Zhigang Yin




BTECH 450 Final Report

Abstract

BTech 450 DT project is a one-year project. Given some fairly specific
problems, we will design and implement a solution. The problem should be

challenging enough to be interesting and motivating.

| consider the project that | have chosen is fairly challenging and interesting.
It greatly improved my research and self-learning ability. There is a general
goal for the project but no specific instruction telling how to get the problem
solved, so there’s a lot of space left for me to explore and find all sorts of
alternatives to the final solution. By comparing each alternatives, | will then

discover not necessarily the best but at least a comparatively good solution.

This end of year report illustrates and summarizes the work | have
done in year 2003 (March ~ November) for the Project in Information
Technology at Auckland University. Related documentations mentioned in the

report are listed as appendices.

Zhigang Yin -2- 30/10/2003



BTECH 450 Final Report

Acknowledgment

Although this is a single-person project, many people gave me great
help and guidance on different aspects throughout the entire

process of the project.

First of all, I must thank my supervisor, Mr Grant Black. He gave me
perfect guidance throughout the project, also provided me with lots
of very helpful and updated information that are related to this

project.

Secondly, with many thanks to the software engineering group of
the ITL company. As | was working as a member in the group, |

received help from each of them at various stages.

Thirdly, I want to thank Dr. S Manoharan for spending time
explaining to me important skills and possible formats for research

and report writing.

It was a great experience to be given the chance to work in a real
software company, and to feel what a real working environment looks
like.

Zhigang Yin -3- 30/10/2003



BTECH 450

Final Report

Table of Contents

1. Introduction 5

1.1 Company Introduction 5

1.2 Project Introduction 6

2. Project Description 7

2.1 Limitations of Existing ADL 7

2.2 Project Requirements 7

2.3 Project Objectives 8

2.4 Status of completion 9

3. Research & Learning 10

3.1 ADL & Analysis Applications 10

3.1.1 ADL 10

3.1.2 Analysis Application 13

3.2 X-Files 16

3.3 Research on other project related topics 17

3.3.1 Unicode in data set-up 17

3.3.2 XML (Extensible Mark-up Language) 18

3.3.3 COMPSCI 330S1C 18

3.3.4 Triple = S (SSS) 19

4. Documentation & Design 20

4.1 ADL Language documentation 20

4.2 Enhanced ADL design 21

5. Software Implementation 23

5.1 XML > X-Files converter 23

5.2 Simple DATA File processor 24

5.3 XML -> ADL converter 26

5.4 Macro Generator 30

5.5 ADL_CS Main Application 32

6. Conclusion 41

7. Reference 44

8. Appendix 45

8.1 Appendix A: What is ADL? 45
Zhigang Yin -4- 30/10/2003



BTECH 450 Final Report

1. Introduction

1.1 Company Introduction

Information Tools Ltd (ITL)

Established in 1989, Information Tools' investigative software and
services are now in use in over 1000 sites spanning over 100
countries worldwide.

The company's headquarters are located close to the beach in Milford,
on the North Shore of Auckland, New Zealand.

ITL specialise in the development of software tools and database
services for marketing. The software can be used with most forms of
marketing data and includes market research, sales data, media
research including GRPs, advertising expenditure, retail audit,
Customer databases, in fact virtually any data needed for marketing.

Client organisations comprise major multinational companies,
strategic planning groups, Universities, Financial Institutions,
Government organisations, the Media, business consultants and
Market Research Agencies.

ITL produces various types of analysing software to provide database
services to their clients according to their needs.
For example,

e “ESPRI” service involves designing and converting data into a
form that makes it simple for organisations to investigate that data
using the ESPRI program.

e "HARMONI" is for organisations that want to integrate data from
different sources, both internal and external.

To learn more about their services and products, please visit their
website at http://www.infotools.com/

Zhigang Yin -5- 30/10/2003



BTECH 450 Final Report

1.2 Project Introduction

Project title: Improvements to tools and processes in the creation of
Information Tools Ltd (ITL) databases

Currently around 50% of the company’s Auckland office staff (25 or more) is
employed to work in a task described as “data setup”.

Generally speaking, the setup-team task is that they accept raw data
(primarily survey data) in a range of formats and then use ADL and supporting
programs from the ‘iTools’ suite to produce proprietary formatted ITL
databases.

The primary tool of the data set-up team is considered to be the ADL
program, as at present that is the only program that can create the ITL inverse
formatted databases for end-users. Other companies also use the ADL
program worldwide, to produce databases for client analysis.

Following diagram shows the workflow of the setup-team task and the role of
ITL's main products, (ADL, X-Files Database, and Analysing Tools) in the
workflow.

Data clean up
ITL Generate ADL script file ADL
Setup-team >
A

X-Files

RAW DATA Database

Client Analyse data ITL
» Anaysing
Tools

Since the ADL program is a fundamental part of the Information Tools
business model, ITL seeks to develop better, more industry standard ways in
which the setup task could be done. Through this ITL hopes to improve not
only the ADL program itself, but also the production task in which they
process data and build databases for customer analysis.

See more detailed description on ADL in Appendix A: What is ADL?

Zhigang Yin -6- 30/10/2003



BTECH 450 Final Report

2. Project Description
2.1 Limitations of Existing ADL

There are several issues with the existing ADL language and program:

e ADL scripts are difficult to automate. As ADL scripts are very flexible
and the language not well defined, human generated scripts can be
very difficult to machine parse. ADL scripts designed to be read and
written by setup people and not automated tools. This makes it difficult
to automate production processes.

e The ADL language is unusual — the closest equivalent language maybe
the AWK scripting language, but it is sufficiently different from common
programming/scripting languages that finding new employees with ADL
or directly related skills is extremely difficult. This means that all new
setup staffs require extensive training in order to be productive.

e The language (syntax and semantics) is not consistent, thus ADL has a
steep learning curve. For instance, there are multiple ways of creating
an Axis®.

The ADL language and program was largely designed for performing ad-hoc
jobs, allowing great flexibility in turning textual data into ITL databases. It was
not designed for dealing with (the increasingly common) ‘trackers’ - large
regular data streams that remain largely unchanged in format between waves.
The setup team currently works around many of the limitations of ADL by
utilizing a range of ad-hoc pre-processing tools such as Grid, MSM2ADL or
‘CokeV’, which manipulate data into a form that ADL can handle. Post-
processing tools such as Shrink/Merge/AddAxes also often modify the
databases output by ADL, in order to build complete databases for clients.

2.2 Project Requirements

The requirements are from two main sources: the programmers and
the Users.

The programmers are standing on the conceptual level, aiming to
improve ADL based on their programming experience. Each of the
programmers is experienced and can program in more than one
programming language, so they can clearly see the advantages of
ADL in processing raw data files and in generating databases. At the
mean time, by comparing the algorithm and features with other
languages, they can see exactly the weakness of current version of
ADL.

! The fundamental building block of an Information Tools formatted database. An axis usually
represents one question in a questionnaire.

Zhigang Yin -7- 30/10/2003



BTECH 450 Final Report

--Conceptual requirements:

1) Training

2) Speed

3) Correctness

4) Easy to maintain and extend to meet new challenges.
e FHexibility
e Integration

5) Retain backwar ds and forwards compatibility.

6) Extra features:

On the other hand, current ADL users are not necessarily experienced
in programming. They might be hired and trained to use only ADL
language, but have no idea of what programming languages are like,
for example, JAVA, C++, and VB. However, they can still find
inconvenient bits while using ADL syntax to generate databases.
These are reflected in the feedbacks from users to the programmers.

--Practical requirements from ADL users:

Error handling
Calculation

Security

Variable types support
Other features

In the document “ENHANCED ADL DESIGN DOCUMEN?”, all the
requirements, both conceptual and practical requirements, are listed and
discussed in detail.

2.3 Project Objectives

There are several objectives with the project, these objectives are
general instructions that will help me, guide me through the stages
and finally achieve the goal of this project.

Objective Tasks
1 | Training ADL and database setup training

2 | ADL language | Understanding the current structure of language, and the
documentation | typical use of the language. Code walk-through. Producing a
comprehensive document on ADL.

Zhigang Yin -8- 30/10/2003




BTECH 450

Final Report

3 || Designing an
enhanced ADL
language

Analysing the requirements for the design, and exploring
aternatives. Documenting the impact of the possible designs
on other existing tools that the designs need to co-operate with.
Producing afinal design document and alanguage user-guide.

4 || Implementation

Formulating the implications of implementing the design

plan for the choice(s). Producing a document describing the
enhanced implementation proposal.
language
5 || Program Choosing the appropriate programming environment. Program
development development. Testing and debugging. Code documentation.

6 || Final report and
presentation

Prepare presentation and report

2.4 Status of completion

Along with each objectives of the project, there is certain form of
measurement of completion. These measurements/ milestones are
listed in the following table. Some of them were finished in the first
semester, and the rest were done during the semester break and the
second semester of this year.

Objective Milestone Period Status
1 | Training Ability to read and March Completed
write ADL scripts
2 | ADL language | A comprehensive April Compl eted
documentation | document describing
ADL
3 | Designing an A design document May Compl eted
enhanced ADL | and auser-guide for
language the enhanced
language
4 | Implementation | Animplementation June Completed
plan for the specification
enhanced
language
5 | Program Application program | July ~ Compl eted
development and code September
documentation
6 | Final report and | Report and October Compl eted
presentation presentation
Zhigang Yin -9- 30/10/2003




BTECH 450 Final Report

3. Research & Learning

3.1 ADL & Analysis Applications

3.1.1 ADL

Before start working on the project, it is necessary to familiarize
myself with the ITL working environment, including the workflow, the
analysing software, the ITL Database format and most importantly,
ADL.

| was given 40 hours or more on training of how to write ADL script
files and “compiling” the script file with ADL programme, also on how
to read and extract useful information by using the analysing tools.

| have been provided a CD containing all the information | possibly
need for the project: Analysis Application, latest version of ADL
programme, ADL manual (softcopy and hardcopy), sample data files,
and the source code of the ADL program.

Even though the training session was finished, | must still spend at
least 2 hours a week on writing ADL script files and using analysis
application, as I've noticed the importance of continuous practice for
programming language. There are two components required for
running ADL: data file and the ADL script file.

The ADL script files have “ADL” extension, and generally have the
same file name as the data file for simplicity and clarity; however the
data file and ADL file can have different names and will be parsed by
the ADL programme with no problem. For example, if the data matrix
below is stored in a file called “test.dat”, the ADL script usually is
named “test.adl” in order to read in data from the data file.
Theoretically, the data file can have any extension, as long as its
content is in form of data matrix.

During the course of this project, data files are basically test data
made up by myself. They usually contain small digit matrix typically
look like:

Zhigang Yin -10- 30/10/2003



BTECH 450 Final Report

For the above DAT file my ADL script might be like:

Filetype delimited “,”
[“Gender” where = 2
“Female” =1
“Male” =0

]

This script file will then looks at the data matrix, and detect that this
file is “,” delimited. Then it will generate an axis named “Gender” with
2 ELEMENTS namely “Female” and “Male”.

“Where = 2” tells ADL to look at the second column of the matrix and
count the number of “1”s and “0”s. So the result will be 2 counts on
each sex.

The data matrix can be delimited by anything as long as the delimiter
does not exist in the actual data. For instance,

The above data matrix has a column (column 3) that contains a list of
symbols rather than digits. The data is fine, but as “,” exists as a data
value, the delimiter of the data file can no longer be comma. It has to
be changed to some other symbol, or otherwise completely removed,
i.e. NO delimiter for this particular file, ADL will then treat each
character as a column.

As an experiment, | save the matrix:

1,1
2,0,
2,1
0,0

CUIFRr N
=~ 01w
O WM

In a file named “test.dat”. Also write the ADL script file interpreting
this data according to the questionnaire requirements. Say, we want
to find the count of female and male in the data file knowing the
gender information is stored in column 2 of the data matrix:

Filetype delimited “,”
[“Gender” where = 2
“Female” =1
“Male” =0

]

Name the above piece of script “test.adl”.

Zhigang Yin -11- 30/10/2003



BTECH 450 Final Report

Run the ADL programme against these DATA ADL file pair:

A= EEN
FoswWIHDOWS >cd. .

C:vradl CoMYDOCU™1NBTECHATESTATEST.ADL C:\MYDOCU™1\BTECHATESTATEST.DAT
ADL 2.3b Mar 14 2003

Performing database initialization

Processing your specs

Preprocessing C-\MYDOCU™1A\BTECHNTESTATEST.ADL

Scanning TEST.ADL

Starting the data conversion process
Reading raw data file

“ 0 Cases Processed

% cases read, & cases output
Elapsed time O00.00.00
Processing completed.

(EAV

The result of running ADL against the data file is illustrated below:

X-FILES

ADL.EXE —>

As | am using ADL, | can find features of the language that | didn’t
notice or even finding problems of the language. The better |
understand the language, the better it is for the future work of this
project.

A good example is that, while using ADL, | found some features that is
supported by ADL but not stated in the ADL manual. This will result in
an update of the manual in later version.

Zhigang Yin -12- 30/10/2003



BTECH 450 Final Report

3.1.2 Analysis Application

ITL has produced various brands of Analysis applications. Each has
slightly different features. For instance, some have more graph types
supported; some have slightly different calculation and other
supportive functionalities provided. Different brands suits different
company’s specific requirements. The following screen shots are from
one of the analysis applications, called “WARTS”.

Shot 1: Directory selection dialog box. User selects the directory that
contains valid X-Files database, i.e. .xbf?, .xef®, .xdf* files.

| wams LI
% 7

Edmesnd Tamih H *
EETTITTTEEE—

&0 T SewohiDascioes
Shymk |t Desctiap I:iil :}' B | W Eapoy

L WM Dot 85 BT enclvidest .
| L WMy Docarent e BT ech'Lai\egis [ Semcted Duevices
- e LA ABTachiLsiegs

i ﬁ " T Irchsds Gerdreciness

R
T 1 BITwERE
=-|_1 My Coowsranic
| 1l
#1 1m
41 Hd

‘.Il'l'i-l a -l T fr] gl - EE -

Shot 2: Axis selection dialog box. A tree style database is displayed
in the left text area if selected directory was valid. Double click on
desired axis and measures, selected ones will be copied over to the
right middle text area. Click on “RUN" button, selected items will be
tabulated.

2 A base file, with extension xbf, storing questions
3 An element file, with extension xef, storing pre-coded answers

“A data file with extension xdf, stores the data used in the database analysis

Zhigang Yin -13- 30/10/2003



BTECH 450 Final Report

ECTCEE— EIE]

Emmeaid Sawch ﬂ_'l

[ [ratnbaries
O B
Ehrink List 'l"'l.-. 'ﬁ-l By '-"'l & &l :'n.J

I o Celechera |+ By [wsoi
# B3 Zp Cods TuresledFuns = 2] - SLCOHDDATIOR =
o2 CiyiDutocda US Tiresled Faom - Lodorg Tyew Lioed
10 Loamisy [isandesd] Fizm B Locssen U Lodoerag
B3 Moads O Tewwpeorision T Ly Weagas

W % " FURFOEE OF ‘A8IT =

-y = ADCOMODATION =

- E1 Liosdigerd T pps Ll sd
s
[ Fiste Categay Bzt Dezoien: Lodgng
H O feyg dresand Sparad Pa Mgl ekpnge
- B A Arweord Boerad Per Magid-Lisdgng,
i B Ma Peasis S ke o Py
H [ Tolsifa Mghic Spari n Lax Yegar
H O Tolsd drcoredsim e

# i = EXPEHDITURE /ReMBLING =
A Gerdm
Il g

[ BT, LT PEPRY TR | 8 T

o | X oom| 7|

| @ | A - EE |38 roser= o mn

Shot 3: A successfully generated table according to the selected
items above. Table’s contents can be dynamically selected, filtered,
ranked by the user.

18] x|
Prls Edit Forgat Zalestiona Yiew @b g Diadew Help I
GOHEOE M-8 aW- T E DS M| & FEZ = 3 d@-82D 4
Tuble: wen ACCOBOBATION wen by Gunder 3
Dt sbsaram - Feowd
ik AOCONDDATION =% Ferceniages
[ mraar
== AT O ODATION = Taea ks Farradn
Lisdgan T s Lipesd I
Toks 53]
Hiddl ] 30 2
Kiotal ] 5
Oihar X 11
F e Fralairay % 1nax
Dap TopHo Legdgng % 9%
Liscegtion 01 Lisdkgng
Tk a1
Sty Conickn ] 452%
i cnidoen X 500
B ddeasinp ] rd:1
a [rh ] DY - 1 |
Fsasd =z Famule Erardhecl, 208 s ®eie] Dedgng Trpe Vhaddl |
Bom L ki L el LY - [
-]Tﬁl :zd ﬂ u.:h-r-" i 14 "nnum _\'E .

Zhigang Yin -14 - 30/10/2003



BTECH 450 Final Report

Shot 4: 2 different graphs generated automatically on the same table.
There are many more types of graphs to choose from.

3

Tpes Ll

';?EE

i
i

:
:

i

Cuyy T Arany

Gender, %

The practice on the analysis application might seem not too relative to
the purpose of project or to ADL. However, this is what the ITL’s
clients are most interested in, this is the ultimate purpose of the whole
setup process and complex ADL script file generation process.

The analysis tools is useful for understanding some of the real-world
databases, and how each component of the database can be
combined so that meaningful information can be extracted from the
tables and graphs.

Zhigang Yin -15- 30/10/2003



BTECH 450 Final Report

3.2 X-Files
“X-Files” is the generic name for the ITL database; it consists of a
series of files:
e The base file (*.xbf): stores the questions
e The element file (*.xef): stores pre-coded answers.
e The data file (*.xdf): stores the data
e The link file (*.xlk): contains linking information for value axes
and other special commands required by the database
The Info file (*.ifo): A text file description of the database
The *.adt file: used by ADL to point error messages at the correct line
number
The debug file (*.dbg): contains debug information and auto output
The log file (*.log): A log of the ADL run
The User file (*.usr): contains top line results for checking
The *.xbu file: contains storage structure for user created axis/question
labels
e The *.xeu file: contains storage structure for user created element /
answer labels
e The *.xdu file: contains storage structure for user created data

But only the XBF, XEF and XDF files are used by the analysis
applications for data analysis. The rest are neither required by the
analysis applications, nor supplied to the clients as part of the finished
X-files database. The other files serve the purpose of user references,
debug and log. These files are user specific, and are created only in their
appropriate user directory, as and when they create their user created axes.
The following diagram illustrates the structure and usage of all X-files.

XBF TN
File

|

Zhigang Yin -16- 30/10/2003



BTECH 450 Final Report

Among the three files used by analysis applications, the base file and
the element file define the DICTIONARY.
Both the base file and the element file consist of two major
components:

e File Header

e [tem

Following diagram visually describes the structure of the X-Files
database and how the XML “ITDictionary” was generated from XBF &
XEF files:

Dict2XML

X-Files XEF
Database File

\.

The structures of each type of the X-Files are discussed in detail in
the presentation document “X Files’(by Dr. S Manoharan).

3.3 Research on other project related topics

3.3.1 Unicode In data set-up

The X-files database originally supports ASCII characters only, and
then the character set support was extended to allow any character
set. Demand for having Asian character sets like Chinese, Japanese,
Korean, Thai, etc. arises as ITL's products and services are
introduced to Asian countries.

My supervisor Grant started a research and documentation on support
for Unicode characters. | volunteered to do some of the simple

Zhigang Yin -17 - 30/10/2003



BTECH 450 Final Report

experiments on my home machine, for | have a Chinese Edition
Windows platform installed on it. But his was limited to simplified
Chinese characters only.

For experiment purpose, | carried out a series of tests:

1. Build simple Chinese character data files

2. Writing ADL script files processing the Chinese character data
files using Chinese characters as the Axis names and element
names, as well as the ADL script file name.

3. Running these files against ADL programme and check for
processing error or exception

4. Viewing the Chinese character labels in the analysis application
in both tables and charts, and make screen shots.

The outcome was encouraging: both ADL programme and the analysis
application could handle the Chinese characters properly. Some of the
test results and screen shots became helpful in completing the
company documentation.

3.3.2 XML (Extensible Mark-up Language)

There is a tool in the “iTools” suite that is called “Dict2XML” written by
Dr. S Manoharan. Its function is to generate a XML file from the X-File
dictionary, i.e. xef file and xbf file.

To refresh the XML knowledge | already have and to gain better
understanding of XML concepts, | went through the on-line tutorial materials
about XML on http://www.w3schools.com. Some on-line forum discussing
topics on XML
(http://slashdot.org/comments.pl?sid=57483&cid=0&pid=0&startat=&threshold
=1&mode=thread&commentsort=3&op=Change)

3.3.3 COMPSCI 330 S1 C --- Language Implementation

This stage-three computer science course at University of Auckland helps to
understand on how computer languages are specified, what they mean, and
how they are implemented, is fundamental to computer science.

Unfortunately | did not study the course in advance of starting the project.
Lack of knowledge on the aspects this course covers might lead to huge
difficulties while proceeding with the project work.

Therefore | downloaded the lecture handouts and some of the reading
materials provided on the course web page and studied thoroughly. These
materials gave me a slightly different view of programming languages, and |
found it helpful at the design stage of the new language.

Zhigang Yin -18- 30/10/2003


http://www.w3schools.com/
http://slashdot.org/comments.pl?sid=57483&cid=0&pid=0&startat=&threshold=1&mode=thread&commentsort=3&op=Change
http://slashdot.org/comments.pl?sid=57483&cid=0&pid=0&startat=&threshold=1&mode=thread&commentsort=3&op=Change

BTECH 450 Final Report

3.3.4 Triple — S (SSS)

As the project proceeds, | was introduced to some scripting languages and
software that have basically the same functions as ADL language and
programme, e.g. triple-s; Quantum; Snap, etc. Each language or software has
its strength and weakness.

Triple-S is probably one of the popular ones. It also drew my attention
because it is using XML as the file format for the script file. This happens to
have similar sides with my own design (For details of my design, please refer
to 4.2 Enhanced ADL Design)

The triple-s was first published in 1994 and evolved through the last
20 years:

Triple-s version 1.0: The original standard that came out in 1994. It
describes variables and data for single, multiple, quantity, character and
logical response variables. Includes sample survey files.

Triple-s version 1.1: The revised standard became available in 1998. It
incorporates many new features; also the syntax was improved at some
stage.

Triple-s XML version 1.1: This is the original version that was published in

February 2000. It uses XML syntax, it includes an on-line DTD and sample
survey files that are available for use/reuse.

Triple-s XML version 1.2: The latest version available for download.

4. Documentation & Design

Zhigang Yin -19- 30/10/2003



BTECH 450 Final Report

4.1 ADL Language Documentation

As described in the project objectives, my second task is to produce
documentation for the ADL language.

ADL language is similar to many other programming languages, it has
two main parts: semantics and the syntax. Since the semantics are
clearly defined in the ADL manual, my documentation will focus on the
syntax part. After some research and discussion with my supervisor,
as well as confirmation of University of Auckland BTech coordinator,
Dr. S Manoharan, I've decided to use the BNF (Backus-Naur Form
notation) for the documentation.

There were many resources on the web about BNF documentation, the one |

studied on was

“The BNF Web Club Language SQL, ADA, JAVA, MODULAZ2, PL/SQL...”
----http://cui.unige.ch/db-research/Enseignement/analyseinfo/BNFweb.html

There was complete documentation for various programming
languages, as well as database languages that | found extremely
helpful for my own documentation.

On top of the traditional BNF, | “invented” a few “meta-symbols” in
order to have clearer description of the ADL language. The list of
meta-symbols used in the documentation can be found in “BNF_ADL
documentation”.

The documentation was written originally in plain text file, after
general completion, | modified it to a HTML file and added hyper-links
within the document. This gives better navigation help to the user,
simplifies the reading process.

However, there are still errors and statements that are ambiguous. ITL
intends to keep the documentation for lifetime use, so it should and
surely will be kept on changing and correcting through the following
years. As long as there is modification to the ADL language, there will
be change to the documentation. For instance, if the enhanced ADL
language was completed and approved after this project, the
documentation will need to be updated.

4.2 Enhanced ADL language design

Zhigang Yin -20- 30/10/2003



BTECH 450 Final Report

After the completion of BNF_ADL documentation, | have gained even
better understanding on the current ADL language and observed many
of the strengths and weaknesses of the language. Next is to design a
model that is enhancing the current language, so that ADL can be
more productive.

My design was carried out according to the requirements from both
conceptual level and the practical level as listed in section 2.1 and
further discussed in the “Enhanced ADL design document”.

Three initial models were raised, each using a different approach:

e Model One: “Super ADL” --- Original ADL language with extra
features

e Model Two: ADL script file generated using another
programming language

e Model Three: XML format of X-Files Database & XML to X-Files
engine

Pros and Cons of each alternative are discussed in the design
document. A test table was set up with regards to the requirements;
each alternative was rated according to these requirements.

By then, | was clear that each model has its own advantages and
disadvantages.

The more advantages my final solution can have the better. However, this is
limited by both the time and the complexity.

My decision for now is Model 2, i.e. to rewrite ADL in another programming
language, using API for the programming language (XML handlers, libraries),
and output a XML file as an intermediate format. A convert engine will then
take this XML file and the original .DAT file as input in order to generate the
ITL Database in X-Files format.

This is shown in the following diagram:

Zhigang Yin -21- 30/10/2003



BTECH 450

Final Report

ADL Library

Data File

ADL Processing

»|

Yes Editdata?

Other languages
(Python/C# etc)

Merge, Shrink
AddAxes, Weight
etc

No

Analysis
Program

Zhigang Yin

-22 -

30/10/2003




BTECH 450 Final Report

5. Software Implementation

Once the design is completed, detailed implementation plan was set
and all the software implementation follow the order and the time
allocated to each stage. For details, please refer to

“ Enhanced ADL —Implementation Plan”

5.1 XML = X-Files converter

5.1.1 Introduction

One of the applications in the ITOOLS application suite is
“DICT2XML”. This application takes the .xbf and .xef files from an X-
file database and reformats them to an XML file, which is defined as
the “Dictionary”.

Because to set-up X-file databases efficiently is the goal of the set-up
process, in order to have deeper and clearer understanding of the X-
file database format, | started this “reverse” application that reverses
the “DICT2XML” generated XML back to the “DICTIONARY”, i.e. *.xbf
& *.xef files.

5.1.2 Programme Walkthrough

1. Run the application xml2x.exe executable

2. The console application starts up and asks for an input XML file.
Type in the path and file name of the XML to be converted.
Press enter, the conversion process starts.

3. Once the conversion is completed, the programme will notify the
user. By now, if the conversion was successful, there should be
two new files with the same name and extension of “.xef” and
“.Xbf” stored in the same directory as the input file.

5.1.3 Pros & Cons

e Pros:
Full cycle of file format conversion between X-file database files
and XML file. It provides better understanding of the X-file
database files. This was accomplished with reference to the
binary file structure of *.xbf and *.xef files that was stated in the
document “X files” (Dr. S Manoharan).

e Cons:
Cannot complete the conversion straight from a raw data file to
* xdf file. This was due to lack of understanding and lack of
documentation of the base file of X-file file set.

Zhigang Yin -23- 30/10/2003



BTECH 450 Final Report

The resulting files from the application are binary files that
cannot be interpreted by normal text editor or the ITL analysis
tools. During programming and debugging process, a binary
viewer named “FRHED.EXE” was used for comparing the binary
values of the output files from my application and the ADL
generated x-files

5.1.4 Future ldeas

Produce a detailed X-file documentation. Maybe not necessary normal
ADL language and Analysis application users, but will be very helpful
to future development of ADL language and programme, as well as
the improvement of X-file database.

5.2 Simple DATA File Processor

5.2.1 Introduction

Having finished the XML -> X-Files converter, | have gained some
experience on file type conversion, especially in Binary file input and
output process. Major difficulty was at the Data file conversion part,
due to the lack of understanding of the binary arrangement of the
* xdf.

Then the idea of building a new data file processor that is parallel to
ADL programme emerged. Although the new processor will not have
as many features and functionalities as the ADL programme, | expect
to explore the possibility of a new method of processing the same
data, and want to compare the speed of the new processor with the
ADL programme in particular.

This simple data processor is a console application written in C#
language. Takes in a data file with any extension and contains a
comma separated data matrix, output the expected result on the
screen.

5.2.2 Programme Walkthrough

1. Start the console application, a command line will ask for two
separate user input values: Number of axes to generate;
Number of elements for each axis

2. Reads in a specified file that contains a comma delimited data
matrix.

3. Reads the data matrix row-by-row, increment the count of
matching value accordingly. Similar idea as ADL programme.

4. The start and finish times are recorded and the time difference
are printed on the screen

Zhigang Yin -24- 30/10/2003



BTECH 450

Final Report

5.2.3 Pros & Cons

| randomly generated a 200Column*10000Row comma separated
Data Matrix, and then ran ADL and the new processor against the
data on the same machine. Time measurements were taken and
tabulated as follows:

AXis # Element # ADL New Percentage
processing processing
Time Time New/ ADL
(Sec) (Sec)
1 Axis 2 3 2.7 90%
10 3 3 100%
20 4 3.5 87.5%
10 Axes 2 4 3.5 87.5%
10 7 4.3 61%
20 12 9 75%
20 Axes 2 4 3.9 97.5%
10 12 10 83.3%
20 21 18 85.7%
30 Axes 2 5 4 80%
10 17 14 82.4%
20 31 27 87.1%
40 Axes 2 6 5.5 91.7%
10 22 18 81.2%
20 40 37 92.5%
50 Axes 2 8 7.2 90%
10 26 23.6 90.8%
20 50 42 84%
New/ADL Percentage
120% = Situation1 [
100% L 2 =
* L 4 'S
80% .‘u Lanawer sne— p— EicTo/_r\ded -
60% \

40%

Situation 2

20%

0%

10

15

20

25

Zhigang Yin

-25.-

30/10/2003



BTECH 450 Final Report

From the time values table and the trend line drawn from the new/ADL
(%) chart we can see the new processing time stays at a fairly
constant rate of 86% comparing to the original ADL processing time.

While the number of axes and elements grows greater and greater, if
the trend line drawn happened to be in situation 1 (Green Line), the
new processor’'s processing time tends to be slower and slower
comparing to the original ADL programme; If the trend line drawn
looked like in situation 2 (Red Line), the new processor’s processing
time tends to be faster and faster comparing to the original
programme.

It would be worthwhile to continue with the new processor experiment
if the trend line happened to be in situation 2.

Considering the recorded time for ADL processing includes the time
for generating 6 files: .xbf, .xdf, .xef, .adt, .log, .usr, whereas the time
for the new processor does not include any file generation.

| proved that ADL has its advantage in data processing speed.
Therefore, my main application will be concentrating on the
improvement of the ADL language input part and leave the data
processing part untouched. This solution will make the most use of
the ADL’s

5.2.4 Future ldeas

Although the testing programme did not improve on the data
processing speed, future projects could be set up to find ways to
increase the data efficiency of ADL or substitute the original ADL by a
completely new data processing algorithm.

5.3 XML - ADL converter

5.3.1 Introduction

Since | have chosen to use XML files to store the newly designed ADL
script structure, it is essential to design a clear and simple XML
formatted ADL structure.

The BNF formatted ADL documentation plus the research work | did
during the documentation became great help when I moved on to
design the XML formatted ADL structure.

In addition to the research on BNF format, the research on triple-s
provided good background knowledge as the latest triple-s format is in
the XML format.

Zhigang Yin -26- 30/10/2003



BTECH 450 Final Report

The final structure contains two major parts:
- <ADL>

+ <Header>

+ <Body=>

</ADL>

e Header: consists of all file level properties

- <Header>
<Debug />
<fileTypeDelimited />
<Filter />
<ifo />
<Include />
<Link />
<maxAxisLabel />
<maxCases />
<maxElementLabel />
<maxLen />
<maxRec />
<minCell />
<minTable />
<Other />
<specialChar />
<Suppress />

</header>

e Body: consists two sub-parts:

- <Body=>
+ <Macros>
+ <Axis>
</body=>

0 Macros: may contain zero or many macro objects with a
macro name and detail pairs.

- <Macros>
<Mname>macl</Mname=>
<Mdetail />
<Mname>mac2</Mname>
<Mdetail />

</macros>

Zhigang Yin - 27 - 30/10/2003



BTECH 450 Final Report

0 Axes: may contain zero or many axes object with axis
level properties and zero or many elements. Axis may be
of various types.

= <AXis>
- <AxisProperties> ™\
<Aname>Gender</Aname>
<Atype>Standard Axis</Atype>
<Awhere />

<AVAX />

<Alink /> .
<AYNGrid /> > S
<Amatrix /> ARSI

<Acomment />

<Aadd />
<Aauto />
<Acol />
</AxisProperties> /
- <Element> )

<Ename>Female</Ename>
<Location />
<Condition />
</element> > Elements
- <Element>
<Ename>Male</Ename>
<Location />
<Condition />
</element> _J
</axis>

5.3.2 Programme Walkthrough

This programme is a GUI (Graphical User Interface) type of
application. It has two major functions:

e XML to ADL file conversion
1. User starts the programme (screen-shot: Figure 1), enters
the file path (if the file resides in different directory from
the convert tool) and name in the top text box, or
alternatively uses the browse button to select file from an
open-file dialog box (as shown in Eigure 2).

Zhigang Yin -28- 30/10/2003



BTECH 450 Final Report

2. Press the top convert button to start conversion. Once
conversion is completed, a message will be printed in the
status bar that is at the bottom of the application window.

3. If no error occurred, an ADL file with the same file name
as the input file and “.adl” extension should be generated
now in the same directory as the input XML.

e X-Files generation

1. User enters the file path and name for ADL file and Data
file in the bottom two text boxes accordingly, or
alternatively uses the browse buttons to select file from
an open-file dialog box.

2. Press the bottom convert button to start conversion. This
is in fact an interface for the ADL programme. The input
files are input files for the ADL programme, and the
convert button runs the ADL programme.

3. Once conversion is completed, a notice will be printed in
the status bar. Output X-files are generated in the same
directory as the input ADL file (not the data file).

ﬂg convert

XML to ADL ]te stxml Browse | Convert |

Generate X-hiles

ADL File:  [testad

Convert

Data File:  [testdaf

Ready

Figure 1: Convert Tool

Zhigang Yin -29- 30/10/2003



BTECH 450 Final Report

Dam Fis

Head

Figure 2: Open file Dialog

5.3.3 Pros & Cons

XML to ADL

e Pros:
Since | have decided to keep original ADL programme as the
data processing engine, there must be a “Bridge” between the
newly designed XML formatted ADL script and the traditional
ADL language formatted file in order for the ADL programme to
parse the script. The first major function of this application
functions as the “Bridge” needed.

e Cons:
Could potentially slow down the “data set-up” process because of
the extra step in between, i.e. (XML->) ADL > X-files

Generate X-files

e Pros:
The second function of this application provides a graphical
interface based on the traditional command line. May save
some typing time, or avoid ADL running exception due to typing
mistake.

e Cons:
Because the traditional ADL programme requires a keyboard
“enter” to close its console, after the new interface finished the
conversion, there is the ADL programme window left open
showing the processing information. Some might consider this
left-behind window unnecessary.

Zhigang Yin -30- 30/10/2003



BTECH 450 Final Report

5.3.4 Future ldeas

To skip the extra conversion step, or combine the two conversion
steps either by creating a new ADL format that could be parsed
directly by the current ADL program, or by producing a new ADL
programme that parses XML formatted ADL script file.

5.4 Macro Generator

5.4.1 Introduction

This application allows users to build / modify macros and store the
macros as a list in an XML file.

According to the definition of macros in the ADL manual, a macro
defines a list of elements for later use. This will save user some
typing time. However, through experiments, | discovered that a macro
could theoretically contain anything, e.g. axis, comment, variable
declaration, etc.

5.4.2 Programme Walkthrough

1. Starts the application. Click on the main menu item “File” to
create a new macro file or select an existing macro list file to
edit.

2. Create a new Macro object by entering the name in “Macro
Name” text box, then “Add” button to add to the macro list
(displayed in the list box “Macro list”)

3. Select an item from the “Macro list” list box; the macro detail is
displayed in the text box “Macro Detail”. Modify the macro detail
as needed and press “OK” button to save the change, else use
“Cancel” button to clear the macro detalil

4. If user needs to change a Macro’'s name, simply click on the
macro name in the macro list. The current macro name is
displayed in the “Macro Name” text box, type in the new name
and press “update” button to save the change.

5. When editing is finished, used the File - save/save as menu to
save the Macro list to an XML file.

Zhigang Yin -31- 30/10/2003



BTECH 450 Final Report

= Macro List - * E”El@

File Help
Macro List Macro Detail

['testX" where = 2
mac? "element1” =1
mac3 "element2” = |
mac4 1
mach

Macro Mame:

mac 1

Add | [T | oK el

Figure3: Macro List Generator

5.4.3 Pros & Cons

e Pros:

1. In the traditional ADL language, macros could be
scattered all over the file, once the file becomes large, it
might be extremely hard to find a particular macro. This
application solves the problem by ordering them and
placing them in one place. Makes it easier to find a
particular macro by its name.

2. Since the macros are stored separately from the rest of
the ADL scripts, it could be use/reused by any ADL file.

1. May exist too loosely from the rest of the ADL script
contents, becomes hard to use.

2. If a macro was written for a particular file only, it will not
be able to be reused by other files unless the macro
details are changed.

5.4.4 Future ldeas
To build context free macros that can be used/reused by any
ADL script file. A Macro functions more like a method as in a
programming language (e.g. java, C++, etc.). The Macro List
XML file will act as a library file (e.g. macro.dll)

Zhigang Yin -32- 30/10/2003



BTECH 450 Final Report

5.5 ADL_CS Main Application

5.5.1 Introduction

ADL_CS is the ADL script builder for the new XML formatted ADL file.
If a user is provided an XML formatted ADL skeleton file, he could
modify the file by adding axes and elements to the file. But writing in
XML tags is probably as difficult as writing in ADL language, and even
harder to make mistakes.

Because one of the issues with the current ADL language is the
unusual syntax, it is hard to learn for people with or without computer
programming background. Therefore, | built this “ADL_CS Editor V
1.0” aims to make writing ADL as easy as using a windows explorer.
The application name indicates this is an ADL editor written in C
sharp language, and the current version is 1.0.

Quite a number of ADL features were not included in this application
due to various limitations. Also, because my understanding for ADL
language is still limited, I might no realize the existence of some ADL
functionalities.

As this is a research project, the emphasis is on exploring possibilities
of improvement; | concentrated on improving the main features of ADL

and skipped some unusual ADL features, or set only a skeleton for
future development purpose.

5.5.2 Application Functions

The application consists of 4 main interface sections:

Zhigang Yin -33- 30/10/2003



BTECH 450

Final Report

1. Main menu ——

2. AXis- N

element tree
view frame

T ADL CF Editor W 1.0 - GoBTech\ADL_CSucst? smi [saved]

3. Element
datagrid tab

1. Main menu:

e File

4. Browser view tab

| ADL CF Felitor W 1.0 - G BTkl CSibess?, xmi | e ] r; r-I: ‘I
Fie DEt Maoa Comest g
= Carcher =

Famain raml vargian="1.0" 7>

el AL

3 """"I__ - cheaders

_'i i wilalnig [

f_l_:. il TypaDadion ta d = Tab-<f file TypaDakmiteds

4150 cfiter £
£ m zifs s

Pkt -am:lu_dn i

Chesiphussh <K |

e cmazicml sl

Walingon “MakCasas (o

“maviEementlabel [ n
cmasiLan />
“MadRac />
s el /=
=meTabla >
ot >
spaciabChar f»
THURRreEss

i Teaasdar

ibndy

- <IMACrpE

1 tdvn el A e -

Tbie [

“New ADL": Creates a new ADL file

“Open ADL”: Opens an existing ADL file

“Close ADL": Closes the currently opened ADL file
“Save”: Saves any changes been made to the
opened ADL file

“Save As”: Saves the currently opened ADL file as
a different file or to the save file name.

“Exit”: Closes the application interface.

Zhigang Yin

-34- 30/10/2003



BTECH 450 Final Report

e Edit
= “AXis”
e “New”: creates a new axis and add it to the
current file
e “Remove”:. removes the -currently selected
axis

e “Property”:. opens the axis property dialog,
allows user to edit properties of the selected
axis.

= “File Property”: opens the file property dialog,
allows user to edit properties of the current file.

e “Macro”

= “New Macro”:. opens the “Macro generator”, allows
user to create a new macro list file (in XML format),
or modify an existing macro list file.

= “Select Macro”: opens the select macro dialog,
allows user to select macros from an existing macro
list file and add to the current ADL file, or delete
unwanted macros.

e “Convert”: opens the “XML - ADL converter”, allows user
to convert the current XML formatted ADL file to the
traditional ADL syntax script file; once the traditional ADL
file is created, user can run the ADL programme from the
interface to create X-file database.

e “Help™:
= Runs the compiled HTML ADL help manual
= Version information of this ADL_CS editor

2. Tree view panel

All the axes and elements are listed in the tree view by their names.
The parent nodes are axes. Each axis node may contain zero or many
elements shown as child nodes belong to the axis node.

Different “selected node” switching actions may cause the application
respond differently:

From one axis node to _another axis node causes refresh of the
element details shown in the Data Grid tab on the right-hand-side of
the windows form, any change made to the previous selected axis
object is saved automatically.

From element node in one axis node to element node in _another
axis node causes refresh of the element details shown in the Data
Grid tab on the right-hand-side of the windows form, any change
made to the previous selected axis object is saved automatically.

Zhigang Yin -35- 30/10/2003



BTECH 450 Final Report

From one element node to another element node in the same axis
causes the table record indicator jump to the current record. Note
that the indicator pointgfat the top record by default.

Y, ADL C# Editor ¥ 1.0 - GARY schiliDl _C5test? . xml [sawed]

Fil= Echt Msoo  Comeert

re  Elements

= b Al and | 1
W20 1 Christchurcs 1 2
1-30 £ Hamion 1 5
3140 3 Wallinghen i 4
41-50

-

Ausrsdand
Christchurch
Hamill o
Walinglon

3. Data Grid tab

For the currently selected node in the tree view panel, it displays
Sequence Number, Name, Location and Condition values of each
element object in that belongs to the axis object.

The record indicator points at the currently selected element node in
the tree view panel or points at the top record by default.

4. Built-in web browser

Displays the original XML formatted ADL file with no parsing. This is
for user reference only, not editable.

Once any change made to the current file is saved, by right-clicking in
the browser area then refresh, the displayed file details are updated.

Zhigang Yin -36- 30/10/2003



BTECH 450 Final Report

5.5.3 Programme Walkthrough

T ADL C#F Editor ¥ 1.0 - G:ABTechWADL_CS\est 2, xml [saved]

Auckland
Chirl shchunos
rismilton
‘Wellinglen

Figure4: ADL_CSEditor Interface

Debug

File Type Delimited

Figure5: File Property Dialog

Zhigang Yin -37- 30/10/2003



BTECH 450 Final Report

B Gender Properties

Aogey Marne: | Garder
By Type .:‘7-' wedwd Gna =]
T Ao [~ "ool®

Whharg =

YNGad= |

Maim =

Comment ||

=

Figure 6: AxisProperty Dialog

Create

1. Main menu: “File” - “New ADL” -> *“File Property Dialog”
appears

2. Configure the file properties in the “File Property Dialog”
(Figure 5) if required. Click “OK” button when completed.

3. Main menu: "Edit” > “Axis” > “New” -> “Axis Property
Dialog” appears (Figure 6)

4. Set the Axis name -- “Gender”, Type — “Standard Axis”, as well

6.

as other properties if necessary. Click “OK” button to save and
exit this dialog

. Add two elements into the table on the right-hand-side of the

application:
a. Element 1: Name = “Female”; Location = “2"; Condition =
“1”
b. Element 2: Name = “Male”; Location = “2"; Condition =
“0"

Repeat step 2 -5 to add two more axes: “Age” & “City”. Change
the names and values where suitable.

7. The final structure will be as illustrated in Figure 4.
Open
1. Main menu: “File” = “Open”. Open an XML formatted ADL file to be

2.

3.

modified.

Tree Structure of the file will be printed out on the left-hand-side
of the windows form.

Collapse or expand the sub-tree Nodes to hide or show all the elements that
are belonged to that particular axis. All element details of the selected axis will
be printed in the table on the right-hand-side of the windows form.

Zhigang Yin -38- 30/10/2003



BTECH 450 Final Report

m

dit
File property and Axis property can be modified at any time
1. Configure “File Property”: Main menu, “Edit” -> *“File
Property” - “File Property” dialog will appear
2. 2 ways to bring up the “Axis Property” dialog: Highlight the axis
to be configured.
a. Main menu: "Edit” - “Axis” = “Property”
b. Mouse right-click - “Axis Properties”

Save
To save the file: Main menu, “File” - “Save” (or “Save As”). The
file will be saved as an XML file with the name specified by user.

Delete
e AXis: Select an axis to delete
1. Main menu: “Edit” - “Remove”
2. Context menu: Mouse Right-click > “Remove”
e Element: Highlight the element record to be deleted, and then press
the “Delete” button on keyboard.

(™ Macro Select - G:\BTech\ADL_CS\macro.xml [opened] @

mach macd

mac4

mach
mac1

macd
mac?

Remave

OK

Browse Cancel

Macro Detail

[Test Ads"
11" 1=1
2 1=2
13" 1=3
1

Figure 7: Macro Select Dialog

Zhigang Yin -39- 30/10/2003



BTECH 450 Final Report

Macro
Main menu: “Macro” = “Select Macro” to bring up the macro select
dialog. The macro list belongs to the current file might be empty, or
already contains some macros.

e Add:

o Click “Browse” button to load in a macro list from a macro
XML file. Once loaded successfully, the macros’ names will
be listed in the list box on the left-hand-side of the form.

0 Select a macro to view its detail. If the macro matches the
user requirement, click on the “Add >>" button to add it to
the current file.

e Delete:

0 Select a macro’s name from the right-hand-side list box to
view its detail. If the selected macro is no longer required,
click on the “Remove” button to remove it from the current
file.

Once the modification is done, click the “OK” button to save the
changes and exit the dialog, or “Cancel” button to abort all the
changes.

5.1.3 Pros & Cons

Pros
e Provides an easy-to-use graphical user interface for building
ADL script files.
e User does not necessarily need to know the ADL syntax for
writing an ADL file to process a data file.
e A platform that integrates all the other tools. User can perform
multiple actions without having to open each tool individually.

Cons

e As the application contains several little tools and many components,
each part might not coordinate with another properly. Possible gaps
between components.

e ADL language Experts would possibly think of this an extra step that is
not that useful. Could even slow down the database set-up speed for
them.

e Since this application parses the newly designed XML formatted ADL
files only, it has not been tested against real world jobs.

e Hidden errors / exceptions that could only be discovered
through more complex testing processes.

Zhigang Yin -40 - 30/10/2003



BTECH 450 Final Report

5.5.4 Problem Discussion

| encountered on “interesting” problem during the coding process of
this ADL_CS editor.

Source: Microsoft Visual Studio V1.1 C#

Description: The ADL_CS editor application is made up of one
solution containing multiple windows forms: Convert tool, Macro select
dialog, and file property dialog, axis property dialog. Each of them has
multiple controls: button, text box, combo box, label, etc. Up to a
certain stage, the Microsoft IDE is not able to recognize and manage
all the user controls any more, so at design view, all the controls are
out of order. This blocked the coding process completely. For
example, one of the error messages for button control says:
“Duplicate declaration of Member "Location®. The variable
"Button®™ is either undeclared or was never assigned.”

Investigation: Researches were done on the Internet. Amazingly, |
found that many other VS .NET programmers encountered the same
error. No official solution to this yet. Some forum posts gave
comments and solutions of how they fixed the error. Unfortunately,
they did not work in my case.

Solution: I divided the one solution into a few separate ones and
assigned different namespace names to them, and the problem was
fixed.

5.5.5 Future ldeas

One of the improvements to this application is to give it the ability to
parse a traditional ADL file as well as an XML formatted ADL file. So
the modification done through this interface is reflected in the ADL file
simultaneously. This improves the conversion between the new and
traditional formats of an ADL file as well.

The imported macros are not too well handles by ADL_CS editor yet.
Future development should link the macro selection to element part of
a particular axis.

Ideally, ADL_CS will have its own manual, User Guide or Help system
in compiled HTML version.

Enhance this editor to make it capable for handling various ways of
generating ADL file. ADL syntax is parsed completely by this
application. This conforms to the ideal model of database set-up
process:

Zhigang Yin -41- 30/10/2003



BTECH 450 Final Report

AL Data
Description (XML, i
Script File > P ( ) > Engine
PR L > -
—— Data File 1 bata File

Edit data?

Enhanced ADL
Script File

Analysis
Program

API for other
languages

Other languages
(Python/C# etc)

Data File

Zhigang Yin -42 - 30/10/2003



BTECH 450 Final Report

6. Conclusion

Status of Completion:

Month Objective

March Training

April ADL language documentation

May Design an enhanced ADL language

June Implementation plan for the enhanced
language design

July Program development stage 1: Re-write ADL
in other programming language (C# .NET)

August Program devel opment stage 2: Re-write ADL
continues

September Program devel opment stage 3: XML to X-
Files convert engine.

October Final report and presentation

The project is finished following the schedule step by step. Looking
back at the requirements specified at the start of this project, and
check to see how well the project results meet the requirements:

1) Training

Training process is much simpler than before. New staffs do not need training
on understanding and familiarizing with the traditional ADL syntax. Even
people with no programming background can start building ADL files easily,
as long as he has basic windows explorer knowledge.

2) Speed

| had an attempt on improving the speed of ADL data file processing.
Although the experiment result was negative, it proved the original ADL’s
great advantage in data processing efficiency.

3) Correctness

The correctness of ADL files is improved. By using the ADL_CS editor, many
property settings are preset, so user can only choose from the given values.
The editor writes out traditional ADL syntax for user, so the completeness of a
file and the axes included are enhanced as well.

Zhigang Yin -43- 30/10/2003



BTECH 450 Final Report

4) Easy to maintain and extend to meet new challenges.

XML format of ADL file provides great Flexibility for future development and
will be easily converted among similar type of scripting languages, e.g. Triple-
S.

The “Macro List” XML file is maintained separately and made reusable, this
makes the XML formatted ADL more manageable and extensible.

5) Retain backwards and forwar ds compatibility

No tool was made to parse a readily written traditional ADL file, so | one wants
to open and modify an ADL file from previous job, he/she must manually
convert it to the XML formatted one.

For forward compatibility, if any changes taken place to the ADL specification,
the current XML formatted ADL file parser must be updated in order to handle
the newly created settings or symbols. The XML format of the new ADL file
must be updated accordingly.

6) Extrafeatures

The new ADL format is created according to the original ADL format,
and is to be parsed by the original ADL programme for data
processing, so not too much extra features were added. However, the
“Macro List” feature could be considered an extra feature in a way.
And by dividing the entire ADL file into two major parts: “Header” &
“Body”, the file has clearer structure and becomes more manageable.

The project was done in:

[ | Computer labs of University of Auckland: Debug,
Documentation, Final Report and Presentation
writing.

[ | Information Tools Ltd. Auckland office, Milford:
All software coding and testing.

u Home: Research, Programme Design & Planning,

periodic summary of project progress.

Both technical and practical knowledge were developed during this
period. In particular, | appreciate being given the chance to attend the
ITL software development team’s weekly meeting and been given time
to report my project progress in the meeting.

Technical knowledge gained

File type conversion

XML knowledge

Language parsing
Documentation skill
Language Design concepts

O O0O0OO0O0o

e Practical knowledge gained
0 Research technique
o Document writing
0 Report writing

Zhigang Yin -44 - 30/10/2003



BTECH 450 Final Report

Presentation skills

Team work

Communication skills

Business Rules (business workflow, terms of
confidentiality)

O o0Oo0oo

The experiences | gained through this one-year project are extremely valuable
and will definitely be useful for future work. I treasure the technical knowledge
gained, but more importantly, the practical knowledge about real world
company environment and standard workflow.

Zhigang Yin -45 - 30/10/2003



BTECH 450 Final Report

7. Reference

Information Tools Ltd:

Document Name Author Date

ADL V3.1m Manual ITL 04/2002
ADL V3.3m Manual ITL 07/2003
“ADL"” Resource CD ITL 18/03/2003
ITL TIF Proposal document ~ Grant Black. 05/03/2003
“X-Files’ presentationdoc ~ Dr. S Manoharan  14/02/2003
“Discussion Document Grant Black 19/09/2003
Extended Character Set

Databases’

Internet:

Document Name Address

XML on-linetutorial  http://vwww.w3schools.com
“The BNF Web Club  http://cui.unige.ch/db-resear ch/Ense gnement/anal ysei nfo/BNFweb.html

Language SQL, ADA,
JAVA, MODULAZ2,

PL/SQL...”

On-line forum http://slashdot.or g/comments.pl ?sid=57483& cid=0
discussing topicson & pid=08& startat=&threshold=1

XML & mode=thread& commentsort=3& op=Change

5 questions about http: //www.paul graham.convlangdes.html

language design

“Creating A Great http: //www.geocities.conVSliconValley/Bay/2535/design_doc.html
Design Document”

“Implementation http: //mwww.w3.or g/ WAI/EO/Drafts/impl/

Plan for Web

Accessibility”

“A Strategy for the  http://www.fenwicksoftwar e.com.au/implementation.asp
Successful

Implementation of

New Systems’

Triple-S Site http: //mwwww.triple-s.org/index.htm

“Error in Designview of  http: //www.dotnet247.com/247r efer ence/msgs/19/98058.aspx
Visual Studio .Net”

University of Auckland:

COMPSCI734 Resource CD set VS. NET, MSDN
COMPSCI 330 lecture notes Semester one, 2003

Zhigang Yin - 46 - 30/10/2003



http://www.w3schools.com/
http://cui.unige.ch/db-research/Enseignement/analyseinfo/BNFweb.html
http://www.paulgraham.com/langdes.html
http://www.geocities.com/SiliconValley/Bay/2535/design_doc.html
http://www.w3.org/WAI/EO/Drafts/impl/
http://www.fenwicksoftware.com.au/implementation.asp
http://www.triple-s.org/index.htm
http://www.dotnet247.com/247reference/msgs/19/98058.aspx

BTECH 450 Final Report

Appendix A: What is ADL?

What does ADL stand for? Nothing, it is just the tool that is used by
ITL.

If really keen on how ADL was named, well, it could be anything,
Analytical Data Language, Advanced Data Language ...you name it!

ADL consists of two parts:
e ADL Program: a single Windows 32 command line driven executable
e ADL language: a data description language

ADL program: Internally, it consists of language syntax parser 'front end'’
and backend that writes ITL databases using a “blob manager”. The ADL
program is sometimes described as a “compiler”, which technically it is not, as
it does not produce executable code. It does however share some features of
a language compiler such as a C++ or the TAWK compiler in that it parses a
language and generates syntax errors/warnings at both parse ‘compile’ time
and when building ITL databases (run time).

ADL language: The ADL language is much more difficult to describe. It is not
a full programming language, but is more like XML in that it essentially
describes or defines data. Unlike XML, an ADL script can describe not only
the location and size of data located in a separate data file, but also
manipulate or construct data.

For instance, in the ADL language, the line:

; Q22
['Gender” where=195 2
"Male" =1
"Female"” =2

]

Specifies the data that indicates the respondent’s gender, is stored in
columns 195 and 196

Zhigang Yin -47 - 30/10/2003



