Timothy Paul WALKER

ID: 2507817

UPI: twal026

[image: image1.png]i | lstatus_]|
Project Planning o Completed
Stage One - Working application with limited features 3¢ Underway
Stage Twn - Refactor and add features

Stage Three - Continue to add features as time permits
Project Completion - Final reports and seminar

Bachelor of Technology Project
Kiwiplan Reporting Tool

Mid-year Report

Name: Timothy Paul WALKER

ID: 2507817

UPI: twal026

Abstract

The aim of this project is to develop a flexible two-dimensional table component that performs reporting functions and can be integrated into the user interfaces of future Kiwiplan products. The problem this project attempts to solve is to move reporting functionality into the graphical user interfaces used for day-to-day software operation (rather than separating the reporting into separate subsystems or applications). We wish to provide a means for end users to gain immediate feedback to their business queries by allowing them to create and customise reports from the graphical user interface, without requiring expert knowledge. By providing fast, easy access to the information the user requires, we can help managers to make timely and effective decisions.

This report describes my progress with this project to date. I discuss the development process I am following, and my reasons for choosing this approach. I present a number of design alternatives for various parts of the system, evaluate the advantages and disadvantages of each, and explain my reasons for my selected implementation. I conclude with an evaluation of the decisions I have made, the processes I have followed, and what I have gained while working on this project.

Table of Contents
Introduction

…
3

Requirements for the reporting tool

…
6

Project Planning

…
7

Evaluation of Existing Products

…
10

Stage One

…
13

Design Decisions

…
14

Demonstration Application

…
22

My Evaluation

…
23

Concluding Remarks

…
25

References

…
26

APPENDIX A: Overall requirements

…
27

APPENDIX B: Software Requirements Document
…
32

APPENDIX C: Log book

…
44

Introduction
Project Information

My project is with Kiwiplan NZ Limited. The task is to develop a reporting tool that allows end users to create, customise and view reports from the graphical user interface.

The front-end of the reporting system will be a grid (2-dimensional table) GUI component. The grid displays the report results on-screen, and the user is able to customise the report by interacting with the grid component.

The project is to be implemented on the Java platform.

The Company

Kiwiplan is a software development company that services the corrugating and packaging industries. Typical customers include firms that produce corrugated cardboard products such as boxes, display stands, and other packaging products.

Their product range covers the entire business process for a packaging firm, from order entry to shipping. The core products relate to controlling the plant and scheduling the corrugating machinery. These products communicate with the equipment on the factory floor to control production and collect data.

In the 1970's, Kiwiplan was starting business as a small corrugating firm. As their throughput increased they developed computer systems to help them keep up with demand. There was considerable interest in these computerised systems from other packaging companies, and the IT department grew and eventually separated from the box plant division.

Kiwiplan is now one of the world’s leading software suppliers to the packaging industry. They have customers in 28 countries and four international offices. All research and development work is done in New Zealand.

Project Outline
This section outlines the problems that this project is attempting to solve, the reasons that this project is important, and my goals for this project.

Motivation

· Kiwiplan's core products are currently character-based applications (accessed from a terminal or Telnet session). They are moving these products to graphical user interfaces, which are much more powerful, providing the users with more features in an easy to use way. The reporting tool will become part of these new user interfaces.

· In the company’s experience, most reports arise from a business need to answer a specific question. For example, an employee may need to know a particular sales figure for a month, and so would consult a report to find the answer. Some reports may be used repeatedly, as the same question may arise regularly, but often the user has a question, a report is created and used once, then not looked at again. For such situations, we need to empower the user to build and customise their own reports so that when a question arises they can gain fast access to the information they need, without advanced programming knowledge or having to consult specialised report writing staff.

· Typically reports for management display summary information, showing totals and overall trends. The manager may spot a particular figure that seems unusual, and request more detailed information - for example if a monthly sales figure seems much lower or higher than expected, they may want to see the totals for each product. The advantage of reporting to a graphical user interface component, rather to a static report or to paper, is that the manager can gain immediate feedback to their requests for information, allowing for more timely decision making.

Project Goals

To develop a reporting system which is:

· Flexible

· Powerful

· Able to be integrated into new Kiwiplan products

A key difference to typical reporting systems is the ability to report from business objects. Most reporting tools work by connecting to a database and running SQL queries. A growing trend is to support reporting from objects, such as JavaBeans. The motivation in our case is that:

· Not all the data is available in a database (for example, some is coming from legacy applications);

· We can maintain data integrity by only allowing users to view and update data in the way that the programmer intended;

· By viewing the objects in their proper context the information is more meaningful to the user.

I will be developing a reporting back-end that takes care of calculations such as finding totals, averages, and other aggregations. We also require support for user-defined expressions.

For the front end I will be developing a Swing based table component, which allows the user to customise their report by adding and removing columns, sorting, searching, applying filters, grouping, displaying subtotals, and editing data where appropriate.

An important feature will be the ability to drill down into reports, to view data in more detail.

What I Hope to Gain

· Practical experience with the software development process. Being able to put into practice the skills I have learnt through University study, and see an application develop through each of the stages, from requirements to implementation.

· Skills in analysis and design. I will be able to compare different design possibilities, evaluate the relative benefits of each, and select the best one.

· Thorough knowledge of reporting systems - what’s required to make a ‘good’ reporting system, and what’s involved in building them.

· Experience with any programming tools and resources that can make my life easier. Reporting in general is a well established field, and rather than re-inventing the wheel, I hope to make use of some existing open source libraries, allowing me to focus on the areas of this project that are new and exciting.

Requirements for the Reporting Tool
In the early stages of this project I attended meetings with Kiwiplan’s managers and other analyst/programmers. They gave demonstrations of existing products and described what new features they would like in the reporting system. I made brief documentation of the overall requirements and distributed these among the team to get their comments and to gain management approval.

The overall requirements for the reporting tool are described in appendix A and are summarised below.

There will not be sufficient time to complete all of these requirements within my project time. I will focus on a subset of these, and I envisage that development of the reporting tool will continue after my project time is complete. The final product will be a very powerful, flexible component, which can be integrated into any Kiwiplan application.

Overall Requirements

Kiwiplan’s Visual Basic products feature a grid component known as the FlexiGrid. The features of the FlexiGrid should be reproduced in the Java implementation. These include:

· Add and remove columns

· Fix columns onscreen (the column remains visible when scrolling)

· Sort by columns

· Change column order

· Apply filters (only see records meeting certain criteria)

· Grouping and subtotals

· Generate a graph of the report contents

· Edit values and update data

· User-defined views

· Searching

· Export data for use by external products

· Printing

In addition, the following requirements have been identified for the Java implementation:

· Multiple levels of grouping

· Drill down to view more detail

· User-defined expressions

· Flexible aggregation features

· View objects with 1:M relationships

· Large reports can be scheduled, processed remotely, or run in the background.

Additional non-functional requirements:

· Reporting from business objects

· Be able to work in a distributed environment

· Interactive reports should be processed quickly.

· Implemented in the Java programming language.

· Internationalisation support.

· Minimal changes necessary to business object code

· Support for web applications

Project Planning
Project Lifecycle

The traditional ‘waterfall’ model for the software development lifecycle consists of five stages: Requirements definition, System and software design, Implementation and unit testing, Integration and system testing, and Operation and maintenance [Som96]. A variation of this is an iterative development process [Fow00]. This process begins with project inception (determines the scope of the project, and sponsor approval is gained), then elaboration (requirements are gathered and a plan for the project is established). Following this, the analysis, design, implementation and testing phases are repeated several times. Development is incremental [Som00]. The project begins simply, with only the most important requirements. With each iteration further requirements are added. Each iteration produces a working, tested application that fulfils a subset of the overall project requirements. The project concludes with a transition phase (preparing to take the product to the end users).

I have chosen to use this iterative approach for this project, and expect it to have a number of advantages:

· Because the project begins with simple requirements, it should be easier to gain a good understanding of how the system works before moving on to more advanced features.

· Because an iteration through the development cycle is short in comparison to the traditional development approach, it is possible to get a simple working application in a short period of time. This is rewarding for me as the developer, as I can see some results of my work. It is also useful for business stakeholders because at regular intervals they are able to see a demonstration of the product, gauge how the project is progressing, and provide feedback.

· The shorter cycle length also means that the developer is not performing the same task continuously for a long period of time. In my opinion, this makes the project more motivating because, since you are frequently changing between requirements, design, and implementation, you are less likely to get bored performing the same task for a long time. This is particularly important for me because of the relatively small amount of time I have to work on the project (10 hours per week, compared to a normal working week of 40 hours). If I attempted to complete the entire project in one iteration, it would be easy for me to get stuck in the design phase until the end of this year.

· The iterative process allows the developer to re-evaluate their design and other decisions as the product is developed. I would expect that this should lead to a better quality end product. Mistakes or bad decisions can be detected early, and refactored before the final product is produced.

· The combination of the above factors means that a software project that utilises an iterative development process has a greater chance of success than one tackled in its entirety. “A complex system that works is invariably found to have evolved from a simple system that worked… A complex system designed from scratch never works and can’t be patched up to work. You have to start over, beginning with a working simple system.” [Mug01]

Some other examples of development processes [Som00] include:

· Evolutionary development

· Formal systems development

· Re-use based development

· Extreme programming

With the iterative development process in mind I have developed the following project plan. The year is divided into five stages, the middle three being the construction phases.

Long Term Plan

[image: image18.jpg]

Project Planning

The project planning stage combines the inception and elaboration phases. At the end of this stage I should have a good idea of what goals the project needs to achieve, and some ideas on how to achieve them. The preparation of this project plan was also conducted during this planning stage.

Started: 25 February 2003

Estimated Completion: Middle of Semester 1

[image: image2.png]ras e ———]

Research existing reporting tools o Completed
Identify requirements & project familiarisation o Completed
Prepare project outline and introductory presentation e Completed
Set up project website o Completed
Formalise requirements and project scope o Completed

Protatype application o Completed

Stage One - Working application with limited features

The first stage delivers a simple application that implements some functionality at each of the data, processing, and presentation layers. The analysis and design will be most important as this stage lays the foundation for stages 2 & 3, which add functionality.

Estimated Start: Mid-semester Break

Estimated Completion: End of Semester 1

[image: image3.png]ras e ———————— s]
Requirements & Specification: Use case diagrams, O0A, etc o Completed

Design: System architecture, UML Class diagrams, User-interface o Completed
design, etc.

Implementation: Programming (in Java) X underway
Testing: Write unit tests for methods X started
Prepare Semester Report & Seminar o completed

Stage Two – Refactor and add features

Re-iterate through software development cycle, adding the most important features.

Estimated Start: Inter-semester break

Estimated Completion: First quarter of semester 2

[image: image4.png]ras e ————————ttu]
Requirements & Specification: Use case diagrams, O0A, etc

Design: System architecture, UML Class diagrams, User-interface
design, etc.

Implementation: Programming (in Java)
Testing: Write unit tests for methods

Stage Three – Continue to add features.

Re-iterate through software development cycle, adding other new features (as time permits).

Estimated Start: First quarter of Semester 2

Estimated Completion: Middle of Semester 2

[image: image5.png]ras e ————————ttu]
Requirements & Specification: Use case diagrams, O0A, etc

Design: System architecture, UML Class diagrams, User-interface
design, etc.

Implementation: Programming (in Java)
Testing: Write unit tests for methods

Project Completion

The Project completion stage formally concludes the project lifecycle. Reconsidering it now, I may have allocated more time than is necessary to this stage. Some tasks such as preparing API's and the project report are best done at the same time as the work is actually being carried out. The benefit of this should be that the information is still fresh in my mind, and it avoids a long slog of writing at the end of the year. In practice, I think I will allow this stage to start later than originally estimated, and use it to tie together work that I have been writing throughout the project.

Estimated Start: Mid-semester Break

Estimated Completion: End of Semester 2

[image: image6.png]rasi e —————]
Complete the documentation & API specs for the software

Prepare final project report

Final project presentation

Progress to Date

Project planning has been completed, and I am currently working on stage 1. Requirements for this stage are explained in detail in a Software Requirements Document [appendix reference]. I have prepared object oriented design diagrams and am currently working on the implementation. At the same time I am writing test cases for the most critical classes using the JUnit framework.

Evaluation of Existing Reporting Products
I have evaluated a number of existing reporting tools. The purpose was to gain some familiarity with how these tools work, what features they support, and whether they could be used for this project. I have downloaded and inspected the code of the open-source reporting tools in order to gain an understanding of how they work (this is discussed in more detail in a later section of this report).

I provide a detailed evaluation of Crystal Reports and JFreeReport below, and brief descriptions of some other reporting tools that I have looked at.

Crystal Reports

Crystal Reports is a commercial reporting package from Crystal Decisions [http://www.crystaldecisions.com/]. This company specialises in reporting and analysis products. Crystal Reports is sold as both a standalone reporting application and as a developer’s edition, which allow reporting features to be added to other applications. The product has a rich set of features, which include:

· Graphical report designer. This is similar to the report designer in Microsoft Access. Reports are created by drag-and-dropping components onto the report.
· Report ‘experts’. These are wizards, which guide the user step-by-step through the process of creating a report. This makes it quite easy for a novice end user to create a report.

· Drill-down reports. Sections of the report can be expanded (or collapsed) to view data in more (or less) detail.

· Grouping

· Sub-reports.
· Hyperlinks.
· Charting.
· Formula. The user can create user-defined expressions using Crystal Reports’ function language.

Crystal Reports supports a large number of input data sources, including files (e.g. Access databases), SQL ODBC, Exchange, File System (e.g. directory listings), Web Logs, MS Outlook, ADO, and custom Java Beans. The Java Beans option could be used to implement reporting from the business objects.

Crystal Reports can also export data to a wide range of formats. The developer’s edition includes components that a developer can add to their own application to view and modify reports.

Being a commercial product, a license is required to use Crystal Reports. The thick-client viewing and modification APIs can be distributed royalty free, however the report designer requires a license for each computer that will use it. The Reporting Application Server (used for distributed reporting, and web applications) also requires a license for each company that uses it. Kiwiplan wish to integrated reporting features into their new Java applications, so this would require their clients to also purchase Crystal Reports licenses as well as the Kiwiplan licenses.

Because Crystal Reports is closed-source, Kiwiplan will not be able to easily make changes if new features are required. Also, because Kiwiplan’s applications would all require this closed-source package, Kiwiplan would become very reliant on a single software vendor. This is a situation they would like to avoid.

JFreeReport

JFreeReport is an open-source reporting package developed by The Object-Refinery [http://www.jfree.org/]. JFreeReport is not as feature-rich as some of the commercial products, such as Crystal Reports - most notably it lacks a graphical report designer – but its features are still quite adequate for our requirements. Its features include:

· XML report definitions. These describe the data structure, and visual appearance of the report.

· User-defined expressions. JFreeReport uses BeanShell for runtime Java interpretation of user-defined expressions.

· Predefined functions. Developers can add new functions by adding new Java classes that implement the function interface (installing the functions does not require a recompile of the package).

· Grouping. Data can be grouped by any number of fields.

· Charting. JFreeChart (another open-source package developed by same organisation) is used to generate charts.

JFreeReport uses a javax.swing.TableModel as the input data source. Reports can be previewed onscreen, printed, or exported to PDF, XML, CSV and image file formats. The package also includes a web application for running reports (this works by exporting the report to an image file, which the browser displays). The report viewer is very easy to integrate into Java applications.

Because JFreeReport is open-source (LGPL), it is possible to extend the package if new features are required. Code from the package could also be re-used in other applications (for example, if I develop a new reporting framework, I may be able to re-use some of the JFreeReport code). Another obvious benefit of using an open-source package is that there are no licensing fees to be paid by Kiwiplan’s customers.

Jasper Reports

Jasper Reports [http://jasperreports.sourceforge.net/] is another open-source (LGPL) reporting tool. It provides similar functionality to JFreeReport, and also supports sub-reports and hyperlinks. Jasper Reports reads an XML report definition, which is compiled and saved. Like JFreeReport, Jasper does not include a graphical report designer, however there are currently some other open-source projects working on developing a designer add-on. Jasper accepts a database connection, or a JRDataSource object (very similar to a Java ResultSet) for its input data source. It can preview reports onscreen, print them, and export to PDF, HTML, XLS, CSV, and XML formats. Jasper Reports supports parameters (values passed to the report when it is run), user-defined expressions (these are compiled within the report definition, not interpreted at runtime), and Scriptlets (custom Java classes to implement function behaviour). A report is limited to having only one scriptlet.

Datavision
Datavision [http://datavision.sourceforge.net/] is an open-source (Apache license) reporting tool, and includes a graphical report designer. This tool is developed more as a standalone application than the likes of JFreeReport and Jasper Reports, which are designed to be integrated into other applications. Datavision accepts data from a JDBC data source (there is no support for reporting from business objects) and the report must specify an SQL query string. Datavision can previews reports, print them, and export to HTML, XML, PDF, LaTeX, DocBook, and CSV formats. There is support for functions, which the user must write using the Ruby scripting language. The report designer saves the report definition in XML format. This tool is not particularly user-friendly, and because of its ties to SQL and a JDBC data source, is not very useful for this project.

Style Report

Style Report is a commercial reporting tool from InetSoft [http://www.inetsoft.com/]. It is entirely web based (uses the J2EE framework). Style Report accepts Enterprise Java Beans, CORBA, XML, JDBC, and text based data sources. It provides ad-hoc reporting features, and the ability to drill down into report data.

I have also looked briefly at the following reporting tools:

· xReporter (Apache license) [http://xreporter.cocoondev.org/]

· Report Weaver (commercial) [http://www.qint.de/]

· Business Objects (commercial) [http://www.businessobjects.com/]

Stage One – Working Application with limited features
For this stage I have identified the requirements that are the most important for this project. I have selected a small set of use cases, and these are shown on the diagram below. These requirements and use cases are documented in detail in the Software Requirements Document [Appendix B].

[image: image15.wmf]Java Systems

Legacy Systems

View Report

Print Report

<<uses>>

Set Criteria

Add/Remove Columns

Change Column Order

Freeze Column

Sort By Column

Staff Member

Filter Results

Use Case Diagram for Reporting Tool (Stage 1)

Java Systems

Legacy Systems

View Report

Print Report

<<uses>>

Set Criteria

Add/Remove Columns

Change Column Order

Freeze Column

Sort By Column

Staff Member

Filter Results

Java Systems

Legacy Systems

View Report

Print Report

<<uses>>

Set Criteria

Add/Remove Columns

Change Column Order

Freeze Column

Sort By Column

Staff Member

Filter Results

Java Systems

Legacy Systems

View Report

Print Report

<<uses>>

Set Criteria

Add/Remove Columns

Change Column Order

Freeze Column

Sort By Column

Staff Member

Filter Results

Use Case Diagram for Reporting Tool (Stage 1)

Design Decisions

I have identified three main layers to this system:

· Data Management – This will retrieve data from Java objects (rather than a database). This layer is concerned with selecting objects for the report, sorting, and updating where appropriate.

· Report Processing - Performs the task of building the report from the selected objects. Calculates totals, evaluates user-defined expressions.

· Presentation - Outputs the report to a Swing based component, to a web application, or to some other format for printing, saving, emailing etc.

For the purposes of this project, all the above subsystems will be running on a single machine. I do not plan to implement any distribution at this stage. However, this will need to be done in future (possibly after the conclusion of my BTech project), so I am trying to separate my coding into these three subsystems, and am carefully considering the interfaces between them.

[image: image7.wmf]Data Management

Subsystem

Reporting Subsystem

Presentation

Subsystem

Report Definition

Report Definition

Query

Query

Report

Report

Query Result

Query Result

I have prepared Object-Oriented design diagrams for the entire system. Some of these are reproduced for discussion in the sections that follow.

Object Metadata

Metadata is used to describe the business objects, what attributes they have, and the data types of those attributes. I am using various Descriptor classes to store this metadata. The descriptors are used to provide the user with a list of available business objects and their attributes, and for defining the columns of a report. One of the more important features is the ability to find a user-friendly name for a business object or attribute. The descriptors I use store a ‘friendlyNameKey’ for each object. This contains the name of a key in the application properties file. By storing the actual name for the object in the external configuration file, changing friendly names does not require a recompile of the application. By installing several locale specific configuration files, the application can support multiple languages. I plan to evaluate approaches to handling metadata in more detail in the second semester. Some issues I plan to consider are: how should metadata be stored, and how should it be generated? In the meantime I am using the following design for representing object metadata:

[image: image8.emf]Simple Object

Descriptor

Business Object

Descriptor

getAttributes()

Object Descriptor

className :

String

Attribute Descriptor

getFriendlyName()

0..n

+attributes

0..n

1

+valueDescriptor

1

Descriptor

friendlyNameKey : String

name : String

getFriendlyName()

Descriptor Manager

findDescriptor()

findBusinessDescriptors()

Report Definition

The report definition includes all the information necessary to build a report, such as the types of objects are involved, what columns are required, what sorting and other processing is to take place, etc. The report definition is created on the end-user’s computer (it may be saved and loaded from disk) and sent to the reporting subsystem.

Query

The query describes the data that the reporting subsystem needs in order to process the report. It is created based on the information contained in the report definition. It passed to the data management subsystem, which runs the query and returns the result.

Query Result

The data management subsystem creates a query result according to the query passed to it from the reporting subsystem. It contains all the data required for the report. The query result is the data source used by the reporting engine when it is generating a report. I have considered the following factors and design alternatives for the query result structure.

Considerations:

· Minimal network traffic. At this stage the data retrieval, processing, and presentation is being executed on a single computer, but in future the system will need to be distributed between several computers. Even though a distributed design is not necessary at present, I still considered the network traffic requirements when planning the design of the query result. I initially thought that by choosing a design which minimised network traffic, it would reduce the amount of refactoring I would need to do in order to distribute the project.
· Memory requirements. Reports will often involve very large amounts of data. It is important that the selected design does not require excessively large amounts of memory to run. One of my considerations has been whether or not the entire result needs to remain in memory the entire time.
· Don’t overload data server with processing. The data server is also running legacy applications, and its relational databases are being shared with other Java applications. The report processing should not be too intensive on this server, so that the other applications will not be slowed down.
· Maintain type fidelity. Where Java objects are used to represent values on a business object (for example, Kiwiplan applications use a number of Quantity objects to represent various measurements) , it is helpful if the value remains as an object during the reporting process, rather than being converted to a String or primitive.
· Flexible to answer ad-hoc queries. The user is able to create and customise the report at runtime, so the query result must be flexible enough to cater for any combination of data that the user may require. It should not depend on any hard-coded data mappings.
Alternatives:

· Collection of business objects

This is the simplest option to implement. The query engine retrieves the business objects that match the report criteria, and simply returns the collection of business objects. This also minimises the workload on the reporting server, as no mapping is required. Because the original business objects are used, type fidelity is retained. Because the entire business object is accessible, this approach is flexible enough to answer any of the users queries. In a distributed system however, this approach would require the business objects to be serialized and sent across the network. This will require a large amount of network traffic, because we are transferring all the data for each object. In addition, if the business objects contain pointers to other objects (which, of course, they will) Java’s serialization mechanism will also serialize those other objects. This could mean that entire object trees are serialized and sent across the wire unnecessarily. The report engine will probably only need to access a small number of the objects fields, so much of the transferred data is wasted. An alternative to serialization is to make the collection available through a remote object, however this would result in an excessive number of remote method invocation calls across the network. Another possible concern is that maintaining a collection of fully populated objects could require a large amount of memory – exporting large reports to disk may be necessary.

· Table Model

In this approach, the values required for the report are copied from the business objects into a two-dimensional table (javax.swing.TableModel). Because we only copy the values that are actually needed, rather than all the properties of the object, the amount of data transferred across the network, and the memory required should be reduced. This approach is also reasonably flexible, as the columns included in the table will vary according to the users query. The workload on the data server is increased however, because it must now map the business objects onto the table. Entries in the table may still be complex objects, so type fidelity of the values is maintained. Because the TableModel interface allows random access to the data, it will be necessary to either keep the entire result in memory, or save it to the disk in such a way that it can be retrieved with random access. A table approach introduces some redundancy in the result data. For example, if a collection of business objects all had a pointer to the same parent object, and the report was accessing a property from that parent object, then the parent’s value would be repeated on every row of the table. This problem could be reduced if table contained pointers to the original values, rather than copies of the values. JFreeReports requires a TableModel object as its input data source, and the swing JTable component also retrieves its data from a TableModel object.

· Result Set

ResultSet objects are used by Java for retrieving data from database connections. The data is represented as rows and columns, as in the table model approach, but the rows are only accessed sequentially. The advantages and disadvantages of the result set approach are largely the same as the for the table model. The result set has the added advantage that, because data can only be assessed sequentially, it is not necessary to maintain the entire result in memory. This approach is less flexible though because, if the report engine needs to return to an earlier row (for example, if the user has changed one of the reporting functions) the entire query will need to be re-run. Jasper Reports supports the use of a ResultSet for its input data.

· Tree structure

This approach maps the business object structure onto a tree structure. Given the situation where several objects reference the same parent object, a single node would be created for the parent object, and any properties of that object needed for the report would be copied to attributes of that node. The child objects would be mapped to child nodes in the tree and their values copied in the same way. Thus the tree structure avoids redundancy of data in the query result. Since only the values required for the report are copied to the tree, this approach also minimises the network transfer in a distributed environment. Memory requirements should also be less. As with the table model and result set approaches, mapping the business objects to the tree structure must be done on the data server – the tree structure is likely to require the most complex mapping process. There exist a number of Java classes for representing data in a tree structure, such as the TreeNode classes used by Swing, and the DOM objects used for XML documents. The former has no inbuilt support for attaching values to the nodes (other than a single business object), and the latter would require converting values to strings, so type fidelity would be lost. A custom tree model would therefore need to be developed.

My initial decision was to use a tree structure for the query result because it avoids redundancy, minimises network traffic, and is flexible. The design I used is an example of the Composite Pattern [Coo98]. I use a different class for the composite nodes and the child nodes. Most of the data will be child nodes, so this approach further reduces memory and network transfer requirements because child objects will be ‘smaller’ than the composite nodes (no memory is allocated for storing a list of children). Currently, the code I have written implements this design.

[image: image9.emf]Query Result Impl

getRootNode()

Query Result Node Impl

values[] : Object

getValue(String fieldName)

setValue()

+rootNode

Composite Query Result Node Impl

add()

iterator()

+children

<<list>>

Query Result

getRootNode()

Query

Result Node

getValue()

setValue()

Composite Query

Result Node

add()

iterator()

As I worked with this design, I began to question whether the tree structure is the best approach. Using a separate tree structure for query results adds complexity to the design, and it is not necessary in order to fulfil the requirements of this development stage. It also requires an additional layer of mapping to be performed (the business objects are mapped to the tree, then the tree is mapped to a TableModel for report processing). The tree structure mirrors the structure of the business objects, and is effectively creating a ‘data only’ copy of the objects – the business object behaviour (such as business object methods and value constraints) is being lost. These concerns led me to consider a fifth alternative:

· Collection of ‘lazy proxy’ objects

This approach combines the benefits of the tree structure with the benefits of using complete business objects. The ‘lazy proxy’ objects implement the same interface as the original business objects. This simplifies the design and implementation, because the proxy objects can be used as if they are the real objects. When the proxy is instantiated on the reporting server, the data server serializes some of the business object’s properties and they are copied to the proxy object. If the proxy requires access to a property that has not been copied, it issues a remote method call to copy the remaining properties from the business object. I had initially discounted this approach because the proxy objects were not flexible enough to change according to the user’s report (the set of properties that get populated was determined at compile time, so if a user customised their report at runtime the proxy would generate a lot of remote method calls). However, Kiwiplan have now developed a proxy class that allows the properties to be specified at runtime. This satisfies my flexibility requirements.
The ‘lazy proxy’ approach has the following benefits:

· Minimises the amount of network traffic. Only the values required for the report will be serialized and copied to the proxy objects.
· Acceptable memory requirements. The proxy objects should require less memory than the complete business objects, however some exporting to disk may be necessary for large reports.
· Minimal processing on the data server. The mapping from the business object structure to the table model (for report processing) is done on the reporting server, rather than the data server.
· Type fidelity is maintained.

· Flexibility. The properties of the business objects that get serialized can vary according to the reports data requirements. To the reporting server, it appears as if the complete business objects have been transferred.
· Business object behaviour is retained. The proxy objects implement all the methods of the original business objects. This simplifies the update process (the grid can call a setter method on the proxy) and ensures that any business object behaviour, such as update logic, will be carried out.
· Simplifies system design and implementation. When creating design diagrams, I can think of the query result as a collection of business objects. This simplifies the design significantly and allows me to leave distribution issues until a later stage in the development process.
· The ‘lazy proxy’ approach provides all the functionality necessary for this stage in the development process, and is also the most suitable approach for distributing the system in future.

I plan to change my query result design to the ‘lazy proxy’ approach, and refactor my code accordingly.

Report Processing

I have inspected the source code of two open-source reporting packages, JFreeReport and Jasper Reports, to investigate how they handle report processing.

JFreeReport

JFreeReport [http://www.jfree.org/] reads an XML report descriptor, which describes the structure of the data and the report’s visual properties (such as the position of elements, colours, and any labels or headers). Java objects representing the report structure and layout are constructed based on the contents of this XML file.

A TableModel object is used as the input data source. The reporting engine makes several passes over the entire data set when processing the report (every report requires at least two passes over the data, one for pagination, and the second when the report is displayed. Some reports may require more passes). If the report contains functions, then these are updated after each row of input data. At various stages during the processing of the report (such as at the beginning and end of groups, beginning and end of pages, etc) the report engine takes a copy of the current function values. The combination of all the function values (and some other information) represents the report’s state at that particular time. The engine stores retains each ‘state’ in memory as it processes the report. When the report is viewed or printed, the data is iterated over again, and the values are rendered to a graphics output. The values rendered come from either the current row in the TableModel, or from a stored report state.

The code for JFreeReport is well documented, however it is quite difficult to follow the path of execution, and understand how the system works by hand tracing the code. JFreeReport is designed to output in graphical format, such as producing a print preview onscreen, or printing a document, or exporting to an image or PDF file. As such, it would require some adaptation in order to output to a two-dimensional table.

Jasper Reports

Jasper Reports [http://jasperreports.sourceforge.net/] also reads the report descriptor from an XML file. It then follows a somewhat unusual process of generating Java source code, compiling that code, reading the bytes of the generated class file into a report object, and then serializing that object. The serialization is saved to disk – it is the compiled report descriptor.

A ResultSet is used as the input data source. The also accepts a database connection, and it will execute a query (stored in the report descriptor) to generate the ResultSet. Unlike JFreeReport, Jasper makes only a single pass over the input data. As the engine processes the report it creates a number of PrintPage objects, and with each row of data adds a number of PrintElements to the current page (each PrintElement represents something that will be displayed when the report is viewed. The value of the element (for example the String that it will display when viewed) may be set immediately, or the element may be added to a queue to have its value set at some later stage in processing (for example, at the end of a group). At the end of the processing the entire report, as it will be displayed, is held in memory. Displaying a report on screen simply means asking a page to paint its elements to the graphical output.

As with JFreeReport, Jasper is designed to output in a graphical format. It does have an XML export feature, however this generates an XML representation of the graphical output (in other words, it contains a structure of display elements with their absolute positions, width, height, etc). Because reports are compiled, a Java SDK must be distributed with Jasper, and this approach reduces the ease with which users can customise their reports at runtime.

Table Model ‘Filters’

This is the technique I have chosen for processing the report. My implementation expands upon an example given in the Swing tutorial [Sun03]. The example in the tutorial demonstrates how to sort a JTable by inserting a mapping class in between the TableModel and the JTable.

A TableModel is used as the input data source, and the output is also a TableModel. When the report is processed, the data passes through a chain of ‘filters’. A filter retrieves data from the previous filter in the chain, performs some processing, and the resulting data is made available to the next filter in the chain. Each filter is responsible for performing a particular reporting task, such as calculating group totals, evaluating a user-defined expression, or sorting. This ‘pipelining’ approach is frequently used in .NET programming for features such as Soap Extensions [Short02], and Web Services Enhancements [Ewa02].

[image: image10.wmf]Grouping Filter

Grouping Filter

Grand Total Filter

Grand Total Filter

Sorting Filter

Sorting Filter

To

query

result

To

JTable

model

listener

model

listener

In order for the filters to be chained together (as in the diagram above), they must implement both the TableModel and TableModelListener interfaces. I have created a TableModelFilter interface, which extends both these interfaces. The design diagram below shows this interface, and abstract class, and some examples of concrete implementations.

[image: image11.wmf]javax.swing.tab

le.TableModel

javax.swing.event.T

ableModelListener

Table Model

Filter

Abstract Table Model Filter

Default Table

Model Filter

Caching Table

Model Filter

Sorting Table

Model Filter

When a filter is added to the chain, setModel() is called to set the filter’s data model to the previous filter in the chain. The filter is then registered as a listener on the previous filter (when the data changes, a filter fires an event to its listeners and they know to re-read their data from the previous filter in the chain). The reporting engine must maintain a reference to the objects in the filter chain so that it can manage the insertion and removal of filters.

The filters approach has several advantages:

· ‘Plugability’ – it is easy to change the functionality by adding and removing filters from the chain. This approach is very flexible. It is also possible to connect a TableModelListener at any point in the filter chain. This could enable the user to view the intermediate processing results, or drill down to see more details.

· Cohesiveness – Each reporting function is isolated in a filter class, and everything in that class relates to that particular reporting function. This makes the code quite easy to keep track of, and to understand.

· Loosely coupled objects – the filters work independently of each other. The only dependency between filters is that the previous filter in the chain implements the TableModel interface, and the next filter implements TableModelListener.

· User Interface Possibilities – A user interface could be developed to display the chain of filters. This could be presented to the user with a diagram similar to the chain diagram above. This should it reasonably easy for the user to understand the reporting process, and what functions are being performed.

· Compatibility – The final result from the filter chain conforms to the TableModel interface, which is required by the Swing JTable component.

A disadvantage of this approach is that I will need to write all the report processing filters, rather than simply sending the report to an open-source tool for processing. It may still be possible to re-use some of the open-source code in the filter classes. Implementing the report processing myself should result in a cleaner design than if I were to hack at the open-source packages and use them in a way they were not designed for.

Report & Presentation

The processed report is provided to the presentation layer as a TableModel and is displayed by a Swing JTable component.

The Model-View-Controller pattern is used in this part of the system. This design pattern is used by most of the GUI components in the Swing framework. It separates a user interface system into a ‘model’, which contains the data and handles processing, the ‘view’, which is the graphical interface component, and a ‘controller’, which deals with the user’s interactions with the view [Coo98]. An advantage of this approach is that it separates the processing and data logic from the user interface code. It also allows a single model to be shared by multiple views [Sun03], so a single update to the data will update all the user interface components sharing that model.

In my implementation, the TableModel containing the processed report data is the ‘Model’, the JTable that displays the data to the user is the ‘View’ and a ReportInterface object is the ‘Controller’. The ReportInterface class contains methods such as addColumn(), renameColumn(), and moveColumn(), which respond to the users actions on the JTable. These methods interact with the reporting subsystem on behalf of the user cause the report TableModel to be updated.

[image: image12.wmf]Report Definition Impl

javax.swing.JTable

Report Interface

setBaseObjectType()

addColumn()

removeColumn()

moveColumn()

setCriteria()

sortColumn()

addFilter()

removeFilter()

applyChanges()

cancelChanges()

setReportDescriptor()

getTableModel()

getTitle()

setTitle()

+reportDefinition

Reporting

Service

runReport

calls

Report Table Model

Demonstration Application

Below is a screenshot from a simple application I have made to demonstrate my progress so far. The user is able to select a business object (in this case, I have made created a simple AlphabeticCharacter object for testing purposes), add and remove columns from the table, change the column order, and rename the column headers.

[image: image13.png]Nurnber (String Upper Case (3tring)

0 A
1 B
2 c
3 D
n E
5 F
6 G
i H
8 |
9 i
10 K =
/Alphabetic Character

Lower Case (String)

waa
| Fomows |
WovoUp

Mave Down

i

Number (String)
Upper Case (String)

Rename column

My Evaluation

I am happy with the progress that I have made so far on this project. My example application does not implement much functionality yet, but I have a good underlying system to build upon. I am confident that the software design I have developed in this first stage can be developed into a complex application that works well. Once the tool is complete, it will become an important component in new Kiwiplan applications.

In my initial planning I have underestimated the amount of time that some tasks will take. Some factors that have made progress slower than I expected have been changing design decisions, changing requirements, and the relatively small amount of time (10 hours) I am able to spend on the project each week. I am gaining an appreciation of the amount of time it takes to work through the development cycle. In future I will be able to plan my time more accurately.

An example of a changed design decision is when I chose to change the query result from a tree structure to ‘lazy proxy’ objects. This means that I will need to update my design diagrams and rewrite some of the code. It also raises some new design questions, such as how to map from the business objects onto a TableModel for report processing. These changes will take time to implement, but they will lead to a better quality result. I have concluded that it is important to make the change, in spite of the time overrun.

User requirements have been reasonably static for this project, although a recent meeting with other Kiwiplan developers highlighted the importance of being able to update data from the report. I had not initially considered this an important requirement for the first stage of development, but have now decided to add this. Again, I think this is an important change to make, because getting updates working now provides an important foundation for future development. I can see how, in a situation with real business users, changing requirements can greatly increase the time taken to complete a project. It may be necessary to ‘lock’ the requirements once a project stage has been started, otherwise the project may never be fully completed.

An issue I have been considering recently is whether it is better to focus only on the simple requirements of the current stage, or to think ahead and make design decisions that will assist future stages. The iterative development approach would suggest that we should focus on only the requirements of the current stage. The traditional development approach would suggest creating designs with the complete project in mind. I think a balance lies somewhere between the two.

When I was considering alternatives for the query result design, I attempted to look ahead to when the system will be distributed between several computers. I felt that making a good decision at this early stage would reduce the amount of work to be done when the system is eventually distributed. This made my design more complex than it needed to be, and the extra complexity did not assist at all in fulfilling the requirements of the current stage. Moreover, I later realised that the design I had chosen would not be the best option for distribution, and would need to be changed again anyway.

I have drawn the conclusion that, in most cases, it is better to focus on only the requirements of the current development stage. This reduces the amount of information that the developer must take into consideration when making design decisions. As the simple system is being implemented, the developer gains more experience and understanding of what will work well, and will be better equipped to make the more complex decision in the future. It is important to keep the big picture in mind though. If a decision being made for the current stage is obviously going to hinder a future stage, then it should be reconsidered. If there are design decisions that the developer thinks will be useful for future development stages, those decisions should be considered only if they do not significantly complicate the existing design.

When I was working on the design of the system I read about a number of design patterns and tried to use them where appropriate. Some of the patterns I incorporated in the design were the factory, composite, adaptor, decorator, mediator, and observer patterns. The risk when learning new patterns is that you will over-use them, and I suspect that I am guilty of this. At design time, these patterns all seemed appropriate, but as I wrote the code, some of them seemed to be unnecessary. As I write the code I am simplifying the design, removing unnecessary patterns, and making changes as I come up with new ideas. I think this ability to allow a design to ‘evolve’ as it is implemented is an important part of the development process (provided it is controlled evolution – if the design is greatly diverging from the initial design, perhaps it would be more appropriate to repeat the design phase rather than continuing with ad-hoc coding).

Concluding Remarks

To date, I have completed the planning stage and am nearing the end of the first stage of construction for this project. Progress has been good, although slower than I had initially expected.

In carrying out this project work I have:

· Identified the project ‘problem’ and documented the requirements for a solution.

· Selected a development process and created a project plan.

· Researched existing reporting tools and considered how they could be useful in implementing my project solution.

· Selected the most important requirements for the first stage of the project, and prepared detailed documentation.

· Developed the Object-Oriented design for the first stage of the project. I have considered several design possibilities, evaluated the advantages and disadvantages of each, and selected the designs that I think are most appropriate.

· Begun implementing and testing the code using the Java programming language.

My previous programming experience has come largely from University assignments, which are generally small and can be approached in a somewhat ad-hoc manner. This project differs in that it is much larger in scope, takes place over a much longer time period, and I am approaching it in a much more disciplined manner. I have planned my time, I am following a well-defined development process, and I am placing greater emphasis on software design.

Through my work so far, I have gained:

· Project planning and time management skills.

· Familiarity with reporting tools and open-source libraries.

· Practical experience with the software development process.

I have benefited from being able to work alongside experienced developers at Kiwiplan. I have bounced ideas off them, and gained their feedback at meetings and presentations.

My short-term plan is to attempt to complete stage one of the project construction during the inter-semester break. I plan to spend some time ensuring that my work is compatible with existing Kiwiplan libraries, and I will use some of the existing libraries to add backend functionality (such as persistent storage of configuration data). Following that I will prepare a revised project plan for the second semester, and begin the second stage of construction.

 References

[Coo98]
James W. Cooper, The Design Patterns Java Companion, Addison-Wesley, 1998.

[Ewa02]
Tim Ewald, Inside the Web Services Enhancements Pipeline, Microsoft Corporation, 2002, http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnwebsrv/html/insidewsepipe.asp

[Fow00]
Martin Fowler with Kendall Scott, UML Distilled: A Brief Guide to the Standard Object Modelling Language, Addison-Wesley, 2ed, 2000.

[Mug01]
Rick Mugridge, Evolving a Program (COMPSCI230ST 2001 Lecture Notes), University of Auckland, 2001.

[Short02]
Scott Short, Building XML Web Services for the Microsoft .NET Platform, Microsoft Press, 2002.

[Som96]
Ian Sommerville, Software Engineering, Addison-Wesley, 5ed, 1996.

[Som00]
Ian Sommerville, Software Processes, accompaniment for Chapter 3, Software Engineering, Addison-Wesley, 6ed, 2000, http://www.comp.lancs.ac.uk/computing/resources/SE6/Slides/PPT/ch3.ppt

[Sun03]
Sun Microsystems, Trail: Creating a GUI with JFC/Swing (also known as The Swing Tutorial), Sun Microsystems Inc, 1995-2003, http://java.sun.com/docs/books/tutorial/uiswing/index.html
APPENDIX A

OVERALL REQUIREMENTS FOR THE REPORTING TOOL

Overview

Introduction

The aim is to develop a flexible and powerful reporting system that allows users to view and interrogate information from a graphical user interface (GUI). The emphasis is on allowing the end user to create and customise reports to suit their particular needs.

Ad-hoc reporting

Often, reports are created to satisfy a specific business need for information. The report may be created, run once, and never used again. It is important that the end user is able to gain fast access to information as new business needs arise. The user must be able to create and customise reports without advanced programming knowledge, and without the need to involve specialised report writing staff.

Data Interrogation

Reports will often produce high-level aggregations of data, such as annual totals. The user must be able to ‘drill down’ into reports to further investigate the data. For example, expanding a particular year to show monthly totals.

GUI Grid Component

The front-end of the reporting system will be a grid based GUI component. The grid displays report results on-screen, and the user is able to customise the report by interacting with the grid component.

Implementation

The project is to be implemented on the Java platform. The grid will be a Swing based GUI component, but it should also be possible to replicate it for a web based user interface.

Requirements

Kiwiplan products developed in Visual Basic feature a grid component known as the FlexiGrid. The features of the FlexiGrid should be reproduced in the Java implementation. These include:

· Add/Remove columns:
The “add/remove columns” tool allows the user to explore the object hierarchy and add and remove columns (which correspond to object fields). Currently, only objects with a 1:1 relationship with the root object may be included in the grid.

· Fixed columns:
The leftmost columns may be locked on the screen. If the user scrolls the grid horizontally the fixed columns remain visible.

· Sort columns:
The view editor allows the user to define up to three columns to sort by (these are the first three columns displayed on the grid). This behaviour should be expanded to allow sorting by any number of columns, in either ascending or descending order. While viewing the grid, the user can click on a column header to sort by that column.

· Change column order:
The user can rearrange the order of the columns.

· Apply filters:
Records can be filtered according to certain criteria. For example: The user may apply a filter on the ‘cancelled’ property in order to show only orders that have not been cancelled.

· Grouping and subtotals:
Records can be grouped according to the first column of the grid. If a column is marked ‘Can Total’ a group subtotal and grand total are displayed. The user may choose to display only the group totals, or the full detail.

· Generate a graph:
Clicking the ‘graph’ button displays a bar graph of the current grid data.

· Editing values:
Certain views allow data to be edited from the grid. Currently, whether or not a field is editable is hard-coded.

· User defined views:
A view represents the columns, sorting, grouping and filters that the user has applied to the grid. The user is able to save views for themselves, a group of users, or all users.

· Searching:
A search template allows the user to search all data for objects matching certain criteria. Fields may be added and removed from the search template as required. Search results are returned in a grid. As a starting point, the columns of the resulting grid correspond to the fields that were specified in the search template. After running the search the user may choose to add or remove columns as required.

· Export data:
Data can be exported from the grid to Microsoft Excel (in CSV format).

· Printing:
Report data and graphs can be printed.

In addition, the following requirements have been identified for the Java implementation:

· Multiple levels of grouping:
Extend the grouping functionality to group by any number of columns.

· Drill down to view more detail:
Often the user will want to view only summary figures (for example, totals for the high level groupings), but must be able to ‘drill down’ to view information in more detail. For example, a grid may initially provide annual sales totals. The user may select a year to view in more detail and the grid will expand to display monthly totals for that year. They may drill down further to view daily totals, and individual order lines.

· User defined expressions:
The user should have the ability to add custom expressions to grid rows. For example, the user may wish to calculate an order’s area, by multiplying the width and height properties of the object.

· Flexible aggregation features:
Currently only group totals and grand totals are provided. Other features, such as average, maximum, and standard deviation may also be useful, and users may require custom functions. Functions must be defined in a flexible way, such that new functions can be added without requiring changes to existing code.

· View objects with 1:M relationships:
The grid should provide some means for the user to navigate collections. For example, an Order has a collection of Order Parts. If the user is viewing a grid of Orders, they should also be able to view the related Order Parts for a particular row.

· Large reports can be scheduled / processed remotely / run in the background:
Very large reports will unavoidable take a long time to run. The user must be able to schedule these reports to run remotely (on a server, for example) and the results returned to the user when the report is complete.

Non-functional requirements:

· Reporting from business objects:
Many reporting tools retrieve and display data directly from the database. While there are some advantages to this approach (database engines are very fast at grouping and sorting data), in our case it is preferable to report from business objects, for the following reasons:

· Not all data is stored in a database – some data will be retrieved from legacy applications, some data may exist only on the business objects and may not be persisted at all.

· Data integrity – validation, conversion, and concurrency are handled at the object level. Direct access to the database would circumvent these checks. This is of particular concern if the user is allowed to edit data.

· Less meaningful data – When an object is persisted, its data is converted to a more ‘raw’ format suitable for database storage. The reporting tool would need to perform additional conversion to present the data in a meaningful way, effectively duplicating behaviour that is already supported by the business objects.

· Distribution:
The system will be distributed over several computers. As such, the amount of network traffic required should be kept to a minimum.

· Speed:
Interactive reports should be fast. Large reports should be processed in the background, and there must be some way of warning user if a report requires a long time to run.

· Programming Language:
The tool is to be implemented using the Java programming language. Code executing on server computers must work with Java version 1.3. Code executing on clients may run with Java version 1.4.

· Minimal impact on application code:

The reporting tool should not require large changes to any business object code. Reporting functionality should be kept separate from the business object behaviour.

· Internationalisation:

The software must have support for different languages. Any language dependent strings should be stored in external configuration files. The language displayed should depend on the locale setting of the user’s computer.
· Support for web applications:
Reports must also be viewed from within web applications. This requires the ability to convert reports to HTML format. All the above requirements should be able to be achieved from both Swing and web user interfaces.

APPENDIX B

SOFTWARE REQUIREMENTS DOCUMENT

[image: image14.png]Reporting Tool

Software Requirements Document

Stage 1: Working application with limited features

[image: image16.emf]Descriptor

friendlyName : String

findDescriptor()

viewReport()

Filter

filterValue

addFilter()

removeFilter()

filterResults()

Column

columnIndex : int

sortOrder

sortPriority

frozen : boolean

sort()

setColumnIndex()

addColumn()

removeColumn()

freezeColumn()

unfreezeColumn()

0..1

+resultFilter

0..1

Criteria

criteriaType

value : Object

addCriteria()

removeCriteria()

Report

reportName : String

reportData[][] : Object

printReport()

setBaseObjectType()

populateData()

0..n 0..n

0..n 0..n

Attribute Descriptor

attributeName : String

Class Descriptor

className : String

getAttributes()

findAllClasses()

0..n 1 0..n 1

+attributes

+baseObjectDescriptor

+reportCriteria

+columns

+applyToAttribute

+descriptor

Contents

1. Introduction
…
2

2. Glossary
…
2

3. Functional Requirements Definition
…
3

4. Non-functional Requirements Definition
…
5

5. Use Case Diagram and Specification
…
6

6. System Models
…
10

7. System Evolution
…
11

1. Introduction

Stage one of the reporting project delivers a simple application with limited features. The application implements some functionality at each of the data, processing, and presentation layers. Development will focus on analysis and design in order to put in place a good framework that the remainder of the application can build upon.

The application provides a flexible user interface that allows the user to view data in a table format. The user is able to select objects for viewing, and customise the display by adding and removing columns. Simple reporting functions, such as sorting and filtering, are also provided.

2. Glossary

Business Object:
A Java object that has meaning to the end user.

Friendly Name:
A string representing the name of some object, in a form that is understandable to the user. For example, “Cargo Unit” may be the friendly name for a kiwiplan.jtss.CargoUnit object. The friendly name will differ depending on the language of the end user.

Grid:
A two-dimensional table used for displaying data. Data is displayed in rows and columns. The intersection of a row and column is often known as a ‘cell’.

Java:
An Object-Oriented programming language by Sun Microsystems. [1].

Stable sort algorithm:
An algorithm for ordering data according to some field. A sort algorithm is stable if, for two objects with the same value in the sorted field, the relative order of those two objects will be the same before and after the sort. [2]
WIMP:
Windows, Icons, Menus, and Pointing device. Acronym used to describe graphical user interfaces, where the user interacts with the system by clicking on menus and buttons, and dragging and dropping icons etc. [3]
3. Functional Requirements Definition

3.1 Selecting Objects
3.1.1 Select ‘base object’ type
The ‘base object’ is the type of object that the user wishes to view in the report. (For example, if the user wishes to view a collection of invoices the ‘base object’ would be Invoice). The user is able to select the object type from a list of all the objects available in the application. The list should display user-friendly names for the objects.

3.1.2 Apply criteria
After selecting an object type, the user has the option of specifying criteria for the report. (For example, the user may wish to restrict the report to a particular invoice Id). The user chooses an object attribute (from a list of user-friendly attribute names), a criteria type (less than, equal to, greater than, etc.) and a value for the criteria. The user may apply multiple criteria, connected with ‘AND’ or ‘OR’ operators.

3.2 Flexible Grid
3.2.1 Grid appearance
Data is displayed as a two-dimensional grid. The rows of the grid represent business objects; columns correspond to the attributes of those objects. Each column is labelled with a header, which displays a user-friendly name for the attribute. A scroll-bar is provided, which enables the user to view large collections of data in a limited screen area. Where possible, any report customisation is achieved by the user interacting with the grid.

3.2.2 Report designer

If a customisation is too complicated to be performed in a user-friendly way from the grid view, a report designer window is opened. The report designer provides additional customisation features. All customisation actions that can be performed on the grid itself are also available from the report designer.

3.2.3 Add columns
The report designer displays a list of attributes for the current object, and a list of the current grid columns. The attributes are identified by user-friendly names. The user is able to select attributes and add them to the list of columns.

3.2.4 Remove columns
The report designer displays the list of current column names. The user must be able to select a column (or several columns), and remove it from the grid. The user should also be able to remove a column while viewing the grid itself.
3.2.5 Change column order
The report designer allows the user to specify the column order by moving column names up or down in the column list. From the grid view, the user can click on a column header and drag the column to the new location.

3.2.6 Freeze column
The leftmost columns of the grid may be marked as ‘frozen’. When the user scrolls the grid from left to right, frozen columns remain fixed on the screen.

3.3 Reporting Operations

3.3.1 Sort by columns

The report designer allows the user to select multiple columns for sorting. The user is able to specify whether the sort is ascending or descending, and which order the sort should be applied in (for example: sort first by surname, in ascending order, then by first name, in descending order).

In the grid view the use is able to select a single column for sorting in either ascending or descending order by clicking on the column header. The sort algorithm should be stable, so the user can effectively sort by multiple columns by clicking on one column header after another.

3.3.2 Filter by example

After a report has been run, the user may wish to view only those rows containing a certain value. The user may select a column and choose a filter to apply. A list of filters is provided, the filter values correspond to the distinct data values from that column.

3.4 Printing

3.4.1 Print preview

The user may view the report on screen as it will appear when printed.

3.4.2 Send report to printer

The user may produce a printed copy of the report. The user should be able to select the printer to send the report to from a list of installed printers.

4. Non-functional Requirements Definition

4.1 User Interface and Human Factors

The reporting tool is intended for use by packaging company staff. Users are assumed to have experience in basic computing tasks, but are not expected to have technical knowledge or experience in report creation. The tool uses a WIMP (Windows, Icons, Menus and Pointers) user interface. The interface should be intuitive and easy to use so staff members can use it with minimal training.

4.2 Documentation

Basic end-user documentation outlining main features.

4.3 Hardware & Platform Considerations

The current version of the tool is to be run on a desktop computer (future versions may distribute work between client and server). Minimum specification: Pentium-II 500MHz, 128MB Ram.

This version is not distributed, however the design must be able to adapt to a distributed system for future versions.

Code must be written in the Java programming language. Client computers are assumed to be running the Java 1.3 virtual machine. Software must run on both Windows and Linux operating systems.

4.4 Performance Considerations

In this version all reports are run interactively (future versions may allow reports to be run in the background, or sent to a remote server). As this version only supports simple reporting features, it is expected that reports can be generated within 3 seconds.

For tasks such as selecting objects and adding/removing columns, where a list of objects and attributes must be populated, that list must be available within 0.5s.

4.5 Error Handling

Where possible, the user interface should restrict the user to only making valid selections for report criteria and column selections. In cases where this is not possible (such as text based user input), the user should be notified of an error with a dialog box. They should not be permitted to advance to the next step without correcting the error.

In the event of unexpected errors, the user should be notified with a dialog box, and the report should return to the state that it was in before the error occurred.

4.6 System Interfacing

Reports are to be generated from Java business objects. These objects may originate from either legacy applications written in Fortran (such as MAP and ULT), or the new Java applications (such as Corrop and JTSS).

4.7 Resources and Management Issues

Stage one of the project should be completed by around 28 June 2003 (End of semester 1).

5. Use Case Diagram and Specification

Actors:

Staff Member:
The reporting tool is intended for use by packaging company staff. No distinction is made between general users, managers, and administrators at this stage.

Legacy Systems:
The reporting system must interface with and retrieve business objects from legacy applications, such as MAP and ULT.

Java Systems:
The reporting system must interface with and retrieve business objects from Java based applications, such as Corrop and JTSS.

[image: image17.emf]Report Object :

Report

Class Descriptor

Object : Class

Criteria Object :

Criteria

Column Object :

Column

Attribute Descriptor

Object : Attribute

findAllClasses

setBaseObjectType

View Report

Report Designer window opens

addCriteria

addColumn

findDescriptor

getAttributes

populateData

Displays report grid

("Add Criteria" use case)

("Add/Remove Columns" use case)

User selects an object to view

findDescriptor

findDescriptor

5.1 Use Case “Set Criteria”

1. Used by staff to specify which objects should be used to generate the report. For example, the user may restrict the report to an object with a certain ID.

2. Event flows:

2.1. The staff member opens the report designer and clicks “Add Criteria”

2.2. The user selects how the new criteria will be connected to any existing criteria (for example, “existing criteria AND new criteria” or “existing criteria OR criteria”).

2.3. A list of all the attributes of the current object is displayed (the list contains the friendly names for the attributes).

2.4. The staff member selects one attribute from the list by single clicking on its name. The attribute name becomes highlighted to indicate it is selected.

2.5. The staff member selects a criteria type, such as “equal to”, “less than”, or “greater than” (a combo box may be suitable for this selection).

2.6. The staff member enters a value for the criteria. The user interface component used to enter the value should vary depending on the object type of the attribute.

2.7. The display is updated to show the current set of criteria.

3. Related actors/Use cases: Used by the Staff Member actor.

5.2 Use Case “Add/Remove Columns”

1. Used by staff to customise the appearance of a report by adding and removing columns

2. Event flows:

2.1 The staff member opens the report designer. The designer displays a list of available attributes for the current object type, and a list of columns currently shown in the report. Column names and attribute names use the ‘friendly name’ of the attribute.

2.2 To add a single column to the report the staff member double clicks on the attribute name.

2.3 To add multiple columns the staff member selects several attributes from the list. This is done by single clicking on the attribute names. The attribute names become highlighted when they are selected. The staff member clicks “Add Columns” to add the attributes to the report’s columns.

2.4 When a column is added, the attribute name is added to the Columns list and is removed from the Available Attributes list.

2.5 The staff member clicks “OK” to return to the grid view. The grid is updated with the columns that have been added.

3. Related actors/Use Cases: Used by Staff Member actor. Columns must be selected prior to “Run Report” use case.

5.3 Use Case “Change Column Order”

1. Used by staff to customise the appearance of a report by changing the order of the grid’s columns.

2. Event flows:

2.1 The staff member opens the report designer. The designer displays a list of the column names currently appearing in the report (column names use the ‘friendly name’ of the attribute). The list of column names is ordered according to the order that the columns appear in on the grid.

2.2 The staff member selects the name of the column they would like to move by single clicking on the column name. The column name becomes highlighted when it is selected.

2.3 The staff member clicks on up-arrow and down-arrow buttons to move the column name in the list. With each click of the button, the column name is moved one position up or down in the list (If the name is already at the top of the list and the up button is pressed, the column name is not moved. The same is true if the name is at the bottom of the list and the user presses down).

2.4 The staff member clicks “OK” to return to the grid view. The column order in the grid has been updated to reflect the user’s changes.

3. Related actors/Use cases: Used by Staff Member actor.

4. Additional notes: The position of a column may also be changed directly from the grid view. The user clicks on the column header and drags the column to the new location. The column visibly moves as the mouse is moved.

5.4 Use Case “Freeze Column”

1. Used by staff to customise the appearance of a report by freezing a column on the screen (when the grid is scrolled horizontally, the frozen column will remain stationary).

2. Event flows:

2.1. The staff member opens the report designer. The designer displays a list of the column names currently appearing in the report (column names use the ‘friendly name’ of the attribute). The formatting of the column names indicates which columns are currently frozen (for example, frozen columns may have the word ‘frozen’ after the column name, or could by displayed in a different colour).

2.2. The staff member selects the name of the column they would like to freeze by single clicking on the column name. The column name becomes highlighted when it is selected.

2.3. If the column is not currently frozen a button is displayed with a label such as “Freeze Column”. If the column is currently frozen, the button label is changed to “Unfreeze Column”. Alternatively, a checkbox may be provided – if the column is currently frozen the box will be ticked.

2.4. The staff member clicks on the “Freeze Column” button (or ticks the checkbox) to change the column state to frozen. Clicking the “Unfreeze Column” button (or un-ticking the checkbox) will change the column state to unfrozen.

2.5. The frozen columns must be the leftmost columns of the grid:

2.5.1. The first column to be frozen will be moved to the leftmost position on the grid.

2.5.2. When additional columns are frozen, they will be moved to the immediate right of any previously frozen columns.

2.5.3. When a column is unfrozen, it will be shifted to the immediate right of all of the frozen columns (if the column is the only frozen column it will be left in place).

2.5.4. The column order of frozen columns may be changed, but all the frozen columns must remain in an adjacent group and must be at the left of the grid. Likewise, the column order of unfrozen columns may be changed, the unfrozen columns must remain to the right of the group of frozen columns.

3. Related actors/Use cases: Used by the Staff Member actor. The rules for column ordering restrict the usage of the use case “Change Column Order”.

4. Additional notes: A column may also be frozen directly from the grid view: The user right clicks on the column header and selects “Freeze Column” (or “Unfreeze Column”). The same rules for column ordering apply.

5.5 Use Case “Sort by Column”

1. Used by staff to change the order in which rows are displayed in the grid.

2. Event flows:

2.1. The staff member opens the report designer. A list of columns used for sorting is displayed (this is in addition to the list of columns used for column order because columns may be sorted in a different order to the display order). The sorting may be placed on a different tab to avoid clutter.

2.2. The staff member can select a column to sort by (possibly using a combo box, which restricts the selection to the columns currently displayed on the grid).

2.3. The staff member chooses between ascending or descending sort (possibly again with a combo box).

2.4. The order of the column names determines the priority of the sort (the topmost column name is the primary sort). The staff member clicks on up-arrow and down-arrow buttons to move the column name in the list. With each click of the button, the column name is moved one position up or down in the list (If the name is already at the top of the list and the up button is pressed, the column name is not moved. The same is true if the name is at the bottom of the list and the user presses down).

3. Related actors/Use cases: Used by the Staff Member actor.

4. Additional notes: Sorting may also be performed directly from the grid view. The user clicks on the column header to sort that column in ascending order. By clicking again on the column header the sort order is changed to descending.

5.6 Use Case “Filter Results”

1. Used by staff after a report has been run to restrict the output to only those rows containing certain values.

2. Event flows:

2.1. From the grid view, the user clicks a “Filter Results” button. A combo box appears above each column header (the combo box value is initially blank).

2.2. The staff member clicks on a combo box to view the list of possible selections. The list contains all the data values that appear in that column.

2.3. The staff member selects a data value from the combo box. The grid is redrawn to show only those rows containing the selected data value.

2.4. To deactivate a filter the staff member selects a blank entry from the combo box.

3. Related actors/Use cases: Used by the Staff Member actor.

5.7 Use Case “View Report”

1. Used by staff to view data on screen as a two dimensional grid.

2. Event flows:

2.1. The staff is prompted to select an object type for viewing. A list of the friendly names for all the objects in the application is displayed.

2.2. The staff member selects an object type by single clicking on its name in the list (the object name becomes highlighted to indicate that it is selected) and clicks “OK”. Alternatively, the user may double click on the object name to select the object and proceed to the next step without clicking “OK”.

2.3. The report designer is opened. The staff member may carry out other use cases to customise the report.

2.4. The user closes the report designer by clicking “OK”. The system prepares the report data according to the design requested by the user, and the grid is displayed on screen.

3. Related actors/Use cases: Used by the Staff Member actor. While using the report designer the actor may also perform use cases “Set Criteria”, “Add/Remove Columns”, “Change Column Order”, “Freeze Column”, “Sort by Column”, and “Filter Results”.

5.8 Use Case “Print Report”

1. Used by staff to print a hard copy of report data.

2. Event flows:

2.1. The staff member performs use case “View Report”

2.2. The staff member clicks a “Print Preview” button. A picture of what the report will look like on paper is displayed.

2.3. The staff member selects a printer and clicks the “Print” button to send the report to the printer. The report is printed.

3. Related actors/Use cases: Used by the Staff Member actor. The staff member must first perform the use case “View Report”.

6. System Models

The following UML Class Diagram provides a conceptual overview of the system. The diagram is intended to provide an overall picture and does not map directly to the software implementation. As such, the diagram includes a number of simplifications. In particular, the diagram does not fully model the requirements for Criteria. In practice we require some way of combining criteria with “AND” and “OR” relationships. These issues will be considered at the design stage.

The following UML Sequence Diagram shows a possible sequence of operations for the “View Report” use case.

7. System Evolution

This version serves to create a starting point for building the reporting system. An iterative development process is used. The analysis, design, and implementation phases will be repeated several times, each time producing a working application. With each iteration new user requirements will be introduced, the application will be re-factored, and new features will be added to meet the requirements.

APPENDIX C

LOG BOOK

24 Feb:

Researched some products in use by clients for distributed reporting. Documented main features in Wiki.

25 Feb:

Researched commercial and open source reporting packages. Noted main features. Read documentation and tutorials for open source libraries JFreeReport and Jasper Reports and noted comparisons.

26 Feb:

Explored source code of JFreeReport and Jasper Reports packages, noting design features that may make them more 'extendable' for GUI reporting. Meeting to discuss features of existing VB FlexiGrid and additional requirements for Java grid.

27 Feb:

Documented requirements. Drafted a rough project outline. Began working through Java Swing tutorial.

28 Feb:

Documented features of reporting tools in Wiki.

3-7 March:

Working through Java Swing tutorial and examples.

13 March:

Created PowerPoint slides for BTech project introductory seminar.

14 March:

Completed preparation of introductory seminar. Presented to Kiwiplan Java developers and managers. Began coding a simple application with sample data.

18 March:

Revising seminar content. Started project website.

19 March:

Introductory presentation.

21 March:

Added project outline to website. Experimenting with Swing tables and table models.

1 April:

Prepared project plan. Finished setting up project website.

3-4 April:

Requirements and Specification. Decided on a subset of the requirements for the first stage of development. Prepared a Use Case diagram and conceptual UML class diagram. Began documenting specifications as a "Software Requirements Document".

11 April:

Documented use case specifications. Prepared UML sequence diagram. Completed Software Requirements Document for stage 1 of the reporting system.

15-17 April:

Worked full-time at Kiwiplan. Prepared OO Design diagrams for stage 1 of the reporting system. Discussed design with Gareth at Kiwiplan. Started coding simple Java classes.

2 May:

Continued coding of stage 1. Have completed the 'bean'-like classes for queries, query results, report definitions, and object descriptors. I am adjusting the design slightly as I go - I'll need to update the OO Diagrams at a later stage.

9 May:

Started writing classes for mapping query results to TableModels. Wrote base classes for creating report filters. Implemented a simple filter that replaces the attribute names with friendly column titles. Wrote some JUnit test cases. Created a very simple demo app that displays a JTable with data from the reporting system. Currently some mappings are hard coded - these will be replaced with more flexible classes later.

16 May:

Working on 'client-side' code that allows the user to construct a report definition from the GUI. Demo app allows the user to select a business object and add/remove columns from the report.

22 May:

Updated project website. Began work on the semester report.

23 May:

Continued coding of stage 1. Demo app allows the user to select a Business Object type, add remove columns from the report, change the column order, and rename column headers. Met with department manager and Java developers and to discuss project design and how it fits with other work they are doing. Key issues raised are: consider pushing business objects all the way to the client, allow editing of data from the grid, windowing of data so that only the required data is transferred from the server (rather than the entire data set).

26 - 30 May:

Preparing semester report and presentation.

2 – 4 June:

Continued preparing semester report.

5 June:

End of Semester Presentation

6 June:

Completed End of Semester Report.

Use Case Diagram for Reporting Tool (Stage 1)

Filter Results

Staff Member

Sort By Column

Freeze Column

Change Column Order

Add/Remove Columns

Set Criteria

<<uses>>

Print Report

View Report

Legacy Systems

Java Systems

Conceptual Class Diagram for Reporting Tool (Stage 1)

UML Sequence Diagram for “View Report” use case

[1] � HYPERLINK http://java.sun.com/ ��http://java.sun.com/�

[2] � HYPERLINK http://www.wikipedia.org/wiki/Sort_algorithm ��http://www.wikipedia.org/wiki/Sort_algorithm�

[3] � HYPERLINK http://itmanagement.webopedia.com/TERM/W/WIMP.html ��http://itmanagement.webopedia.com/TERM/W/WIMP.html�

11

