Btech Project Report

APT and RPM v0.1

6 July 04

APT and RPM
1. Definition:

RPM (Redhat package manager): A software package manager that was developed by Red Hat. It can be used to build, install, query, verify, update, and uninstall software packages. All software updates from RHN are delivered in RPM format.
(http://www.jp.redhat.com/manual/RHN/glossary.html)
APT (Advanced package tool): is a package management system created by the Debian project.

(http://en.wikipedia.org/wiki/Advanced_Packaging_Tool)

2. Compare APT with RPM
RPM and Debian packages ruled the world, the first adopted by the vast majority of commercial Linux distributions. In a quick glance, the two systems are just two implementations of the same idea, with no major differences. A few details, however, make a big difference in the auto-updating process.

We first met automatic package retrieval and installation in the form of apt-get. Debian users are glad to have such a wonderful tool. One step ahead of package management, users can now keep all their packages up-to-date, and add/remove packages tied to an intricate dependency graph, by issuing a single command.

(http://freshmeat.net/articles/view/182/)

(by Claudio Matsuoka, in Editorials - Sat, Sep 16th 2000 23:59 PDT)
The major advantage of APT is dependency management.Dependency management is an important feature of package management systems. It helps keep system consistency, making sure that everything needed for a certain piece of software to work is there, in the expected version.

But tools such as rpm or dpkg have limited handling of dependencies. They're limited to figuring what dependencies a package has and telling the user that an operation effecting that package cannot be performed until all dependencies are met.
Similar scenarios can be found for package removal, since a package cannot be uninstalled until any and all packages that depend on it are removed first.

Package upgrade is similar to installation; it is not enough to simply get the newest version and install. The newer package might have different dependencies from the old one, requiring different or new versions of certain packages.

It's clear that such tasks could and should be performed automatically by the package manager, not the user, and that's what APT (the Advanced Package Tool) does. It can install, uninstall, and upgrade packages, automatically handling dependency calculation and package download.

APT was initially written by Debian developers (Brian White, Jason Gunthorpe, and contributors), and, therefore, it first only supported Debian systems and its dpkg package manager. Although it has been written to be fairly independent of the underlying package management system, nobody had written a RPM backend for it. Instead, many independent efforts have created different software to perform similar tasks in systems that use RPM.

autorpm, rpmfind, up2date/RHUN, urpmi/rpmdrake/Mandrake Update, and many others all do similar tasks. The following table gives a comparative overview of the features present in each tool:

	
	APT
	autorpm
	rpmfind
	up2date/RHUN
	drake/urpmi

	Package download
	Yes
	Yes
	Yes
	Yes
	Yes

	Depend. resolution
	Yes
	No
	Yes
	Yes(1)
	Yes(1)

	Package installation
	Yes
	No
	Yes
	No
	Yes

	Package uninstallation
	Yes
	No
	No
	No
	Yes

	Package upgrade
	Yes
	Yes
	Yes
	Yes
	Yes

	System upgrade
	Yes
	No
	Yes
	Yes
	Yes

	Std.http/ftp server(2)
	Yes
	Yes
	No
	No
	Yes

	Command line interface
	Yes
	Yes
	Yes
	No
	Yes

	Curses based interface
	Yes
	No
	No
	No
	No

	X11 interface
	Yes
	No
	Yes
	Yes
	Yes

	Non-inter. operation
	Yes
	No
	Yes
	Yes
	No

	Package authent.
	Yes(4)
	No
	Yes
	?
	Yes

	Mirror authent.(3)
	Yes(4)
	?
	?
	?
	?

	Upgrade importance(5)
	Yes(4)
	No
	?
	Yes
	Yes

1. Dependency resolution is available up to a fixed/configurable number of passes.

2. Normally, all tools require a special package index file on the server. That file contains information about the available packages, but they are ordinary files downloadable through a modified FTP or HTTP server, allowing easy setup of mirror sites.

3. Package authentication automatically verifies whether the downloaded package is really what the vendor has provided. Mirror authentication verifies whether the contents of a mirror is the same as the contents of the original site.

4. This feature was added to the RPM-enabled version of APT, but has not been ported to the mainstream/official version yet.

5. When a package is being upgraded, show what the update is about. This is useful when the user wants to know whether an update is security-related or just an enhancement.

APT seems to be better-featured than its RPM-specific counterparts, and after a quick empirical evaluation, it also seems to be faster. Because of this, an RPM backend was written for APT, which enables APT to be used to install RPM packages in RPM-based systems such as Conectiva, Mandrake, Red Hat, and SuSE. Most, if not all, third-party tools based on APT can also be ported with relatively little effort to work with RPM packages.

(http://freshmeat.net/articles/view/192/)
(by Alfredo K. Kojima, in Editorials - Sat, Dec 2nd 2000 23:59 PDT)
However, RPM has many other advantages

· RPM has a huge install base and is widely supported by many vendors and developers. Switching is not cost-effective. RPM is one of the major standards (the other being .deb), and you can't simply drop it.

· RPM has a big acceptance among users and developers. Forcing them to change is not possible or desirable.

· The changes required to have a smoother integration with apt-get are mostly in the packaging policy; the changes needed in the tool itself are not great.

· Buildmasters and packaging people like file dependencies and consider them a Good Thing(tm).

· RPM has features not available in .deb, such as the ability to keep different versions of the same package installed as long as they don't overlap in the filesystem.

· RPM may be adopted as an LSB standard.
(http://freshmeat.net/articles/view/182/)

(by Claudio Matsuoka, in Editorials - Sat, Sep 16th 2000 23:59 PDT)
3. Some APT Implementation Details
The most important features of a package manager are common to RPM and dpkg -- dependencies, versioning, informational metadata, and other features are present in both -- but certain features that are exclusive to either did not have a straightforward implementation.
Deferred configuration:

dpkg keeps track of the state of package installation and configuration; packages can be tagged as installed (meaning unpacked and configured), half-installed, not-installed, unpacked, half-configured and config-files(-installed) (only configuration files remain in the system, from a package that has been removed but not purged). In a similar way, there are package selection states and package flags[1]. Package states allow dpkg to hand the package configuration task over to debconf[2,3] and get a "smooth", interactive (at user-selectable levels), or non-interactive installation and upgrade[4]. RPM can be considered to recognize packages in two states: installed and not-installed. The other states were ignored in the port, since interactive configuration is not currently being handled. An additional state tag could be added to RPM, in the event that such a feature is implemented in the future.

File dependencies

File dependencies is a feature that's present in the RPM format but not in deb. It allows a package to require specific files, instead of packages. The problem is that these dependencies are not present in the list of things provided by the packages. RPM uses information from the list of files in the packages to handle them. The adopted solution was to find all files required by packages and add them to the provides list of the appropriate packages. The disadvantage of this is the significant growth of the package index file, but that problem can be minimized by stripping files that are known to never appear in file dependencies (they're automatically detected when RPM is building the package).

rpmlib dependencies

RPM has some special dependencies for requiring some features that are not present in some versions of RPM itself. They're not provided by the RPM package and are treated as a special case by rpmlib, which individually checks these dependencies against a list of features compiled into rpmlib. APT handles that by simply ignoring all such features present in the requires list of packages that rpmlib reports.

ORed dependencies

This feature is only present in deb, but absence of it in RPM does not pose any problem for APT.

Package priority

Package priority is an important feature of deb (at least when used with APT) that's absent in RPM. Package priorities tell how important the package is for the system and are used in situations such as when APT needs to choose which package it should install or remove to satisfy some dependency. The ideal solution for this problem would be to add an equivalent tag in RPM, but since backward compatibility with existing packages is desired, it was decided to use a file containing a list of all packages and their respective priorities. That file must list at least the important and essential packages for the distribution being used. A default priority of "standard" is used for other packages.

Essential packages

The essential tag of deb is used by APT to determine whether a package can be removed. If the user attempts to remove a package like glibc or bash, it will issue a warning and ask for confirmation. Again, the ideal solution would be to add such a tag in RPM, but the current solution is to mark all packages with a "required" priority as essential.

Multiple simultaneously installed versions of a package

Debian does not allow two versions of the same packages to be concurrently installed in the system, and APT does not handle that. In that system, packages that are frequently duplicated, such as the kernel or ncurses, are provided with different package names, like kernel2_2_17, or ncurses4 and ncurses5. Adding support for that case in APT would require a substantial amount of work and code rewriting. The ideal alternative would be to establish a packaging policy stating that packages that can be installed concurrently should have different names, but, again, the question of backwards compatibility is raised. Therefore, a not-so-elegant workaround was adopted: the user is required to tell APT what packages are expected to be duplicated in the system (the most common case of the kernel is handled by default), and APT will treat each version of such packages as distinct from the others.

Architecture variations

Some RPM packages have versions compiled with optimizations that are specific to a variation of an architecture. For example, the kernel may have packages compiled for i586 and i686, in addition to the generic i386 package. This is handled by detecting what packages have multiple available "sub-architectures" and treating such packages as distinct, as in the previous case. The appropriate package, depending on the specific architecture of the machine, will be used.

Multiple distributions

Some skeptical critics of the RPM port of APT have raised the issue of multiple vendors providing RPM packages, while Debian (supposedly) has a central and unique provider; they think this would create confusion and pose a threat to system integrity, due to possible incompatibilities in packages provided by different vendors. Firstly, the fact of having multiple vendors for packages is not exclusive to RPM-based systems. deb packages can be obtained from Debian developers, Corel, Stormix, and whatever other Debian-based distributions may exist [not to mention all the programmers who provide their own debs for projects that haven't made it into Debian yet, or for versions newer than the ones in Debian. -- Ed.]. Secondly, it is trivial to add a check in APT to optionally refuse installation of packages not built for the same distribution as the one in use, which makes such claim bogus.

(http://freshmeat.net/articles/view/192/)
(by Alfredo K. Kojima, in Editorials - Sat, Dec 2nd 2000 23:59 PDT)

4. APT for RPM based distributions (APT4RPM)

It is a tool to convert an rpm repository into an apt repository.

APT has been ported from Debian to the rpm based distribution of Conectiva. After the port completed succesfully, Conectiva now uses APT as package management in their distribution. So why is apt4rpm still needed, you may ask? It's not needed anymore for the Conectiva distribution, but for all the other rpm based distributions. Apt needs a defined package repository to work from, and if the distribution you're using does not set up the APT repository on their CD's, or download servers you must create the repository yourself. This is where apt4rpm comes to rescue!

Apt4rpm brings the following features:

· Support for multiple distributions/versions/architectures in a single apt repository.

· "Atomic" switching from an old apt repository to the newly created one.

· Analyzes the rpm packages in the rpm repository and creates a unified apt package name. This mechanism uses caching to speed up the creation of a subsequent created apt repository. The rpm name, version and architecture are stored seperately in the cache. This makes it possible to easily search for 1 particular rpm throughout the whole apt repository.

· Can create signed repositories.

· Can mirror download server directories after downloading the apt repository will be created.

· Can be run without root priveledge.

· If possible it will mark a package as a security update, and will put it in the "security" component of the apt repository.

· Provides an example sources.list file for the "file:", "ftp://" and "http://" method.

· The apt repository is created with links from the rpm repository. The rpm repository can have any format. Rpms can be filtered with accept/reject rules.

· Creates seperated binary, patch and source rpms components automatically.

· A single XML formatted config file

· The existing apt repository component is preserved if the underlying rpm repository did not change. This prevents unneccessary downloads by the apt client and saves resources at the server.

· The source-rpm apt components can be provided in a flat or noflat structure. Switching between those 2 can be performed without problem.

· A most recent rpm list can be created for each component.

· A contents list is created for the whole apt repository.

So how it works? As stated in the introduction apt4rpm will create a local APT repository from an ordinary rpm repository. It's doing this by linking the rpm packages in the rpm repository into an APT repository. After the APT repository has been set up, the APT database will created. The system is now ready and can be used. Without updates from your distributor you'll soon have an ancient system. For this reason apt4rpm can also be instructed to mirror your distributor's download/update server, or any other server you want to keep track off. After downloading the latest updates, apt4rpm will update your local APT repository and you're now able to upgrade your system with a single command.

(http://apt4rpm.sourceforge.net/)
PAGE
6
Jeff

