BTECH Project 8/9/2004

DUnit Research

What is DUnit?

DUnit originates from an eXtreme Programming module which tests the developers’ code and confirms that the code or module does what it should. DUnit is a member of the *Unit family for all the different programming languages
Concept
Write your test harness first and expect your code to fail before implementation. After implementation, ALL tests should pass. If you can think of different scenarios, write the test cases, testing for the correct results. When a bug is found, the developer will only test that bug once manually because he MUST write a test case to keep testing for that bug in the future.
Refactoring
Do not break the software when we review and optimize the code. If we have complete test harnesses, this gives us a lot of opportunity to modify (for the better) existing code but ensuring that the process does not affect the end result.
Example TCounter
The example is to create a simple Counting object called TCounter which takes in an input value and when functions like double, factorial, power are called, it will do the operation on the value and also return the values.
Steps to create test harness:
1. Make a New project

2. Remove Unit1 (the default Form unit) from the Project

3. Add GUITestRunner and TestFrameWork to the project
4. Replace Application.Initialize and Application.Run with GUITestRunner.runRegisteredTests

5. The project code should look something like the code below:

uses

 CounterCls in 'CounterCls.pas',,

 CounterTest in 'CounterTest.pas',,

 TestFramework in '..\..\..\Tests\DUnit\TestFramework.pas',

 GUITestRunner in '..\..\..\Tests\DUnit\GUITestRunner.pas' {GUITestRunner};

{$R *.res}

begin

end
UML diagram of Counter class
[image: image1.png]TObject TTestCase
\ #SetUp

#TearDown
+Check(test: Bool; msg: str)

TCounterTest

TCounter

+ input: real #mCourter #SetUp
— | = #TearDown
+ Doublett: real + testDoublelt
+ Powerlt: real

+ Factoriallt: real

+ testPowerlt
+ testFactoriallt

Example Test Plan for DoubleIt

1. Set the input to 5

2. Check that DoubleIt is 10

3. Check larger numbers of Doubleit

4. Check Fractions of double it

5. Check negative numbers of DoubleIt
Codes of testDouble

begin

 with mCounter do
 begin
 input := 5;
 Check(input = 5, 'input should be 5');
 Check(DoubleIt = 10, 'double of 5 should be 10');
 input := 1055;
 Check(DoubleIt = 2110, 'double of 1055 should be 2110');
 input := 11.23;
 Check(abs(DoubleIt - 22.46) < 0.001,
 'double should work for fractions ' + FloatToStr(DoubleIt));
 input := -23.43;
 Check(abs(DoubleIt - (-46.86)) < 0.001,
 'double should work for negatives too')
 end
end

Registering TTestCase
Once we have completed writing the test harness, we will have to register this so that the GUITestRunner can run the tests. To do so, add this in the initialization section of the Unit. E.g. RegisterTest ('Tutorial/Counter', TCounterTest.Suite);

Running the Test Harness

If there are any errors, a pink result will appear. Any uncaught exceptions will be represented by red colour.

If everything goes well, then all the tests should be green.

[image: image2.png]An Xtreme testing framework

COUNTERQBIECTTES
Tutorial
ounter

TCounterTest
® tesiDouble

 testFaclorial
B tesFactoralegative

525

| W tesFactoialNegai.. ECourteiegalive Carnat Factoril anegalive rumber $1.

estPower: [cstFalure
|t so04z206es
6°2 should be 26

PAGE
2
Author: Fei Xu

