BTECH Report

v 0.1, 18 June 2004.

Draft Procedures for TortoiseCVS: Advanced Usage.

1. Creating a New Repository or Module

A System Administrator will usually setup the CVS repository on a remote server but Tortoise CVS can configure repositories either locally or manually as follows. To create a new module or repository, the folders and files need to be prepared locally as a new sandbox. Right-click on the top level folder for the new module and choose the CVS --> Make New Module... menu item. The Make New Module Dialog will be displayed. The details required to be entered are the same as for a new Checkout- information such as what protocol is used when connecting to the server, the name or IP address of the server, the location of the CVS repository on the server hosting it, the CVS root, the user name and so on.

TortoiseCVS now tries to connect to the server in order to create the new module. If the CVS repository cannot be found, it asks a Make New Repository Question and with the right permissions to the remote server, you can create a new repository in this step. It is important to note that creation of a new repository is done when a new module is added. In other words, if CVS is just being set up and a repository needs to be made, it is done when the first module needs to be created. When TortoiseCVS tries to connect to the repository to add the new module, it finds no repository exists and then allows you to create one.

Any new files created can usually be added to the repository by a simple CVS Add followed by a CVS Commit.. operation. This is because the “Add” command only adds the files to the LOCAL copy of the files that resides on the users PC. Since these are just recorded as local changes, they do not affect the repository until a “Commit” operation puts them onto the CVS server.

2. CVSWatch

In CVS, lock/unlock capabilities are not enabled by default and to use them, Watch needs to be enabled first and this can be done in the following two ways: to enable Watch when the module is being created, tick the checkbox “check files read only”; if an existing module needs to be watched, the following command needs to be run from the top level of that module:

cvs watch on

The “Checkout” or “Update” commands on files under CVSWatch create files that are read only. To change them, right click and choose the Edit menu item. If the file being edited is binary (such as .doc), two users will not be allowed to edit the same file. If the file is a text file however, (such as .txt or .cpp), TortoiseCVS notifies you that the file is being edited by another user and allows you to make changes.

Continue working on them as usual and “Commit” when you are done to save the changes. If you decide that the changes are not to be saved, right-click again and choose Undedit to revert back to the original file.The CVS --> Show edited files menu item from anywhere in Windows Explorer shows which files are being edited and by whom.

3. Tagging and Labelling

At a given stage of development, to keep track of a set of revisions involving more than one file, a Tag is used. It is a common label that refers to their revisions and is typically used on entire modules, so that the current state of the module can be reconstructed in the future. A tag, unlike other CVS operations, does not require a commit and it immediately applied to the repository.

To tag one or more files or directories with a label, select them, right-click, and choose the CVS --> Tag... menu item which presents a Tag Dialog. The Tag field is where the required label is to be entered and it is important to remember that CVS is quite restrictive about the characters allowed to be a part of the tag. No dots or spaces are allowed and two tag names are reserved: "HEAD" refers to the most recent version available in the repository, while "BASE" is the revision you last checked out into the local directory.

A Sticky Tag is a tag with extra data associated with it, for example, the working copy’s revision might be on a branch or restricted to versions prior to a certain date. Since this data persists and applies to subsequent commands in the working copy, we refer to it as sticky. Sticky tags can be deleted by the following command:

cvs update -A

The ‘-A’ option retrieves the version of the file from the head of the trunk(i.e., the most recent version in the repository) and forgets any sticky tags, dates or options.

4. Branching and Merging

CVS allows you to isolate changes onto a separate line of development, known as a Branch. Branching is useful to control changes during the lifecycle of a software project.

When files on a branch are changed, those changes do not appear on the main trunk or other branches but can be later moved from one branch to another branch(or the main trunk). This is achieved by Merging and involves running a ‘cvs update – j’ to merge the changes into the working directory. The revision can then be committed, and this effectively copies the changes onto another branch.

- For a more detailed description of the branching and merging operations performed by TortoiseCVS, please look at the sub paper attached.

5. Binary and Unicode Detection

TortoiseCVS automatically detects whether the file you are adding to CVS is Text/ASCII, Text/Unicode, or Binary. It first checks the file extension, for example, “.doc” and “.exe”, are always assumed to be Binary while “.cpp” and “.txt”, are text. TortoiseCVS does this using a built-in list of Binary and Text extensions.

“FileTypes.config” in the TortoiseCVS installation directory allows you to customise this list and also contains details toa sophisticated plugin mechanism that enables file type detection via a DLL implementation. In all cases though, the Add Dialog shows you the files you are about to add with their file type so you can edit any changes that need to be made.

6. Revision History

Once CVS has been used to store a version cotnrol history, there are a variety of mechanisms for looking through the history:

· Log Messages

Whenever a file is committed, you specify a log message and to look through the log messages specified for every committed revision, the cvs log command is used.

· History Database

The history file can be used to log various CVS actions. It must be created to turn on logging and this is done automatically if the cvs init command was used to set up the CVS repository.

To retrieve information from the history file, the cvs history command should be used.

· User-defined logging

CVS can be customised to log various kinds of actions and these mechanisms operate by executing a script at various times, e.g., “loginfo” file, CVS Watch, “taginfo” file, etc.

7. Revision Management:

When deciding on a policy regarding commits it is important not to commit files too quickly as they might not even compile- if somebody updates their file to include your buggy file, he would be unable to compile the code. On the othre hand, others might not be able to benefit from improvements made to the code if you commit very seldom and conflicts would be more common in this case.

It is common to only commit files after making sure that they can be compiled. Some sites require a test suite and policies like this can be enforced using the comitinfo file. The downside of making the development environment too controlled is that it might become too regimented and thus counter-productive to the real goal, which is writing software.

8. Reference:

· TortoiseCVS User guide- http://www.tortoisecvs.org/index.shtml
· Version Management with CVS - Per Cederqvist et al.
· Azul examples obtained from Kevin Slade, Kiwisoft.
PAGE
3
Corinne Lawrence

