltimore EZ by DST

Belgacom E-Trust Primary CA

Ca HKT Secureliet CA Class &
Ca HKT Secureliet CA Class B
(Ca HKT Secureliet CA Raot
(Ca HKT Secureliet CA SGC Root
cat

Certiposte Classe A Persomne.
Certiposte Serveur

Certsgn - Autoridads Certficador:
Certsgn - Autoridads Certicador:
Certsign Autoridads Certiicadora
Certsign Autoridads Certiicadora
Class 1 Primary CA

Class 1 Publi Primary Certiication

Class 1 Public Primary Certficatian
3

Trusted Raok Certication Autharies store contains 107 certficates.

It provides a huge collection of certificate-related operations. Some of the most important functions are:

· Request and renew certificate with new or same key

· Set friendly name and description of certificates

· Set certificate purposes

· Import and export of certificates

Notes: In addition, this tool provides more complete view of different collections of certificates for both current user and local computer. According to my experimentation, some certificates, which are invisible in other tools, can be seen with this one.

5.5 Implementation of cryptographic functions

5.5.1 Programming environment

The main programming platform for this project is Visual Studio and programming language is C#.NET. Visual Studio 2003 is a great environment to perform coding and developing, except for some subjects. Digital certificate-based security is one of them. .NET 1.0/1.1, which is embedded in Visual Studio 2003, provides little support for modern cryptographic technologies, especially asymmetrical cryptography. It lacks:

· Extensive support for most of the types of digital certificates

· Proper certificate store handling and management

· Namespaces for asymmetrical cryptographic implementation

· Integrated solution for certificate-centered security functionality

Microsoft has provided another useful security package called “CAPICOM” to overcome the disadvantages and limits of .NET 1.0/1.1. It is an integrated solution combining digital certificate handling and certificate-based cryptography. It is used quite widely in the industry. Technically, CAPICOM is a COM component on top of the existing operating system. The Microsoft’s attitude towards COM components is leaving them as are, no future development and maintenance will be provided. This definitely will not make it a competent candidate for our project, let alone the executing efficiency.

Bearing the limits and disadvantages of .NET 1.0/1.1 in mind, I started looking for the next generation of integrated security solution. At the same time, Visual Studio 2005 came into my view. Visual Studio 2005 is the next generation programming IDE from Microsoft. Visual Studio 2005 has extended a set of existing classes based on the version of 2003, for example, X509Certificate2 based on the X509Certificate in Visual Studio 2003. Further more, it has introduced a huge collection of new namespaces as well as classes, such as X509Store class. Most importantly, .NET 2.0 supports more types of digital certificates than the previous versions.

Having seen all of the advantages and feedbacks, we decided to shift the main programming environment from Visual Studio 2003 to its 2005 version in the third phase of this project.

5.5.2 Related namespaces, classes and methods

There are two most important namespaces in my implementation of security features. They are:

· System.Security.Cryptography

This namespace provides cryptographic services, including secure encoding and decoding of data, as well as many other operations, such as hashing, random number generation, and message authentication. This is one of the most useful and important namespace for security-related operations. In this namespace, several classes are used to render the service.

· RSACryptoServiceProvider

RSA is one of the algorithms for public key encryption. It is more preferred than another algorithm, DSA. .NET creates a base class named “RSA” for all implementations of RSA to inherit. RSACryptoServiceProvider is one of the classes that implement the RSA algorithm provided by the cryptographic service provider. It performs asymmetric encryption/decryption, signing of data and verification of signature. The main methods include:
· SignData

This method computes the hash value of the specified data and signs it. The parameters used are the data bytes and the instance of hashing algorithms. This is a one-off method. Normally there are two steps in signing process. Firstly, the message needs to be signed and then the hash needs to be encrypted with asymmetrical encryption.

· VerifyData

This method verifies the specified signature data by comparing it to the signature computed for the specified data. The return value is a Boolean variable. Again, this is a very well-situated method. There is no need to decrypt the signature and compare it with the hash which is computed from the received message.

· Encrypt

This method encrypts the data with RSA algorithm. Parameters are the data that needs to be encrypted and a Boolean variable to specify the padding in encryption. Return type is byte array.

· Decrypt
This method is simply the countermover of “Encrypt” method. The main differences are one of the input parameters in encrypted data and the return value is decrypted data.
· SHA1CryptoServiceProvider & MD5CryptoServiceProvider
These classes are responsible for calculating the hash value of data based on the either SHA1 or MD5 algorithm. However, none of the methods is used in my code. The reason I have them in my program is I need to pass an instance of one of the hashing algorithms, on user’s request, to the “signData” method of the RSACryptoServiceProvider class.
· System.Security.Cryptography.X509Certificates
This namespace contains the common language runtime implementation of the Authenticode X.509 v.3 certificate. This certificate is signed with a private key that uniquely and positively identifies the holder of the certificate. In this project, this namespace is mainly used to access the information stored in certificates and certificate stores. Some of the important classes are:

· X509Store

X509Store class is added by .NET 2.0 in Visual Studio 2005. This class represents a physical X.509 certificate store, where certificates are persisted and managed. Generally, all the certificates are stored securely by operating system in certificate stores. There are many kinds of stores, such as root store and personal store. Different kinds of store are used to store certificates for different purposes and sources. X509Store class provides a full set of enumeration to cover most of the store types and locations in instance construction. The methods in this class cover almost all the necessary storage operations, including “Add”, “Remove”, “AddRange” and “RemoveRange”. They can be used to manipulate the logical representation of the underlying physical store.

· X509Certificate2
This is a new class in .NET 2.0. It extends the existing “X509Certificate” class in .NET 1.0/1.1. This class represents a X.509 certificate. There are a great number of utility methods, such as “Import” and “Display”. Further more, it has most of the fields in a digital certificate as properties, which will significantly help handling digital certificates. Some important properties are:

· PublicKey

This is a new property in .NET 2.0. It returns the public key associated with that certificate.

· HasPrivateKey

It returns a value indicating whether the given certificate contains a private key. This can be used as a check before accessing the private key.

· PrivateKey

This property will be used to get or set the AsymmetricAlgorithm object that represents the private key in the given certificate.
· X509Certificate2Collection
This class represents a collection of X.509 certificates. It provides separation of real certificate store and desired certificate collection. It has a range of operation for the collection handling. In my program, object of this class is used to store all the certificates out from a specific store. Then, some manipulation operations can be carried out on the collection without affecting the underlying certificate store.
5.5.3 Certificates and Certificate Stores
Thanks to Visual Studio 2005, access to certificates’ details and certificate stores has been made so effortless. With no more than 10 lines of code, almost all the fields of most of the certificates in different kinds of certificate stores can be accessed easily. There are 3 classes used for this purpose. The main contributing classes are: X509 Store, X509Certificate2 and X509Certificate2Collection. The following code snippet will serve as an example for illustration.

[image: image10.png]X503Store store = new X5035tore(StoreName.My, StorelLocation.CurrentUser);
store.Open (OpenFlags.Readonly) ;

X509Certificate2Collection storecollection = (XSO0SCertificate2Collection)store.Certificates;
Console.Writeline ("Store name: {0}", store.Name);:

Console.Writeline ("Store location: {0}", store.location):

X509Certificate2 x508 = storecollection(0]:

byte[] pky = x509.GetPublicKey():

The first two lines simply construct a store instance based on the given name and location and give the appropriate access permission. Then, a collection of certificates are created and retrieved from the specific store. The following two lines of “WriteLine” commands simply output the name and location of the store under use for the purpose of informing. Next, an instance of X509Certificate2 is created and loaded from the first certificate in that collection. For a testing purpose, the public key is read from that certificate.

From the above example, it is easy to discover that the certificate handling in .NET 2.0 is very simple and efficient. There are also other useful helper functions in those classes, such as “Verify” in X509Certificate2, which performs a X.509 chain validation using basic validation policy.

5.5.4 The Security Module

The security module is the security component I developed in Visual Studio 2005 to cater for the cryptographic needs for this project. It performs basic encryption/decryption, signing and verification of the signature based on the asymmetrical cryptography.

5.5.4.1 Design

Because of the confidentiality and sensitivity of private keys in digital certificates, the design of asymmetrical cryptographic service provider needs special attention and great care. After consulting some of my group members, I collected some important and very helpful suggestions in the design of security components. Typically, for example, whenever a signature is required, the program will go to the certificate store, get the intended certificate, fetch the private key straight out and sign the message. Under normal circumstances, it would work well and safe. However, what if the computer is on the internet and is under the threatening of viruses, let alone the misuse of private key by users. In this case, it is possible that information of the private key could be stolen or destroyed, which can cause further damage on the interest of the organization!

The design of my security module is quite different. The biggest difference is: private keys are hidden from the users who perform the cryptographic tasks. This is achieved by itemizing the intended certificate as one of the parameters, NOT its private key! In this case, users do not need to do any private key extraction task; rather, it is securely done by the security module. The benefits of this design are many folds:

· It hides private keys from outside, hence, improves the security of certificate information

· It eliminates the needs of private key extraction for users, therefore, reduces the possibility of the harm caused by misuse and carelessness in private key handling

What user needs to do, for example, in signing a message, is simply to pass in the certificate, the message and the type of hashing algorithm, and he will get the corresponding signature as the return value.

Currently, there are only 4 static methods in this module. They are: “GenerateSig”, “VerifySig”, “Encrypt” and “Decrypt”. Their functionality and implementation is discussed in following sections.
5.5.4.2 Encrypt and Decrypt

These two methods are responsible for encryption and decryption of messages.

“Encrypt” method has 3 items as its parameters, the certificate to encrypt with, data to encrypt and a Boolean variable to distinguish whether to use private key of the given certificate for encryption. The return value is the encrypted data in byte array. The main steps of doing encryption are:

· Initially, the appropriate key will be fetched from the given certificate depending on the user’s request. If user wants to encrypt with the private key in the certificate, program will check if the private key is extractable from the provided certificate. If not, it will notify the user about this. After being retrieved successfully, the obtained key will be loaded as an instance of RSACryptoServiceProvider.

· Finally, by a call to method “Encrypt” with the message data and a proper fOAEP variable as parameters, encrypted message will be available as the return value. fOAEP is a Boolean variable, the “Encrypt” method performs direct RSA encryption using OAEP padding (which is only available in Windows XP or later) when set to true; otherwise, it uses PKCS #1.5 padding when set to false.

“Decrypt” is just the countermove of “Encrypt”. It shares fairly similar steps and parameters with “Encrypt” method, with encrypted message passed in and return value as the decrypted message.

5.5.4.3 GenerateSig and VerifySig

“GenerateSig” deals with digital signature generation; at the other hand, “VerifySig” verifies the received signature.

Generation of signature is slightly more complicated than encryption/decryption operations. The parameters are: the certificate to sign with, the data to be signed and name of the intended hashing algorithm. There are only 2 options for the hashing algorithms, one is MD5 and the other is SHA1. Since signature is generated only with the private key of the sender, there is no need to provide key options for user to choose. Once finished, the signature will be returned in the return value. The main steps of signing are listed:

· Firstly, check if the given certificate contains a private key. If not, notify the user; otherwise, load the obtained private key into an instance of the RSACryptoServiceProvider class.

· Based on the user’s request on hashing algorithm, choose the appropriate one for signature creation.

· With a call to “SignData” method from RSACryptoServiceProvider class, the exact digital signature will be generated and returned in the return value.

The verification of signature mirrors most of the parts in generation method. It takes a certificate, the received data, the received signature and the corresponding hashing algorithm as parameters. The return type is Boolean, with true for that signature has been verified valid, otherwise, false for invalid signature. Basically, it follows the same steps in the above, except:

· Because of the nature of signature verification, only public key is needed.

· The method to call in verification is “VerifyData”

· When verifying, the received data as well as the signature need to be passed as parameters

· The return value is a Boolean variable.

5.6 Summary of Achievements
In this phase of the project, I have done extensive research in various certificate-related topics. In this part, I studied a number of topics, such as how to create testing certificates and how to manage certificates based on existing tools. Further more, a new test harness has been developed to provide asymmetric cryptographic services based on digital certificates. This module could serve as an experimentation and study platform for further research and development.
The tasks in this phase are mainly performed by me with suggestion and help from other group members and other sources, including authors of internet articles and internet communities.
6.
Learning & Issues
6.1
Learning
Having participating in this project team for 2 months, I have learned a number of valuable lessons and pieces of helpful ideas. Some of them are listed below:
· Communication skills, including presentation skills
This project involves lots of extensive discussions, brief presentations and demonstrations and short report writing. By participating in this project, I have sharpened many of my communication skills.

· Recognition of importance of every single stage in software development
The study of software development lifecycle can be dated back 2 years ago. I studied various aspects of each stage in the lifecycle. However, understanding of them was quite weak, because of no practical application of theoretical knowledge. Fortunately, this project is a very good learning place to realize the importance of every single stage in the development lifecycle, because it has many typical phases from a typical software lifecycle.
· Time management and conflicts resolution

Time management is a very helpful skill in project management and organization. It tries to keep the project on track of planned timeframe. This project team has scored very well in this aspect. The project progress is ahead of schedule! Because of this, I have experienced and learned many good time management skills. More than time management, conflicts resolution is quite important as well. It can be used as a complement to time management to for keeping project moving correctly and expectedly.
· Indispensability of well-prepared documentation

This is another great lesson I studied from this project. This happened when I was trying to evaluate the tester program. As I said earlier, there is hardly any formal documentation in the package. User has to find his way through all by himself!
· In-depth knowledge of AS2 specification

Obviously, after stages of exposure and study, I have studied lots of technical knowledge about AS2. This builds a very concrete foundation for later coding and testing jobs.

· Knowledge of basic e-commerce conceptions and mechanism

Electronic commerce was really a hard term to me. Thanks to this project, it provides me a great amount of exposure and experience of e-commerce material, including some basic ideas behind and primary operation mechanisms. They will definitely make me very advantageous in my future career.
· Deep understanding of digital certificate
This includes structure of digital certificates, various fields of digital certificates, purposes of various types of certificates, generation of basic testing certificates, management of extensive types of digital certificates in various kinds of certificate stores and other related topics.

· Implementation of real world security issues

Discussion of design of real world security really teaches me a lesson. Consideration of requirements and conditions of the security implementation is very valuable. Surely, extensive API, especially beta .NET 2.0 API, hunting experience will help me in later programming tasks. Finally, it exposes me to the new generation of Microsoft programming environment and technology as well as c sharp programming skills.
6.2
Issues
Admittedly, there are definitely some issues noticed while project progresses. Although they are not so serious as to stop the project, they can affect movement and quality of it. Some of them are listed and discussed below:
· Time

Time is always a problem to anything. This project is no different. The workload of the past semester was quite heavy. Luckily, the first phase is mainly about researching. It was mainly done at some casual times which suitable to me. Personal time management has been very important to me, and it is one of the winning factors.

· Limitedness of resources
This issue can be divided into 2 folds. One is technical resources, the other is human resources. It mainly happens in the third phase of the project. In this stage, I was assigned to do research and development in topics of asymmetric cryptography. However, the main programming IDE has been shifted to the latest version of Visual Studio, which is still in beta version. When I was programming, I felt the limitedness of the technical support from all sorts of sources, including official Microsoft web sites. Additionally, in the third stage, a member of our team was unavailable for one and half month. These factors really have hindered the progress of the project.
7.
Project Summary & Future Tasks

7.1 Project Summary

Generally, this project went very smoothly and successfully. The company has obtained the first version of valid AS2 communicator. This is a very important concept. It serves as a framework for later development. Once a feature is completed, it can be plugged into the main framework to form up a more complete AS2 until all features are implemented. Plus, a testing harness of asymmetric cryptography has been developed for the purpose of research and experimentation of cryptographic topics in the near future, let alone those valuable documentations of various topics, such as setting up of AS2 and how to create testing certificates. To myself, I have learned a set of very valuable industry experience, exposed myself to state-of-the-art technology as well as industrial contacts.
However, there are some things that have not gone very ideally. The biggest stain in this project is that it falls behind the planned schedule. Originally, it was scheduled to have 4 distinct phases. However, only three phases are finished at the time when I finish my part. The main human resource reasons can be the early leave of the other 2 engineering students and the unavailability of main project organizer and liaison during the third stage of this project. The technical reason of the schedule slip could be that we decided not to extend the existing security framework, instead, to explore in the new generation Microsoft IDE.
7.2 Future Tasks
7.2.1 Investigation into Visual Studio 2005 beta API
Since the Visual Studio 2005 is still in beta version when I finish my part in this project, a number of namespaces and classes in API are finished or incomplete yet. For example, when I was doing searching and hunting in that API, I found a very useful class called “SignedCMS” under the namespace of System.Cryptography.PKCS. However, both the documentation and examples are not finished. Hence, I did not use this class to implement my security module. But, I strongly recommend this namespace to the project participators, especially in security part, in the future development.
7.2.2 Integration of security module
The next step of the development of AS2 framework would be the integration of the completed test harness security module into the main structure. Ideally, this would be carried out with formal documentations from authorities, such as IETF. The reason for following the documentations is that the security MIME header values as well as the message structure are absent in module and are needed in transactions. It is a safe manner to follow the defined industry approach and compatible documentations.
8.
Conclusion

In this summary report for BTECH 450 project, I firstly introduced the background information of this project, including a company description, brief project introduction and introduction of group members. After that, the topic of this project, AS2 has been discussed in a broad scope in chapter 2; primary subjects include main features of AS2, operation mechanism and potential weaknesses. According to the time frame, the summary has been divided into three sections, which cover jobs done in all the three phases respectively. In each achievement section, phase description introduces the whole phase, main work completed follows up and a short summary of the phase concludes the section. Besides the achievements, major learning as well as issues encountered is explained afterwards. Lastly, the whole project is summarized and possible future tasks are briefly discussed.
9.
References

[EDIS]

official company site: http://www.edisinternational.com
[Barry]

his email: barry@aarn.biz
[Gerald]

his personal web site: http://ww.cs.auckland.ac.nz/~gerald
[Christof]

his email is: lutteroth@cs.auckland.ac.nz
[Some Guidelines]

it is called Some Guidelines for Non-repudiation Protocols; it is published by Panagiotis Louridas, whose address is 38 Domboli St Athens Greece and the email is: louridas@acm.org
[Draft 2004]

internet-draft of AS2, by D. Moberg and R. Drummond, published in 21 Dec 2004, expires in May 2005

Webpage:
 http://www.ietf.org/internet-drafts/draft-ietf-ediint-as2-20.txt
[EDIINT]

page of EDIINT Working Group under IETF

Webpage: http://www.ietf.org/html.charters/ediint-charter.html
[IESG]

it is called Internet Engineering Steering Group; it is responsible for technical management of IETF activities and the Internet standards process.

[UCC]

it is called The Uniform Code Council, Inc.; it is a not-for-profit standards organization; The UCC administers the Universal Product Code (U.P.C.) and provides a full range of integrated standards and business solutions for member companies doing business in major industries; the homepage is: http://www.uc-council.org
[Drummond]

an independent company who provides various kinds of testing in a vendor-neutral approach for different protocols from numerous companies, the homepage is: http://www.drummondgroup.com
[SHA1]

Secure Hash Algorithm; it is a cryptographic message digest algorithm; it is developed by NIST, along with the NSA, for use with the Digital Signature Standard (DSS) is specified within the Secure Hash Standard (SHS) National Institute of Standards and Technology (NIST).

[MD5]

it is a secure, one-way hash algorithm used in conjunction with digital signature

[EDI over the Internet FAQ]
another whitepaper published by softcare, it is located at: http://www.softcare.com/WhitePapers/WhitePaper_Feb2004_AS2.htm
[AS2 for retailers]

a whitepaper published by softcare, and it could be reached from this link: http://www.softcare.com/WhitePapers/WhitePaper_July2004_AS2-For-Retailers.htm
[FOLDOC]

a free online dictionary for computing; the homepage is: http://foldoc.doc.ic.ac.uk/foldoc/index.html
[RC2128]

an encryption algorithm; it uses 128-bit keys, thus, it is a stronger and more secure algorithm.

[DIP]

an EDI and Electronic Commerce company; it supplies many EDI and Communication software to many industry sectors; its homepage is: www.dip.co.uk
[Software Price]

the pricing information of WebSphere Business Integration Connect Advance Edition is located at: http://www-306.ibm.com/software/info/ecatalog/en_NZ/products/B106359C44485L53.html
[RFC.NET]

a website specifically designed to hold the information of different RFCs, STDs and BCPs, its homepage is: http://www.rfc.net
[RFC 3798]

a RFC document, numbered as 3798, can be found in [RFC.NET]

[OpenAS2]

it is an open source development website for AS2, the homepage is: http://www.openas2.org
[ICT Report]

this is the report that I have done in ICT Academy, its full title is “Analysis of Development of AS2 in EDIS”

[Understanding]

Understanding the role of the PKI; it is located at: http://www.windowsecurity.com/articles/Understanding_the_Role_of_the_PKI.html
[X.509 certificate in .NET]

an article introduces different kinds of certificates and the usage associated with them; it can be found at: http://www.codeproject.com/useritems/X509Certificate.asp
[How to]

WSE2.0 documentation; it can be reached at: http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wse/html/21eb7fb5-bd11-4cce-be0c-7b3d0cd14acb.asp
[certmgr.exe]
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cptools/html/cpgrfcertificatemanagertoolcertmgrexe.asp
PAGE
55

