BTech project report iSCSI test and in use v0.2

22 April 2004

Cases of iSCSI Systems tested and in use

Cases of iSCSI Systems tested
1. Design, Implementation, and performance analysis of the ISCSI protocol for SCSI over TCP/IP
SCSI

· SCSI device identified by ID

· Logical Units present within the SCSI device
· Logical Unit Numbers: for logical addressing
Storage Area Network

[image: image1]
iSCSI Initiator Implementation
[image: image2.png]INITIATOR

03T fio-level
() e ot

condiogin commandscal
Commaind, 5C31 Datg-Ont ar
otk Kfh Comman dio tarpet
i 1

Trom Tarset

Toceiw login reaponck, R2T,
Logi rebponse, 5051 Pata-

Ot ST respenuc of Task
Mgt rdporse o atacget

SSCSI Low. Level Driv er(LLD)

Resources Used For Testing
The facilities for the thesis project are provided by the InterOperability Lab, University of New Hampshire. The resources used for this project are two high speed Linux PCs, one serving as an initiator and other as an target. The initiator system has a Gigabit Ethernet Network Interface Card (Company: Alteon Acenic) to connect to the target. The target 2 system has a Gigabit Ethernet Network Interface Card (Company: Alteon Acenic card) to connect to the initiator and a Fiber Channel Card (Company: Qlogic Corporation ISP2200 A) to connect to a Fiber Channel Disk
SCSI Over Network

[image: image3]
Performance Metrics & Variables
· Metrics: Bandwidth, Latency and % CPU utilization

· Variables

· Initiator Scatter-Gather List Size

· Ethernet Link Speed

· Target Sector Size

· Header & Data Digests

· TCP Nagle Algorithm

Conclusions
Design and Implementation

This thesis presents a general architecture for implementing Session Layer Protocols on

the initiator complaint with their latest draft versions. The existing target emulator is

modified and extended to support the additional features specified in the latest iSCSI

draft. The SEP initiator follows a synchronous model where the Low-Level Driver (LLD) can handle a single command at a given time. The SEP LLD processes the command completely before accepting the next command. A single thread is used for sending and receiving SEP PDUs. The iSCSI initiator follows an asynchronous model.
Unlike the SEP LLD, the iSCSI LLD can handle multiple commands at a given time. Two threads, one for receiving and the other for transmitting, are used to communicate with the target.

Performance Analysis

The Performance Parameters that affect the bandwidth for WRITE operations are:

• Block Size

• Ethernet Link Speed

• Ethernet Packet Size

• Maximum PDU size for iSCSI Protocol

The Performance Parameters that do not affect the bandwidth for WRITE operations are:

• Target Domain

• Scatter-Gather List Size

• Coalescing Interrupts

• Queuing Length for Initiator Low-Level Driver

On a Fast Ethernet Link, the recorded bandwidth for WRITE operation is 10 MB/s, using 86 % of the maximum bandwidth possible at 11.2 MB/s. On a Gigabit Ethernet link, the absolute bandwidth increased to 21 MB/s but the percentage bandwidth utilization is only 19 %, of the maximum possible bandwidth at 112 MB/s.

The Nagle Algorithm should be turned OFF when doing READ/WRITE operations in

order to gain high bandwidth and low latency.

(ftp://ftp.iol.unh.edu/pub/iscsi/tr0106.pdf)
3. An Analysis of iSCSI for Use in Distributed File System Design
The iSCSI protocol has two halves to it - the initiator resides on a client computer, and sends commands to the iSCSI target. The target performs the work requested by the initiator, and sends a reply back. All communications take place via TCP/IP.

[image: image4.png]ClientsT

Cisco”
Catalyst
29500

— =
= Cisco SN542 = il
— iSCSIGateway. o
=
= Cisco EMCT
L Catalyst 500 SymmetrixZ
38300
ServerZ

Figure 1= Experimental Environment

The research presented herein was performed in its entirety in a live environment, the Wisconsin Advanced Internet Laboratory (WAIL) at the University of Wisconsin-Madison.
As shown in the figure, the environment includes multiple end hosts to serve as clients and a server, two Ethernet switches, an iSCSI gateway device, and an enterprise-class networked-storage device. Each end host runs Linux kernel version 2.4.20 and the iSCSI driver version 2.1.2.9 from the linux-iscsi SourceForge project. Each host also has the same hardware configuration: a 2.0 GHz Intel Pentium4 processor, 1 GB RAM, an Intel Pro/1000T Gigabit Ethernet adapter, a 3Com 3C905-TX-M Ethernet adapter, and a 40 GB IDE hard disk. The two

Ethernet switches are a 100BaseT Cisco Catalyst 2950 used for standard communication between the end hosts and a 1000BaseT Cisco Catalyst 6500 for communication with the iSCSI gateway. The iSCSI gateway is a Cisco SN5428 Storage Router, and is connected using Fiber Channel-Arbitrated Loop (FC-AL) to the EMC Symmetrix 3830 networked-storage device.
In this experiment, we have done an in-depth analysis of iSCSI protocol and a system-level characterization of an iSCSI initiator. The protocol has quite high overhead. For high performance servers, replacing server-attached storage with storage accessed via iSCSI may not be a good option. Most of the overhead is caused by Gigabit Ethernet interrupt handling. Turning on jumbo packet reduces the read overhead by 50 %. For wide-area use this may not be possible because the path MTU is usually much less than 9000 bytes. The jumbo packet option does not seem to reduce the overhead in case of write. We think a detailed analysis of the Gigabit Ethernet driver and the DMA interface would shed light on why this is the case and what might be done. We think iSCSI can be used to build a distributed file system in a trusted environment like a cluster. The performance overhead of iSCSI is comparable to that of NFS and iSCSI scales better than NFS. To reduce the overhead of network processing, the file system should cache aggressively and employ a strong consistency model like that of AFS. Such a file system built on top of iSCSI would be suitable for data intensive applications being run on clusters.
(http://www.cs.wisc.edu/~mjbrim/personal/classes/740/paper.pdf)
The Maximum Transmission Unit (MTU) is a parameter that determines the largest datagram than can be transmitted by an IP interface (without it needing to be broken down into smaller units). The MTU should be larger than the largest datagram you wish to transmit unfragmented. Note: this only prevents fragmentation locally. Some other link in the path may have a smaller MTU: the datagram will be fragmented at that point. Typical values are 1500 bytes for an ethernet interface, or 576 bytes for a SLIP interface.
(www.tldp.org/HOWTO/Net-HOWTO/c2524.html)
Cases of iSCSI Systems in use
1.CISCO iSCSI Architecture
[image: image5.png]a

XM @®E® FEQ GEE IAD MM *

O O NRAG Prr vz @ @ 22 8-Up e @

itk ©) €] 6: \report4ireport4\a. hin B> B
Host

y 4

| Applications . Database

SCSI/TCP Server.
| SCSl Driver

TCP/IP

Gigabit Ethernet

Fibre Channel
Hub or Switch

Disk Array

E_NIATL_D4 & 1895, Cissa Systams, o WWW.CISCO.com
<

"

© Tnternat

© % > [=) [= ' a &)

(http://hsi.web.cern.ch/HSI/HNF-Europe/Workshop2001/Presentations/CERN-iSCSI-wdey/)
2.Remote data access
[image: image6.png]2 Remote Data Access - Microsoft Internet Explorer

Fie Edt Vew Favortes Took Help 13
Q- © N B O] P oo @t @2 B B-UEA B
adiress [) Fiaponsieponsiiz v B
City B's servers ——4
with iSCSI
City A’s servers ;NMZOR i
And SAN orage Rolter: /—\ .
// /
h Network)
City stora
120GB 80% utilized
<) T I 3 N

(http://hsi.web.cern.ch/HSI/HNF-Europe/Workshop2001/Presentations/CERN-iSCSI-wdey/)
SCSI bus

ID 0

ID 7

LUN 3

LUN 2

LUN 1

LUN 0

INITIATORRRR

(Host)

TARGET

Hard disk

SCSI HBA Driver

iSCSI

Subsystem

SCSI

Network Stack

Network Stack

Transport Network

Disk

iSCSI Subsystem

SCSI

File System

User Application

Initiator

Target Emulator

Disk

Application

Client 2

Block Access Protocol

Application

Client 1

SAN

PAGE
1
Jeff

