ENHANCED ADL

DESIGN DOCUMENT
&
USER GUIDE

Zhigang Yin

CONTENTS

Introduction to current ADL language---------============-===--coooooooooooooo
Requirements for the design------------=--=-=-mmmommooooo oo 3
Initial design models--------==-===-mnmmooo oo
DB CISION-= === 7
ldeal MOdE|-----===mmmmmmmom oo 8

RefereNCE----m--mmmmmmm oo

Introduction to current ADL lanquaqge

“ADL is a language for describing how a data file is structured and how to
convert it into an Information Tools formatted database. There are a number
of other tools that are used for manipulating data (before running ADL) and for
working with Information Tools formatted databases once they have been
created (after running ADL). In either case, ADL is a key part of the process
because it encodes data into the Information Tools special format.”

------ (ADL V3 Manual)

There are 25 (or more) people currently been employed to work on a task
described as “data setup”. This group of employees are called the “setup-
team”.

Generally speaking, the setup-team’s task is that they accept raw data
(primarily survey data) in various formats, and then use ADL as well as
supporting programs from the “iTools”* suite to produce ITL formatted

databases, namely “X-files”.

The primary tool of the data set-up team is considered to be the ADL
program, as at present that is the only program that can generate the ITL
formatted databases for end-users. Other companies also use the ADL
program worldwide, to produce databases for client analysis.

Since the ADL program is a fundamental part of the Information Tools
business model, my project aims to develop better, more industry standard
ways of doing the ITL setup task. This is to be accomplished by
programmatically designing either some form of enhancing component for
ADL or by re-writing the ADL completely. Different options are explored, and
applicability of each alternative is discussed through this document. | hope to
improve not only the ADL program itself, but also the production task in which
they process data and build databases for customer analysis. This means
higher efficiency and quality.

! “iTools” suite: a set of in-house programmes used by ITL.

Requirements for “Enhanced ADL”

--Conceptual requirements:

1) Training:
Enhanced ADL should have a shallow learning curve. Least training
required for new employees.

2) Speed:
Encompasses the processing time required to build a database
More importantly, the time required to write a complete script

3) Correctness:
e Correctness in the build process in which the script is turned into a
database with no ambiguity.
e Correctness in the readability or the language and program reporting
tools to enable input/output checking.

4) Easy to maintain and extend to meet new challenges.
o Flexibility: capable of dealing with new types of data
e Integration: can integrate with relational database ‘warehouse’ tools or
applications written in other languages.

5) Retain backwards and forwards compatibility.
ITL has some 10 years or more of data held in ITL database form with
ADL descriptions of much of the data. It is therefore vital that any
solution can run along side of ADL and still produce ITL databases at
least in the medium term.

6) Extra features:

e Context sensitive help
e Modern language features (e.g. syntax completion).

--Detailed requirements from ADL users:

Error handling:
¢ ‘“Implement the Error message on duplicate axes. “

e Error message if base applied incorrectly. "The manual states that
Base can not be applied to value axes. However, ADL does not stop
people from running a base on these items. Therefore, | think we
need to do one of two things, either we change ADL to support base
on this type of axes, or we change ADL to return and Error if a user
attempts to do this.

e Give error message rather than warning message if preset tables
are incorrectly set up

Calculation:

“..., takes a denominator and an enumerator & calculates a probability
betweenOand 1....”
Min and Max functions like Count but return the min and maximum

value of a group of locations or variables.

Security:

Restrict writing auxiliary files such as .ADT, .USR and .DBG files
unless required to.

Make registration like V3 - prompt for details if no registration,
automatically attempt to register if .RGS dir is found.

Variable types support:

Byte and Word keywords. Generate error/warning if multiple response
and/or number of elements overflows byte/word axis. ADL should
automatically compress data if possible to allow these keywords to be
dropped

Re-design of variable handling.

Other features:

Reference multiple data files at one. Could assign to variables so:
sales_data = "sales.dat" maxrec 5
survey data = "c:\data\survey.csv" filetype delimited ","

['Axis 1" where=sales_data:2:1_5]
["Axis 2" where=survey_data:1 to 3]

“Few issues of course - like do we default to the last used file until the
next reference? Or do we have separate sections of the ADL file — like
"begin filel" "end file2" or just use includes?”

Compound axes. Col macros are used for a list of elements and their
column positions. Would like multiple where statements to be used so
that you could have multiple macros used.
For instance:

define banks

"bankl" =1
"pank2" =1
"bank2" =
enddef

define others
"not answered"
"no bank"
enddef

['Like service" col where=100 banks
where = 150 others

]

Add axes keywords: 'media’ and 'header'. Possibly add 'PITA' flags?

Debug off - "Please could we add to the development list a request for
debug to also respond to debug off. Other, Suppress and Base all
respond to off, while debug is turned off through the command debug
0. It would be good if it also responded to debug off, just for
consistency sake!"

Shrink list for finding axes (elements?). Bookmarking / syntax
highlighting editor.

Spelling checker / abbreviation lookup. Would parse ADL file and list
suspect words. Also would be able to search and replace words like
ModAxes.

Concatenate strings (var = string1l + string2)?

Test incrementing with “col” based macros.

Meta-axes/elements axes/elements based on the counts generated by
other base axes/elements

Initial design models

Model One: “SUPER ADL” ---- Original ADL language with extra features.

Data File

“SUPERADL "
Script File

T

Extra Features

“SUPERADL”

Processing

X-Files

Editdata? Yes—p

Merge, Shrink
AddAxes, Weight
etc

No

Analysis
Program

Model Two: Use another programming language

ADL Library

[

Data File

Other languages
(Python/C# etc)

Yes

Engine

Editdata?

No

Analysis
Program

Merge, Shrink
AddAxes, Weight
etc

Model Three: XML format of X-Files Database & XML to X-Files engine

ADL ScriptFile

Data File

ADL-XML
Processing

Engine

Editdata?

Yes

No

Analysis
Program

Yes—p| Merge, Shrink

AddAxes, Weight
etc

Pros & Cons:

Model Pros Cons
One Minor changes to the original | Not much contribution to
ADL structure, easy training future expansion
No change to compatibility
with other DB formats
Two Can take the advantage of Based on deep
existing programming understanding of the original
language, much richer ADL programme code. This
features supported. is extremely time-consuming.
e.g. error handling, Deep training curve expected
debugging for employees with no
programming background.
Three Formalized database Not much improvement on
structure. Easy to change, initial set-up process.
easy to read, easy to Requires higher standard of
generate. Provides good original ADL script file.
flexibility and compatibility.
Rating:
Model One Model Two Model Three
Speed 2 3 1
Correctness 2 1 3
training /re-training 1 3 2
Flexibility 2 3 3
Integration 2 3 3
Backward 1 3 2
compatibility
Forward 3 2 1
compatibility
Error handling 3 1 2
Security 2 1 3
Programming 1 3 2
workload
Change to original 1 3 2
language structure
Complexity of Use 1 3 2
“1"---- Good “2"----Neutral “3"---- Bad
Decision:

From the table above, it's clear that each model has its own advantage and
disadvantage. The more advantages my final solution can have the better.
However, this is limited by both the time and the complexity.

My decision for now is Model, i.e. to rewrite ADL in another programming
language, using API for the programming language (XML handlers, libraries),
and output a XML file as an intermediate format. A convert engine will then

take this XML file and the original .DAT file as input in order to generate the
ITL Database in X-Files format.

ldeal Model:

Ideally, | hope to make enhancement to current ADL that includes all the
advantages of the three different models and avoids all the disadvantages.
That is, script files can be written in either enhanced ADL syntax (“Super
ADL”) or in an existing programming language. Both generate an XML format
data description file. This is then combined with the raw data file, feed through
the XML to X-Files convert engine to generate the X-Files Database.

This is possible if time allowed. It's also possible that new projects are set up
to further develop the idea programmatically.

- Data /;
Description (XML) 4 i —
) . » E—
Script File . () Engine i
B X-Files

N h A < 7 R
\\E \‘ ™

’7 Yes Edit data?

Enhanced ADL
Script File

1 Data File

Analysis
Program

API for other
languages

Other languages
(Python/C# etc)

Data File

Reference:

e Information Tools

--- “ADL V3 Manual” (latest version)
--- “ADL Enhancement Proposal”’ by Grant Black
--- http://www.infotools.com

o “Creating A Great Design Document”
---http://www.geocities.com/SiliconValley/Bay/2535/design_doc.html

8

http://www.infotools.com/

