Orbiz

Mobile Inventory Management System

Student Report

orbi2

MAKING SENSE OF CHAOS

Prepared by Tony Lee (Version 0.1)
Auckland University

31 October 2003

Confidential

orbiz

WACHG N OF CaAC

Mobile Inventory Management System

Table of Contents

REVISION HISTORY 4
1. EXECUTIVE SUMMARY 5
2. DOCUMENT STRUCTURE 6
3. PROJECT OVERVIEW 7
3.1 INTRODUCGTIONcuuttiiieieee ettt e e e eeeete e e e e e e eetaaeeeeeeeeeatasaeeeeeeeeesssaaseaeeeaaassssaseeeseeaasssssesaseeaaanens 7
3.1.1 COMPANY TNTO ..ttt sttt ettt 7
3.1.2 LY (0] 5 A2 15 1) 1 1= RS TRRRRRRRR 7
3.2 PROJECT OBIECTIVES AND SCOPEuuviiiiiiiieeeeitieeeiireeeeitteeaetsesestsseeesareeesssssessssssseessssessssssesennses 8
33 SYSTEM ARCHITECTUREcceiiiutiieaitteeeeitteeeaitreeeeesteeesssesesaeseeeeassesesssesaasssseessssesessssesesssssesessses 9
3.4 EXISTING DATA STRUCTURE ...ccccutviiieiiieeesiiieeeetteeeeeveeeesiseeeasssseeasssssesssssessssssesssssssessssssesssssseesnsses 9
35 PROJECT TEMPLATE ...ttt e e e et e e et e e e e e e e e e eeaaeeeeaaeeeeenaeeeeennneeeennns 9
4. RESEARCH / CONSIDERATIONS 10
4.1 POCKET PC ... e e et et e e e et e e et e e e et e e e etaeeeeaaeeeeeaneaaens 10
4.1.1 Limitations t0 @ POCKEE PCooiiiiiiiieeeie et 11
4.1.2 Various types 0f POCKEt PCooiiiiiiieiieieceseeeee et s 11
4.2 BN SRR 12
43 NETWORKING TECHNOLOGIES.......cuutiitiieeieeiiiteeeeeeeeeiitteeeeeeeeaeeisasseseeeeseessssesesessessisssessessesesssssesees 12
4.4 DATABASE SERVERScuviiiiiuiieeeeeteeeeeeteeeeeeteeeeeeteeeeeeeaeeeeeaeeeeeeaaeeeeeseeeeeeseeeeeesseeeeeseeeeesseeeenseeeeenns 13
4.5 SYNCHRONIZATIONouviiiiiuiiieeeiteeeeeeteeeeeteeeeeeteeeeeeaaseeeeaseseeeaseseeeasseeeesseseeesseeeasseeeensseseennseeeeansnes 14
5. INVENTORY MANAGEMENT TOOL 15
5.1 OVERVIEW.......uttiiiittieeeiteeeeetteeeetveeeeeatteeeetseee e tsaeaaassseeasssaeeasseseaasssesesssseeeassseeeassseseassseesasseeaans 15
5.2 REQUIREMENT ANALYSISuuttieiettieeertteeesotteeestseeeasssseeesssesesssseesssssssesssssssssssssesessssesssssssssssssessanes 15
5.2.1 ODbJECtiVES ANA SCOPE...eeueieuiietieiieeiie ittt ettt ettt et et e et ete e seesseesseesaeeeeeneeeneeeneenseenes 15
522 ORISR O TS BT Tea -1 1 4 SRR 15
5.2.3 ASSUIMIPLIONS ..veiuvviieeieeiiieeteeeieeeteesteeesteeeteeeteesateeeseesnseeaseessseeanseesnseeenssesseeenseesnsseenssesses 16
5.2.4 Functional REQUITEMENTSeeeciiiiiieeiiieiiieeiee et eiee sttt e e e steesbeesbeeebeeseseesnseensseas 17
5.2.5 Non-functional REQUITEIMENTSccveruieriieiieieriereesieeteste sttt sre e eseesseesreesseessessnesseeeas 17
5.2.6 TASKS .ottt e et e e e et e e ettt e eeata e e e ettt e e atreeeaaaeeas 17
5.3 1) D7 (€] PRSP RTUPPRN 18
5.3.1 Application FIOW DESIZI......ccviiiiriieiieiieie ettt s sneenseenes 18
532 User INterface DESIZIeeueeuiiieieiieiiee ettt ettt et s seeesaeenee e 19
5321 INVENLOTY LiSt SCIEOM ..cuviueiuiiiieiiitieieite ettt ettt b ettt se et e ste e eneenea 19

5322 Site List Screen
5323 LOCAtION LISt SCIEEMoevvievieceee ettt ettt et e et e eae e e e e eaeeenteeeaeeereeeaseenreennes 20
533 Database DIESIZNc.eevvieriieiieieeie ettt ettt ettt e e te e ae s tee st ebeenae e e st ese e teenbeeraenseenneenns 21
5.4 IMPLEMENTATIONoceiiutiieeiueeeeeeteeeeeeteeeeeeteeeeeeteeeeeeaeeeeeaeeeeeesseeeeeaeeeeeeseeeeensseeeeenneeeeeneeesenseeeeans 23
54.1 F N O8] (0L 1] 4 (<1 PSUR USSR 23
542 (000)1010 1031155 11 PSPPSR 24
54.2.1 Default COMPONENLSoeieuiiiieieiieieeieete sttt ettt te sttt et e et et e eae e beeabesbeentebesstenseeneensesseenes 24
5422 CUSLOIM COMNITOLS.....cuviitrietieeie ettt ettt ettt e et ete e e te e teeeaaeeeteeeateeeaeeeaseeeseeeaseeaaeeeaseesasesareennes 25
543 COAE SAMPIES ...ttt ettt ettt a e s te e teebeeabeereeere e beesbeesbeessesse e reennas 26
5.4.3.1 Code Sample I — Load data from SQL CEcoocveriiiieiiiiieiesieieeieee et 26

2/2 Confidential

Mobile Inventory Management System

7.

8.

9.

10.

11.

54.3.2 Code Sample I — Column Header Control...........cccocvevverierieniiecienennennens
5.5 TESTING .eteiutteeiteeiteet ettt ettt ettt ettt ettt et et e e bt e st e e bt e s et e sateesareenaees

5.6 DEPLOYMENT ...cooiiitttitieee et eeeeeee e e eeeettee e e e e e eeeaaaae e e e e eesataareeeeeesensaareeeeas

5.7 SECTION SUMMARY ...coeiiiiitiiriieeeeeeeiiaeeeeeeeeeesiaaveeeeeeeeesiataereeeeeeenssnereseseeenns

WAREHOUSE MANAGEMENT TOOL

6.1 OVERVIEW.......utttieiiiieeeiiteeesiteeessrteeesssesessssseessssseesssssessssssseessssseesssssesssnnns
6.2 REQUIREMENT ANALYSIS . .uuuttiiiiieeieiiieteeeeeeeeeemneeeeeeeeeesnneeeeeeeesssnnnnseeeess

6.2.1 ODbjectiVes and SCOPE.......ccerueruieieieierieeieeie ettt
6.2.2 Use Case DIagramcccccevieviieiinienienieieeie sttt
6.2.3 PICKUD 1.ttt ettt st ae e ens
6.2.4 PUL-GWAY .ttt s st
6.2.5 StOCKEAKINGvvenvieiiieiieeeie sttt ettt nne s
6.2.6 Functional REqUITEMENtscceeeverieriieniieiieieeieseeieeee e
6.2.7 Non-functional Requirements.............ccoeceeveereeneeienie e
6.2.8 ASSUMPLIONS ...ttt ettt ettt eeeee s eeesaeeseeeseeneeenee e
6.2.9 TaSKS ettt e
6.3 DESIGNoiiiiiiiiiciicic e

6.3.1 Application FIOW DeSignc.cccevverieriieiiiiieieeiesieeie e
6.3.2 User Interface DESIZNeevvieruieriieiieieeiesieeieeeeee et
6.3.2.1 OFdET LISt SCIEOI ..cueueeniieiieiieiieieeteete ettt ettt see e
6.3.2.2 PiCKUP SCIEEM.....eeiiiiiiiiiieieeitetert ettt s
6.3.2.3 Put-away SCIEEM.......cccouiiiiiiriiiiiiieieiicieeie e
6.3.2.4 StOCK-taKe SCICEIL......c.evuiriirtiriiieiieiiiieieete ettt
6.3.2.5 LOCAtION SCIEM.ceemieuiiiiriiriintiietet ettt ettt
6.33 Database DESIZNcevueeriieriiiiiiieiie et
6.4 IMPLEMENTATIONuviiiiieeeeiiiiireeeeeeasiirreeeseeesssnnrsseeesessssssssseesesssenssssseseeesens

6.4.1 APPIOACKES ...ovviiiiiieieeceee e
6.4.2 Test Driven Development (TDD)cccveieeieniierieeieeieceeeee e
6.4.3 MVC Paradigimcceeveriieiieiieie ettt eee e sseeees
6.4.4 COMPONEILSeeeientieiieeiieeiteeite et e st e e teeeeesaee et enteenteeneesseesseesseenseenees
6.4.5 Code SAMPIESeeieeiiiieiieieee e
6.4.5.1 Code Sample I = MVC DEMOocveiieieiieiieieeieieeeeie e
6.4.5.2 Code Sample IT - Transaction...........cceevverreecrererrienreesrenesnenseeeesseseessennens

6.5 TESTING ettt sttt ettt sttt ettt e saesa sttt et naesae s

6.5.1 Test Case EXamPIe......ccueeeiiiiiieiiieiecie ettt
6.6 DEPLOYMENT ...ooiiiitiiieeiite ettt ettt e ettt e et e e ev e e esetb e e e eaaee e enaveeeenenseeennnns

6.7 SECTION SUMMARY ...cooeiiiittiriieeeeeieiieeeeeeeeeeeirereeeeeeesntrereeeeeeesssssareseseeennans

DISCUSSIONS / CHALLENGES

54

CONCLUSIONS

56

APPENDIX — SCREENSHOTS

57

APPENDIX - REFERENCES

68

APPENDIX - SQL SCRIPT

69

313

Confidential

Mobile Inventory Management System

orbiz

B L CF CRACH

Revision History

Date Who Comment
15 October 2003 Tony Lee Initial draft for comments.
17 October 2003 Grant Archibald Comments.
18 October 2003 Tony Lee Restructure report
21 October 2003 Grant Archibald Comments.
31 October 2003 Tony Lee Final Report.
4/4 Confidential

orbiz

WACHG N OF CaAC

Mobile Inventory Management System

1. Executive Summary

This report documents the development lifecycle of a Mobile Inventory Management System
project completed by a BTech student. The aim of this project is to give the student practical
experience on real-life application development. The proposed Mobile Inventory Management
System is based on two client applications running on Pocket PCs. They are the Inventory
Management Tool and the Warehouse Management Tool.

¢ Inventory Management Tool - Allows users to retrieve up-to-date stock information while
they are on-the-road. It returns stock level information, site information, and location
information related to a particular product.

o Warehouse Management Tool — Allows users to update the database as stocks are
moving between locations within the system. It also provides a convenient way for users
to do stocktaking.

This report summarizes the options and strategies used during the development, and it gives
comparisons between different approaches and technologies adopted in the project. A section
summary is written for each of the two client applications, and a discussion section is given at the
end of this report outlining any challenges encountered during the project.

This report is divided into the following sections.

Project Overview

Research / Considerations
Inventory Management Tool
Warehouse Management Tool
Discussions / Challenges
Conclusions

5/5 Confidential

orbiz

B L CF CRACH

Mobile Inventory Management System

2. Document Structure

o Executive Summary — Gives an abstract about the project, and outlines each of the
major sections in this document.

o Project Overview — Describes the objectives and the scope of the Mobile Inventory
Management System project.

o Research / Considerations - Outlines relevant information regarding to the technologies
used in the project.

¢ Inventory Management Tool - Details the development of the inventory management
tool.

e Warehouse Management Tool - Details the development of the warehouse
management tool.

o Discussions /| Challenges — Gives a summary on the approaches used and any
challenges encountered during the project.

e Conclusions — Summarizes the knowledge gained from the project.

6/6 Confidential

orbiz

WACHG N OF CaAC

Mobile Inventory Management System

3. Project Overview

3.1 Introduction

During the past decade, the |.T. industry has grown rapidly. An increasing usage of computing
technologies has changed the business environment dramatically. In particular, the demand of
mobile applications has growth rapidly. For example, personal mobile phones and Pocket PCs
are becoming popular tools for business usage. Nowadays, it is relatively inexpensive to own a
mobile device, these devices are becoming more user-friendly and easy to use. As a result of
these potentials, many businesses invest money towards mobile technologies, and hence
accelerate the growth in mobile application development.

3.1.1 Company Info

Orbiz International Limited is a leading New Zealand integrator providing services to large
corporate clients in the areas of consulting, strategic development, architecture, analysis and
implementation of leading edge mobile solutions. It builds and deploys business mobility solutions
using Microsoft .NET technology and other related technologies. Orbiz works closely with other
companies such as Microsoft, Vodafone and Telecom to provide mobility solutions to their
customers.

3.1.2 Motivations

As part of the ongoing strategy, Orbiz plans to introduce a mobile application which provides
integrated functionalities on Pocket PC based devices. This software consisted of many different
modules, such as the job dispatching module, the GPS integration module, the inventory
management module, and the knowledge management module. The BTech project proposed and
sponsored by Orbiz is the development of a mobile inventory management system, which forms
the basis of the inventory management module of the software application.

717 Confidential

orbiz

Mobile Inventory Management System

3.2 Project Objectives and Scope

This project aims to develop an application that runs on a Pocket PC, the application consists of
two software components.

The first component is an “Inventory Management Tool”. It can be used by anyone in the system.
The function of this tool is to allow users to retrieve stock level info and location info related to a
product. The details for this application will be discussed in Section 5.

The second component is a “Warehouse Management Tool”. The function of this tool is to allow
users to keep track of a product when it is moving from one location to another. It also provides a
convenient way for users to do stocktaking. The details for this application will be discussed in
Section 6.

The mobile inventory management application is expected to work with the local database that
resides on the Pocket PC. The data inside the local database will be synchronized with the main
database server via networking technologies.

The following figure gives an abstract view of the project.

Database
Server [
i

sales Client
DErson
\| /Q\
Stocktaking
?1 ﬁ
deol| » TN FF
Pickup Put-away

Figure 3.2 — Relationship between different actors in the system

8/8 Confidential

orbiz

WACHG N OF CaAC

Mobile Inventory Management System

3.3 System Architecture

The system architecture of the mobile inventory management application is very simple. The idea
is to have the application runs on a Pocket PC. The application has no direct connection to the
main server. Instead, it retrieves data and makes any necessary updates onto the local database.
The application also provides the facility to init synchronization between the local database and
the main server, which means the user can decides when to do the synchronization as long as a
network connection exists between the device and the server.

[nventory
hManagement
Local ———-Sync- — § — Main
Warehouse Databiase Database
Management
| Network |
Pocket PC Main Server

'Figure 3.3 — System architecture of the Mobile Inventory Management System.

3.4 Existing Data Structure

An existing SQL Server database will be used as the basis of this project. This database is a
simple database that contains 14 tables. The existing database has the ability to capture
customer details, customer order details, product information and system user information. This
database will be enhanced to capture data that are necessary for the mobile inventory
management system.

3.5 Project Template

The screen design shown on the right is the
initial template used for the project.

There are three buttons in the template. ‘ £ |inventory Manager < 9:24
The “Inventory” button is used to initialize the tElcame Ayt e

Inventory Management Tool. The Inventory
“Warehouse” button is used to initialize the

Warehouse Management Tool. These two Warehouse

buttons have no action associate with them at
the start of the project.

The “Synchronize” button will open the Synchronise
“Synchronization Form”, which starts

synchronization between the local database "
and the main server. The code to do with ur Iz

synchronization is already implemented with
the template. The synchronization process will
be discussed in Section 4.5.

Action

9/9 Confidential

orbiz

Mobile Inventory Management System

4. Research /| Considerations

4.1 Pocket PC

A Pocket PC is lightweight device similar to a
Palm Pilot. It is powered by a Microsoft Pocket
PC operation system, which is a derivative of
the Microsoft Windows CE operating system.
It is readily available on the market and it
continues to grow in its popularity. Figure 4.1
shows an example of a Pocket PC, it is one of
those popular Pocket PCs available on the
market.

Although the processing power of a Pocket
PC is still far behind comparing to a laptop or
a desktop computer, but it is growing rapidly.
The primary advantage of Pocket PC is the
ease to carry, so that people can use it
anywhere at anytime. This advantage makes it
one of the best devices used in business
mobility solutions.

Figure 4.1— A typical Pocket PC.

Other features of a Pocket PC are listed below.

° Highly extensible with other external devices, such as wireless network adaptors and
external keyboard.

° Easy to use user interface.

° Many built-in applications.

° Can synchronize with a desktop computer, download emails, files etc onto the Pocket PC.

° Some Pocket PCs have enhanced features, such as barcode reading.

° Instead of having a mouse pointer on the screen, the user taps on the screen using a
stylus.

e Some Pocket PCs are integrated with Bluetooth, biometric fingerprint reader, Infra Red

sensor and microphone etc.

10/10 Confidential

orbiz

Mobile Inventory Management System

4.1.1 Limitations to a Pocket PC

As far as this project concerns, there are a number of critical limitations to a Pocket PC. These
limitations made the development of this project differ from traditional application programming.
A list of limiting factors is described below:

Limitations Descriptions

Limited A normal Pocket PC on the market has a 400MHz processor. This is
processing power | relatively slow compared to a normal desktop computer. For this
reason, it is very critical to choose the most efficient algorithm to
implement a mobile application.

Limited memory A normal Pocket PC has 32-64Mb built-in memory. This is not a large
and storage storage and it limits the size of the data file stored on the device.
Furthermore, physical memory is shared among the files in the Pocket
PC and the memory consumed when an application is run. That means
the more files you have on the device, the less memory you have to run
an application. However, external memory cards are very common
nowadays, they can be used to store large amount of data, which helps
to free the physical memory of the Pocket PC. An example of external
memory is a SD card.

Limited screen The screen resolution differs between different brands of Pocket PC, a
size and screen common resolution supported by most Pocket PC is 240 x 320 pixels.
resolution That means it is hard to display large amount of text and graphics on

the screen. Some Pocket PCs used in the industry doesn’t display
colour, which impacts the design of the user interface.

Input method Without external add-ons, a Pocket PC has no physical keyboard. That
means it is critical to provide an easy to use interface for speedy data
entry. Other input methods such as handwriting recognition and voice
recorder are usually available on the device.

Power Compared to a desktop computer, the battery life of a Pocket PC is
consumption relative short. The amount of battery consumption depends on the
usage of the processor. In most cases, the battery needs to be
recharge after a day of usage. Or it will last for a few days if the Pocket
PC is idle most of the time. It is very important to keep the battery
charged up, it's because all the programs and files are stored in the
physical RAM, and they will be lost if the battery is flat out. Therefore,
external memory card are need to keep important data persistent.

4.1.2 Various types of Pocket PC

There are various types of Pocket PC available in the market. Figure 4.1.2 shows some Pocket

Figure 4.1.2 - Different types of Pocket PC

11/11 Confidential

orbiz

WACHG N OF CaAC

Mobile Inventory Management System

4.2 .NET

There are a few programming technologies used widely for mobile application development. The
most popular technologies are the Microsoft .NET technology and Java 2 Micro Edition (J2ME).
While it is arguable to say which technology is better, the choice of technology really depends on
the device running the application and the type of application to be developed.

The Microsoft .NET technology is chosen for this project, and Visual C# will be used as the
primary programming language. This is because a Pocket PC is powered by a Windows CE
based operating system, which is highly integrated with the .NET Compact Framework. The .NET
Compact Framework is a subset of the full .NET framework, it is specially designed to operate on
small devices that are limited in resources. The .NET Compact Framework requires small amount
of memory to operate, it is very good for a device like a Pocket PC. Although many libraries and
controls are not supported by the .NET Compact Framework, but many commonly used libraries
are available to the developers, so that they can write up their custom controls to provide the
specific functions.

From the choice of programming language, Microsoft Visual Studio .NET 2003 (VS.NET) is the
primary tool used in this project. VS.NET is a RAD tool, which offers a rich environment for
application programming. It has a built-in Pocket PC emulator, which facilitates testing and
debugging of application without having physical connection to a real Pocket PC.

4.3 Networking Technologies

In order to synchronize the local database with the main database, the Pocket PC must be able to
connect to the main server via networking. There are a number of ways a Pocket PC can connect
to the main server. A few examples are list below.

° USB connection — the simplest way to connect to the server machine is to use a USB cradle.
This is usually the fastest and most economical way to synchronize the databases. However,
the user needs to connect the Pocket PC to the server machine physically, that means it is
not possible to have real-time synchronization when the user is distance apart from the main
server.

° Bluetooth — Bluetooth is a worldwide radio standard developed to allow devices to
communicate wirelessly over short distances. This technology is usually used if the Pocket
PC and the main server is less than 10m apart.

e WLAN 802.11 — Wireless LAN can be used to connect the Pocket PC with the main server,
wireless network cards are needed in order to achieve this. This technology usually
supports up to 100m in distance, but the distance and the transmission speed is usually
limited by the surrounding noise level.

° GSM / CDMA - These services are provides by telecommunication companies, they are
used if the mobile device is very far away from the main server.

12/12 Confidential

orbiz

WACHG N OF CaAC

Mobile Inventory Management System

4.4 Database Servers

There are several well known database servers available in the market, for examples, Oracle,
MySQL server and Microsoft SQL Server 2000. Each of these databases has its own advantages
and disadvantages.

The choice of SQL Server 2000 seems to be suitable for this project. It is because this project is
to be built on top of the existing data structure, which is built using SQL Server.

Features of using SQL Server as the backend system are listed below:

° SQL Server is highly compatibility with other Microsoft products. It can be easily integrated
with a .NET application and the operating system of a Pocket PC.

° Through the use of SQL Server CE, SQL Server can replicate a database from the main
server onto a Windows CE device.

e A Pocket PC has support for SQL CE, and it has a SQL CE Query Analyzer that allows
users to query the database. After the SQL CE database synchronizes with the main server,
a file named with an “.sdf’ extension is stored on the Pocket PC. This file contains all the
data in the original database, and it can be copied to an external memory card when needed.

° SQL Server supports three types of publication, they are the “Snapshot publication”,
“Transactional publication” and “Merge publication”. In “Snapshot publication”, the server
periodically updates subscriber data with an updated snapshot. In “Transactional
publication”, changes to the database are sent to the subscriber as they happen. In “Merge
publication”, data can be updated at the main server or any subscriber, these updates are
merged when the user decides to synchronize the databases.

° It supports a lot of database functions such as views, constraints, stored procedures,
triggers, user defined functions etc.

. It also supports batch execution of SQL commands, which is very useful when making up a
dummy database.

Other advantages of SQL Server 2000 include:

It is an enterprise relational database management and analysis system.
It is widely used in many businesses.

It handles massive amount of textual and non-textual data.

It handles massive amount of transactions.

Hwbd =

13/13 Confidential

WACHG N OF CaAC

Mobile Inventory Management System

4.5 Synchronization

Figure 4.5 shows the replication process
::)ne;meseg Ifhgesr\%l;-CE database and the Cllentd
The SQL CE database engine manages
the local database on the Pocket PC. It SQL Ser\'er CE),,_D‘ SQL Server CE
tracks all the database records that are C"e”tﬁ‘qge"t DEIELEEE HiEliE]
inserted, updated or deleted. 1 i
When synchronization occurs, the SQL i
CE Client Agent communications with
the SQL CE Server Agent via IIS, which ST ers
in turn merge the SQL CE database with
the main server. Any updates to the
databases will be synchronized on both Sarver l‘ v
sides. , 11S |
SQL Server CE
e 1 . Server Agent
In order to initialize synchronization, the
client application needs to configure @
settings such as the IP address of the SQL Server Reconciler
main server, the name of the publication SQL Server |SQL Server CE| | -GUtL
and other authentication details etc, so Replication | Replication =
that the Pocket PC can connect to I1S | Provider || Provider <
and complete the replication process. &
The actual code used to implement the i
“Synchronization Form” is not discussed SQL Server Database
here, because it is a code module
supplied by Orbiz along with the Figure 4.5 - A diagram taken from the MSDN
template. library. Shows the replication process between
SQL Server and its subscribers.

14/14 Confidential

orbiz

WACHG N OF CaAC

Mobile Inventory Management System

5. Inventory Management Tool

5.1 Overview

This section addresses the development of the inventory management tool. The development
lifecycle of the inventory management application is divided into five different phases as shown
below.

Requirement Analysis
Design
Implementation
Testing

Deployment

Each of these phases will be discussed in details, a section summary will be provided at the end
of this section summarizing the pros and cons of the strategies applied.

5.2 Requirement Analysis

This section specifies the objectives of the inventory management tool. It lists all the functional
and non-functional requirements of the application, and any assumptions made during the
development.

5.2.1 Objectives and Scope

The development of the inventory management tool forms the first part of this project. The
purpose of this application is to allow users to retrieve stock level information via a Pocket PC.
That means users can use this tool to find out the amount of stock available in the system, and
how many of them are on orders from suppliers. This tool also allows users to find out where a
particular product is located in the system.

5.2.2 Use Case Diagram

0

Wiew products on %=

- vahicle o i
i ey 7 Filter products
-— _ — —
View products in Ty
_ warghouse P :
SQLCE e -~ Staff

Sor products

r
)
|
LAY
',
"

Wiew products on
order

15/15 Confidential

orbiz

Mobile Inventory Management System

5.2.3 Assumptions

As it is impossible to have one application that suits all kind of businesses, the following
assumptions are made when developing the inventory management tool.

One type of product can be stored on many different sites.

One physical site can store more than one type of product.

A site is itself divided into many different locations.

Each location is simply a labelled place within a site.

Only one type of product can be stored at each labelled location.

The example given below illustrates the meaning of the above assumptions.

In the system shown by Figure 5.2.3, there are two types of product, namely, Baked Beans
and Wine.

There are 300 bottles of Wine, all the 300 bottles of Wine are stored at Shelf B of
Warehouse ABC.

The total amount of Baked Beans recorded in the system is 100 cans, in which 60 cans are
stored in Warehouse_ABC, 40 cans are stored in Warehouse XYZ.

The 60 cans of Baked Beans in Warehouse_ABC are actually stored at 2 different locations
within the warehouse, namely, Shelf A and Delivery_Bay_C.

The 40 cans of Baked Beans in Warehouse XYZ are actually stored at 3 different locations
within the warehouse, namely, Shelf A, Box_A, and Belivery_Bay A.

SITE: WAREHOUSE _ABC SITE: WAREHOUSE _XYZ

CCDATION: Shealf A LOCATION: Shalf A
Product: Baked Beans Producl: Baked Beans
Amaount: 40 cans Amount: 10 cans
LOCATION: Shelf B LOCATEDIN: Box_A
Praduct: Wine Product: Baked Beans
Amaunt: 300 botlles amcant: 10 cans

CCATION: Delivery Bay © LOCATIIN: Delivery_Bay A
Product: Baked Baans Product: Baked Beans
Amount: 20 cans Amount: 20 cans

Figure 5.2.3 — A simple inventory system example.

16/16 Confidential

orbiz

WACHG N OF CaAC

Mobile Inventory Management System

5.2.4 Functional Requirements

Retrieves product info from the SQL CE database.

Retrieves site info and location info from the SQL CE database.

Provides the facilities to list product info.

Provides the facilities to filter and sort the product list.

Provides the facilities to find out on which site a particular type of product is stored.
Provides the facilities to find out the exact location within a site where the product is located.

5.2.5 Non-functional Requirements

Additional non-functional requirements are list below.

° Easy and speedy to use.

° User interfaces are clearly displayed within the limited size screen.
e Able to run on a Pocket PC with very limited amount of memory.

e Able to handle large amount of data.

e Able to incorporate with the Orbiz framework.

e Able to work with large amount of data and transactions.

5.2.6 Tasks

There are a number of tasks associated with this part of the project.

Prepare a design specification for the inventory management tool.

Integrate the inventory management tool on top of the existing database.

Produce meaningful data in the database for testing purposes.

Identify any weaknesses or problems encountered, and try to improve it on the second part
of the project.

17/17 Confidential

orbiz

Mobile Inventory Management System

5.3 Design

The design phase is a very important phase in the development lifecycle. It involves the design of
application flow, how users interact with the application, the layout of user interfaces and how
data are stored in the database.

5.3.1 Application Flow Design

The flow design of the inventory management tool is described by Figure 5.3.1. The features of
each screen are briefly described in the diagram, and they will be described in details in Section
5.3.2.

[START SCREEN] SITE LIST FORM
INVENTORY LIST FORM View site info

)] ! close - displays all the sites that
- d!splays product list contain the selected product
- displays product on current
vahicle
- allows filtering and sorting on
product list

View location info

! close

i

LOCATION LIST FORM

- displays the exact locations
where the products are
located in the site

Figure 5.3.1 — Flow diagram of the inventory management tool.

18/18 Confidential

orbiz

Mobile Inventory Management System

5.3.2 User Interface Design

A high emphasis is put on the design of the user interface, it's because the application is
expected to run on a Pocket PC, and the screen size of a Pocket PC is quite small compared to
other displaying units. This section describes the screen designs of the Inventory Management
Tool.

Note that this section shows the main screens of the inventory management tool only. For other
screens of the application, please refer to Appendix | at the end of this report.

5.3.2.1 Inventory List Screen

° The inventory list screen is the start U

screen of the inventory management tool. 4 o

Inventory 4% 11:33 ®|
- -

° The inventory list is initially empty, there
are three combo boxes at the top of the
screen, and they are used as filter boxes
of the product list. The filters used in this
application are the “Brand” filter, the
“Product” filter and the “Size” filter.

Product Sige

° There are three column header controls
under the filters, named “Brand”, “Product”
and “Size” respectively. When the user
clicks on a column header, the product list |
will be sorted in the specified order. '

Product | Yehicle |

° The user can narrow down the product list
by changing the three filters. Once a filter
is applied, the combo boxes are
automatically updated to show the
available items only. This allows the user
to search through the product list very
quickly.

Action Clear

° Products that fulfil the filtering criteria will
be displayed in the multi-line list view.
Each item in the list shows the brand
name, product name, product size, total 4
number of stock available and the amount
of stock on order.

Product

Spaghetti 220q -
Order: & .

° The user can clear the screen and search Soup to Go 3009
H H th “Clear” o tIOI’] or b Crder: 20

again using the) re p) y Spaghetti & Saus 415g

setting the filters to “nothing”. Order: 77 site Info

. . . Wattie's Spaghetti & Sauvr—oo

° The user can view the site info related to a Amt: 426 Order: £1

product using the “Site Info” option under Watties Spauheln 3us20g
the context menu [as shown by the figure Wattie’s Soup BigRed 820g
on the right]. Or by selecting “Site Info” o482 Order: b4

« .y | Wattie’'s Soup Big Red kg
under the “Action” menu. Bk 103 Ordar: 0

° Note that there is a “Vehicle” tab, which is v:a.:;ut vehicle -

a speedy way to show all the products Action Clear
reside on the currently vehicle. [used by
the delivery person]

19/19 Confidential

Mobile Inventory Management System

orbiz

WECE NI OF CRACHL

5.3.2.2 Site List Screen

The site list screen is shown when the
user decided to view the “Site Info” of
the selected product. [See Section
5.3.2.1]

The purpose of the site list screen is to
show all the sites that contain the
selected product, and the corresponding
stock amount on that site.

“:

A site is considered to be ‘in
warehouse”, “on order” or “on vehicle”,
therefore, three tab pages are needed to
display these information.

As stated in Section 5.2.3, a site is
subdivided into many smaller locations,
so, the user can view the location info
using the “Location Info” option under
the “Action” menu, or by selecting the
“Location Info” under the context menu
[as shown by the figure on the right].

Brand: Wrattis’s Size: 415g
Product; Spaghetti Saus

Warehouse Arnant
Mame: Ekin Ltd 23

Location: Taupo
Marne: Guick Mini storage
Lacation: Palrmerston Harth

Location Info

7

[»

Mame: Store-ME
Location: Tirmar
Marne: Stora-That
Location: Timar
Mame;: Tiger Ltd
Location: Hastings

k]

28

25

farehouse | Order | ‘ehicle |

Action

5.3.2.3 Location List Screen

The location list screen is shown when
the user decided to view the “Location
Info” of the selected product.

The purpose of the location list screen
is to show the exact location where the
stock is located. It also gives info on
the amount of product stored at the
particular location.

£F |Location List 4< 11:35
Erand: i attie’s Size: 415
Product: Spaghetti Saus

Mame Drezc I Ak
Cabinet _& No description 16 -
Cabinet _10 Small storage 16 M

20/20

Confidential

orbiz

WACHG N OF CaAC

Mobile Inventory Management System

5.3.3 Database Design

As mentioned in Section 3.4, the Mobile Inventory Management System project uses the existing
data structure as the base database. There are a number of tables stored in the database. Since
SQL Server is a rational database, all tables in the database are linked together through the use
of primary key and foreign key.

Figure 5.3.3 shows the data tables added to the original database that are used by the inventory
management tool. These additional tables have been added because the original database does
not capture the storage location of a product. These tables are necessary in order to record site
information that is required by the inventory management tool.

As far as this project concerns, only the data tables related to the inventory management system
will be discussed in details.

stock level gite type
| skl_id [stt_id
gkl _ammnt H stt_type
gkl date_due
skl stk ad
skl =it id
- - (Em p—
skl_index stock o
H] ﬁ
g
location gite
7 loc_id P it id
B Ioc_nsme || st name oo————g-| 3¥5_Usel
loc_description zit_location
| loe_sit id | sitsttid T T =
T ioc_index o= | sit_sm_id
: loc_amt : sit_index
 |toc_skiid

Figure 5.3.3 — Data tables used by the inventory management tool.

As described in Section 5.2.1, the inventory management tool has the ability to search through
the product catalogue, and to find out the stock level of a particular product at a particular location
of a site. If a product is on order from a supplier, this tool has the ability to retrieve the date due of
the order as well.

In order to achieve this, the following data are required in the database.

The location info of a site.

The sites where a particular product is stored.

The amount of stock stored in each location.

In case the site is “on vehicle”, the details of the delivery person must be recorded.
In case the site is “on order”, the due date needs to be recorded.

21/21 Confidential

WACHG N OF CaAC

Mobile Inventory Management System

Four additional tables are added to the database, they are the “stock_level” table, the “site” table,
the “site_type” table and the “location” table. Each of these tables is described below.

Table stock_level

Descriptions | The purpose of this table is to resolve the many-to-many relationship between the
stock table and the site table. It holds the stock “amount” on each site and the
“date due” if the product is on order.

° skl_id — the primary key of the stock_level table. Identify a particular product on a particular
site.

° skl_amt — the amount of stock stored in the site.

° skl_date_due — the date due for an order from supplier. If the product is not on order, the
value of this attribute will be null.

e skl_stk_id — the foreign key from the stock table. Identify a particular product.

skl_sit_id - the foreign key from the site table. |dentify a particular site.

e skl_index —a numbered index to identify the stock_level entry.

Table site
Descriptions | The purpose of this table is to identify a site. For example, “ABC warehouse” in
“Auckland”.
° sit_id - the primary key of the site table. Identify a particular site.
° sit_name — the name of the site.
° sit_location — the location of the site.
° sit_stt_id — the foreign key from the site_type table. Identify a particular site type.
° sit_idnex — a numbered index used to identify the site.

Table site_type

Descriptions | The purpose of this table is to identify a type of site. As long as the inventory
management tool concerns, there are only three types of site, they are “in

warehouse”, “on vehicle” or “on order”.

e stt id — the primary key of the site type table. Identify a particular type of site.
° stt_type — the name of the site type.

Table location

Descriptions | A site is subdivided into many labelled locations. Each location has an unique 1D
and can only store one type of product.

loc_id — the primary key of the location table. Identify a particular location in a site.
loc_name — a labelled name give to the location.

loc_description — a description to the location.

loc_sit_id - the foreign key from the site table. Indicates where this location belongs.
loc_index — a numbered index given to the location.

loc_amt — the amount of stock stored at that location.

22/22 Confidential

WACHG N OF CaAC

Mobile Inventory Management System

5.4 Implementation

This section describes how the Inventory Management Tool was implemented. It describes the
reasons for using the selected approach, the components used in the implementation, and some
of the classes written to perform the operations.

5.41 Approaches

The strategy used to implement the inventory management tool is the simple, traditional coding
approach. That means most code are written inside a single class, and there is no separation
between user interface and business logics for each screen. Note that each screen listed in the
design phase still owns a standalone windows form, and those codes that are shared between
the screens are separated out into new classes.

This coding style is chosen because the inventory management tool is actually a querying tool,
the business logic in behind is quite simple. Therefore, using the traditional approach allows
speedy development.

As the inventory management tool needs to obtain stock info, site info and location info, a simple
way to retrieve these data is to construct a SQL statement from the text in the filters, then make a
connection to the SQL CE database, and retrieve the result set using a DataReader object or a
DataSet object.

23/23 Confidential

orbiz

WACHG N OF CaAC

Mobile Inventory Management System

5.4.2 Components

Using Microsoft Visual Studio .NET 2003, the user interface can be easily layout. Each screen
designed in Section 5.3.2 is implemented using a windows form provided by Visual Studio. While
most of the components required are available from the .NET Compact Framework, some of the
important components are however not available. Furthermore, some of the default components
provided by .NET Compact Framework are limited in features. Due to this fact, custom controls

are written in order to support the specific features required by the inventory management tool.

5.4.2.1

Default components

Listed below are the default components used in the inventory management tool.

Component

Windows Form

Descriptions

The base class of the screens. Acts as a container of other components.

Event
handlers

The “Load” event is triggered when the form is loaded, it is used to set the initial
values to the form, and initialises other components.

Component

MainMenu Control / Menultem Control

Descriptions

The main menu control are associated with the form, they are used to
implement the “Action” menu in each screen.

Event The “Click” event is triggered when the user taps on a menu item, it is used to

handlers redirect users to the “Site List” screen and the “Location List” screen. It is also
used to close the application.

Component | Label

Descriptions

Labels are simply used to display static info on the screen.

Component

ContextMenu Control / Menultem Control

Descriptions

Similar to the MainMenu control, but it is associated with a list view control in
the application.

Event The context menu will pop up when the user presses & holds the stylus on the

handlers screen. It opens the “Site List” form and the “Location List” form depending on
the selected item in the list view control.

Component | Tab Control / TabPage Control

Descriptions

These controls allow the user to switch between different tabs in a single form.

Event
handlers

When the selected tab page changes, the product list and the filter boxes will be
updated accordingly.

Component

Combo Box

Descriptions

Combo boxes are used as filter boxes in the application.

Event
handlers

The “SelectedindexChanged” event is triggered when the user changes the
selected item in the filters, which in turn updates the list view and the items in
the filter boxes.

24/24 Confidential

orbiz

WACHG N OF CaAC

Mobile Inventory Management System

5.4.2.2 Custom Controls

Listed below are the custom controls built for the inventory management tool. Detailed
descriptions are given. These controls are used through out the project.

Component | Task List Control

Descriptions | By default, Visual Studio provides a “ListBox” control. However, the list items
inside the default “ListBox” control doesn’t support “multi-line text”, which is very
inconvenient to use when a lot of info need to be displayed for each item. For
example, in Section 5.3.2.1, each item in the product list has to display the
brand name, product name, size, amount on hand and the amount on order.
There is no way to fit all this info into one line of text. Even if it is possible to fit
all the text within one line, the user will not be able to read the info clearly.
Therefore, the “Task List Control” is written to support a multi-line list view,
which is used across difference screens in the project.

Event The “Task List Control” itself doesn’t react to any system event. It changes the
handlers selected index when the user taps on an item in the list. An entry with speciality
will be highlighted with other colours to alert the user. The behaviour of the
“Task List Control” is very similar to the default “List box” control.

Component | Column Header Control

Descriptions | The “Task List Control” described above doesn’t have column headers
associate with it, this is needed in order to tell the user what info is displayed by
the columns. They are also needed to sort the list items in order. An initial
thought would be to use a “Button” control to act as the column head. However,
in .NET Compact Framework, the text alignment property of a button is not
available, and the text will not be clearly shown if the button width is too small.
Therefore, the “Column Header Control” is written to support text alignment, and
it will trim column header label if the header width is too small.

Furthermore, given that the screen width of a Pocket PC is usually 240 pixels,
experience shows that it is not a good idea to have more than three columns in
a “Task List Control”, having more columns will make the screen very crowded,
hence makes it harder for the user to read the text in the list view. Experience
also shows that the use of horizontal scrollbars is not recommended. By
default, .NET Compact Framework doesn’t have any splitter control provided.
Therefore, the “Column Header Control” must be able to use to adjust the
column width of the columns inside the “Task List Control”.

Event The “Click” event is triggered when the user taps on the column header. In the
handlers inventory management tool, this is used to sort the items in the “Task List
Control”. The sort order alternates between ascending and descending.

When the user taps and presses on the boundary of a column header, the
splitter function is active. The “MouseDown” event is used to capture the initial
tapped position. When the user lifts the stylus off the screen, the “MouseUp”
event is triggered, which in turns adjusts the width of the “Custom Column
Header” control and the columns inside the “Task List Control”.

25/25 Confidential

WACHG N OF CaAC

Mobile Inventory Management System

5.4.3 Code Samples

It is impossible and irrelevant to include all the code used to implement the inventory
management tool. Therefore, extractions of code used in the application are described in this
section.

5.4.3.1 Code Sample | — Load data from SQL CE

Descriptions | (1) Listed below is the method used to retrieve data from the database. The
resultant data is used to update the items in the filter boxes.

(2) A similar implementation is used to retrieve product info, site info, and
location info.

public object[] ReloadFilterItems(string brand, string product, string size, string attribute,
bool allowCache)

{
ArrayList output=new ArrayList();

if(allowCache) { //NOTE (1)

string key="["+brand+" | "+product+"|"+size+"]["+attribute+"]";
if(allowCache && cachedData[key]!=null)
{
return new object[] { null, (ArrayList)cachedDatal[key] };
}
else { cachedData[key]=output; }
}
string errorMessage=null;
SqlCeDataReader dr=null;

SqlCeConnection connection=SqlDataManager.GetInstance().GetConnection(); //NOTE (2)
connection.Open();
try
{
string sqlStatement="..."; //NOTE (3)

output.Add("");
dr=(new SqlCeCommand(sqlStatement, connection)).ExecuteReader(); //NOTE (4)

while(dr.Read()) { output.Add(dr[attribute].ToString()); } //NOTE (5)
}
catch(Exception ex) { errorMessage=ex.ToString(); } //NOTE (6)
finally
{
i1f(dr!=null) { dr.Close(); } //NOTE (7)
if(connection!=null) { connection.Close(); }
}
return new object[] {errorMessage, output}; //NOTE (8)
}

Notes (1) In the code segment, the “cachedData” variable is a HashTable. If
“allowCache” is set to “true”, then the app first checks whether the required
data exists in the cache, and returns the cached copy if it exists. The
required data is retrieved from the database if it doesn’t exist in the cache,
and a copy of the data will be saved in the memory. In the inventory
management tool, the cache function is disabled to save memory, since the
same query rarely appears twice.

26/26 Confidential

WACHG N OF CaAC

Mobile Inventory Management System

(2) The SQL connection is provided via the “SglDataManager” object, this class
is implemented using the singleton pattern. The class is used to provide
SQL connection to the local SQL CE data file through out the project.

(3) The building of SQL statement uses the input parameters passed from the
caller of this method. It is not shown here because it is a long operation and
requires many lines of code.

(4) The “DataReader” class is used to read data from the SQL CE data source.
“DataReader” object is a forward-only reader, it doesn’t read the whole
dataset into memory before processing. Instead, it keeps a current pointer
to the result set, and returns the result as the application iterate through the
result set.

(5) The while loop is used to iterate all the data in the result set.

(6) In case of error, the error message is sent back to the application, and the
app decides the appropriate actions to take.

(7) The “finally” section makes sure all the opened connections are terminated.
This is necessary because a “SqlCeException” will be generated if a
connection is opened twice.

(8) The result set is returned to the caller of the method. It will update the filters
correctly.

27/26 Confidential

orbiz

Mobile Inventory Management System

5.4.3.2 Code Sample Il - Column Header Control

Descriptions | (1) Listed below is the implementation of the custom column header control. A
lot of code in the sample is converted into readable pseudo code
(highlighted in brown), it's because the original code is too long to include
here.

(2) The “Column Header Control” is used in both the inventory management
tool and the warehouse management tool of this project. It is necessary in
order to display the “Task List Control” correctly, and allows users to adjust
the column width.

public class ColumnHeaderControl: System.Windows.Forms.Control //NOTE (1)
{
public ColumnHeaderControl(int totalWidth, int numOfCol, int minWidth,
int hotSpotWidth) //NOTE (2)
{
//DO: calculate default column width;
//DO: Initialize headers;
//DO: Initialize column labels;
//DO: Initialize column splitters;

}

public bool HitTest(int x, int y) /INOTE (3)
{ //DO: check whether the splitter is being clicked. Or the header 13 being clicked }

public Point MouseDownPos /INOTE (4)
{ //UPDATE: record the MouseDown position; }

public void SetLabel(int index, string newLabel) //NOTE (5)
{ //UPDATE: change the label of a column header; }

protected override void OnPaint(PaintEventArgs e) //NOTE (6)
{
Graphics g=e.Grahpics;
g.Clear(this.BackColor);
g.FillRectangle(new SolidBrush(SystemColors.Control), 0, O, this.Width, this.Height);

for(int 1=0; 1<_hotSpots.Length; 1++)

{
Rectangle r=_hotSpots[i];

e.Graphics.FillRectangle(new SolidBrush(Color.Black), r.X+r.Width/2-1, r.Y,
_splitterWidth, r.Height);
}
for(int 1=0; i<_labels.Length; i++)
{
if(_labels[i]!=null && _labels[i]!="")
{
Font f=new System.Drawing.Font("Microsoft Sans Serif", 8.25F,
System.Drawing.FontStyle.Regular);

string s=TrimText(_labels[i], e.Graphics, f, _cols[i].Width-8);
int leng=g.MeasureString(s, f).ToSize().Width;

g.DrawString(s, f, new SolidBrush(Color.Black),
_cols[1].X+_cols[1].Width/2-1leng/2-4, _cols[1].Y+2);

28/28 Confidential

orbiz

WACHG N OF CaAC

Mobile Inventory Management System

private string TrimText(string original, Graphics g, Font f, int colWidth) //NOTE (7)
{ string theText=original;

while(g.MeasureString(theText, f).ToSize().Width>colWidth && (theText.Length>1))

{ theText=theText.Substring(0, theText.Length-1);

ieturn theText;

}

public void Recalculate(int x, int y) //NOTE (&)

{
//DO: calculates the change in X position by subtract the (MouseUp.X - MouseDown.X);
//UPDATE: sets the header size, and the splitter positions;
//UPDATE: sets the splitter position;

}

public int GetColWidth(int 1) //NOTE (9)
{ //DO: return the width of a specific column; }

Notes
(1) Since the column header control is a windows form control, therefore it must
extend the “Control” class. The “Control” class gives the column header
control the ability to handle events (e.g. Click event), and to draw itself on

the screen similar to other controls.

(2) The constructor of the column header control sets the initial width of the
columns. It also sets the “hot spot” for the column splitters, and the text
label of the column.

(3) When the user taps on the column header control, the “HitTest” method
checks whether the user tapped on the column splitter, or the column

header.

(4) If the tap position lies inside a splitter’s “hot spot”, then the tapped position
is recorded.

(5) The “SetLabel” method allows users to change the text display in a specific
column.

(6) The “OnPaint” method draws the column header control onto the screen. It
sets the colour of the control, draws the control background and the column
splitters. It then loops through the column labels and display the text within
the available space.

(7) The “TrimText” method calculates the length of the displayed text, and trims
the text so that it can be displayed correctly with the available column size.

(8) The “Recalculate” method is called when the user drags the column splitter.
The “MouseUp” event is fired and gives the position where the user lifts the
stylus off the screen. This method calculates the change in X position and
adjusts the size of each column accordingly.

(9) The “GetColWidth” method returns the width of a specific column.

29/28 Confidential

orbiz

WACHG N OF CaAC

Mobile Inventory Management System

5.5 Testing

The first part of testing involves making up dummy data in the database, the SQL script shown is
Appendix Il is used to create random data. The resulting database contains 35 types of product,
30 sites, each site contains 70 locations, and there are 400 stock level entries linking these tables
together.

Given that the business logics behind the inventory management tool are quite simple, and the
current implementation is done using the traditional approach. Therefore, testing of the inventory
management tool is done manually. Furthermore, there is no easy way to automate testing on
user interfaces, so, “user experience” is the best way to test the usability of the application.

Listed below are the test cases used for the “Inventory List Screen”. Note that the table below
only shows a subset of test cases.

| User Actions Expected Results
1 | User taps on the “Clear” option. The inventory list is cleared. The filter boxes are
reset and contain all the available items.
2 | User sets the brand filter to | All products with the brand name “Wattie’s” are
“Wattie's”. displayed in the inventory list. The items in the filter
boxes are updated according to the inventory list.
3 | User taps on a product in the | The selected item is highlighted.
inventory list.
4 | User selects a product in the list, | The context menu shows up, with the “Site Info”
then taps and holds the stylus on | option enabled.
the screen.
5 | User taps on the “Site Info” menu | The “Site Info” menu is disabled, thus nothing
inside the “Action” menu when no | happen.
product is being selected.
6 | User taps on the “Vehicle” tab. The inventory list is cleared. The filter boxes are
updated to show products on the current vehicle.
7 | User taps on the “Product” column | Items in the inventory list are sorted by their product
header. name.
8 | User taps on the “Site Info” menu | The screen switches to the “Site List Screen”.

when a product is being selected.

5.6 Deployment

Deployment of the inventory management tool is relatively easy, because there is a “Build Cab
File” option provided by Visual Studio .NET. When this option is clicked, Visual Studio .NET
automatically generates installation files for the application. When the cab file is copied and run
onto the Pocket PC, the application automatically installs itself onto the device and ready to use.

30/30 Confidential

orbiz

WACHG N OF CaAC

Mobile Inventory Management System

5.7 Section Summary

° There are five important phases in the development lifecycle, they are the requirement
analysis phase, design phase, implementation phase, testing and deployment.

° The inventory management tool is a querying tool, which displays product info, site info and
location info of a particular product. The data are originated from the SQL CE database
located on the Pocket PC.

e The design phase involves the design of user interfaces, the design of application flow and
database design.

° In addition to the tables in the existing SQL Server database, four tables are added in order
to provide stock level info and location info of a product.

° The traditional programming approach is used to implement the inventory management
application, an advantage of using this approach is the speed of development.

° Using the traditional approach, all the code related to the user interface, the business logic
and the data model are stored in a single “Form” class. User actions will be handled by the
method in the Form class. For example, when the user changes the brand filter in the
“Inventory List Screen”, the “SelectedindexChanged” event triggers a method call to retrieve
data from the database, then updates the inventory list and displays the result back to the
screen. All these functions are done within the Form class.

° The main disadvantage of using traditional programming is its inflexibility. Since all the
business logics are implemented together with the user interface, that means if the same
application is to be re-implemented with different user interface requirements, then the
whole class file needs to be changed. That means the ability of code reuse is very low using
the traditional programming style.

e A lot of default controls are provided by Visual Studio .NET, which satisfy most user
interface requirements. However, custom built controls are needed in order to provide
enhanced features to the user interface. Two custom controls are written for the inventory
management tool, they are the “Task List Control” and the “Column Header Control”.

. Retrieval of data from a SQL CE database involves setting up a connection to the database,
opening the connection, issuing a query command to the database, and iterate through the
result set using a DataReader object. The database connection must be closed at the end of
the operation, otherwise an exception will be raise when the application tries to open a
connection again.

° The “MouseDown” event is triggered when the user taps on a control, and the “MouseUp”
event is triggered when the user lifts the stylus off the control. The “splitter” inside the
“Column Header Control” is implemented using these events.

° Testing is a very important phase in the development lifecycle. Since the inventory
management application is written using the traditional programming approach, so, all the
business logic are bounded by the user interface, and therefore, testing of the application is
done manually.

° System testing has been done in Section 5.5. However, it gives no indication to the
operating performance of the application.

° The deployment of the inventory management tool is simple, it involves building the
installation cab file using Visual Studio .NET, and run it on the Pocket PC. The underlying
Windows CE operating system on the Pocket PC must have support for .NET Compact
Framework.

31/31 Confidential

orbiz

WACHG N OF CaAC

Mobile Inventory Management System

6. Warehouse Management Tool

6.1 Overview

This section addresses the development of the warehouse management tool. Again, the
development lifecycle of the warehouse management tool is divided into five different phases as
shown below.

Requirement Analysis
Design
Implementation
Testing

Deployment

Each of these phases will be discussed in details, a section summary will be provided at the end
of this section.

6.2 Requirement Analysis

This section specifies the goal of the warehouse management tool. It lists all the functional and
non-functional requirements of this tool, and explains how this tool is used by a warehouse staff.

6.2.1 Obijectives and Scope

The warehouse management tool is the second client application in the Mobile Inventory
Management System project. The primary function of this application is to provide a convenient
way to record the “stock-move” process occurred in the system. The meaning of the word “stock-
move” simply implies moving stock from one location to another location. The second objective of
the warehouse management tool is to allow staff members to do stocktaking on products stored
at a particular location.

As it is far too complex to model all the stock movements occurred within a warehouse, the client
application developed for the project is a mini version of a real-life warehouse management tool.
The scope of this application is narrowed down to model the stock movements between different
locations within the system. Therefore, it doesn’t model any stock moving out of the system, such
as dispatching goods from the delivery van to customers. Listed below are the three processes
modelled by the warehouse management application of this project, note that a real-life
warehouse management application will provide a lot more functions than this.

e Pickup — Picking goods in a customer order for delivery.

o Put-away — Moving stock from one location to another location within the system.

e Stocktaking — Verify the amount of stock recorded in the database against the actual
value.

32/32 Confidential

orbiz

WACHG N OF CaAC

Mobile Inventory Management System

6.2.2 Use Case Diagram

O Put-away stock
1 _ Select stock location

" e T

0

= = :
View product Confirm pickup
locations

Select delivery

Save stock-mave :
. vehicle
transaction

Stocktaking

6.2.3 Pickup

In order to fulfil a customer order, all the products listed in an order must be put onto the delivery
van before delivery. The warehouse management application allows a staff to select a customer
order and shows the list of items required to fulfil that order. As the staff looks through the list of
products, he needs to confirm the product barcode to make sure the correct product was being
pickup. He also needs to confirm the source location of the picked item, which updates the
database to reflect a true view on the stock level at the source location.

6.2.4 Put-away

As described in Section 5.2.3 of this report, one type of product can be stored in different sites,
and a physical site is subdivided into many locations. The “put-away” function models the stock
movement between any two locations within the system. When a staff member moves a type of
stock from one location to another, the warehouse management application helps him to record
the transaction in the database. It also updates the stock level at the source location and the
destination.

The movement of stock can occur between different locations on the same site [See example 1
below], or it can occur between two locations on two different sites [See example 2 below].

e Example 1 — Moving 10 cans of baked beans from Room_#1 of Warehouse ABC to
Room_#2 of Warehouse ABC.

e Example 2 — Moving 5 bottles of wine from the Dispatching Bay #1 of Warehouse ABC
into Shelf_#3 of Vehicle XYZ.

From the above examples, it is obvious the put-away process is essentially the basis of any stock
movements occurred in the system. In fact, it is true that the “pickup” process described
previously is a division of the “put-away” process. However, from users’ perspective, the screen
designed for the two processes are quite different, also, the two processes are functionally
different and can not be combined into one.

33/33 Confidential

orbiz

WACHG N OF CaAC

Mobile Inventory Management System

6.2.5 Stocktaking

Stocktaking is a necessary process for warehouse management. This process is carried out in
order to validate the stock amount recorded in the system against the actual number of stock
available in the warehouse. The variance between the actual value and the recorded value
usually arises because some goods were stolen or damaged, this variance must be recorded in
the database in order to reflect the actual stock level in the system.

The warehouse management tool aims to provide a convenience way for stocktaking, it tells the
staff the expected amount for a product stored at a particular location. It gives the facility to record
the actual amount and calculates the variance when appropriate.

6.2.6 Functional Requirements

The list below shows a minimal set of functional requirements needed from the warehouse
management application.

Retrieves customer orders, ordered items and product info from the SQL CE database.
Retrieves site info and location info from the SQL CE database.

Provides the facilities to pickup items listed in a customer order.

Provides the facilities to record stock moving between locations within the system.
Provides the facilities to perform stocktaking.

Save updated info in the SQL CE database on the Pocket PC.

6.2.7 Non-functional Requirements
Listed below are the non-functional requirements for the warehouse management application.
° Easy and speedy to use.

° User interfaces are clearly displayed within the limited size screen.
e Able to run on a Pocket PC with very limited amount of memory.

6.2.8 Assumptions

° The Pocket PC used has barcode reading capability.

6.2.9 Tasks

There are a number of tasks associated with this part of the project.

Prepare a design specification for the warehouse management tool.

Prepare a scope document for the warehouse management tool.

Prepare a MVC specification for the warehouse management tool.

Integrate the warehouse management tool on top of the database used in part 1.

34/34 Confidential

orbiz

Mobile Inventory Management System

6.3 Design

The second phase of the development lifecycle is the design phase. It involves the design of
application flow, the layout of user interfaces and how data are stored in the database.

6.3.1 Application Flow Design
The flow design of the warehouse management tool is described by Figure 6.3.1. The features of

each screen are briefly described in the diagram, and they will be described in details in Section
6.3.2.

[START SCEEEN] PICKLIP LIST FORM
QRDER LIST FORM Wiaw datails
T dosa - displays product items in an arder
- display a list of orders - allows users 1o confirm ibem being

pickup

Rediract
[doss

|

PUT-AWAY FORM

Redirect
! closa

STOCKTAKE FORM

- allovws users to verify slock
armaunt at a paficular location
- allows users lo recond variance

- allows users to racord stock Search loc
maving from one location to i cloas

anclher

Saarch loc Saarch loc
! close fclose

)

LOCATION FORM

- allows users io select the
sourca location of a product

Figure 6.3.1 — Flow diagram of the warehouse management tool.

35/35 Confidential

orbiz

Mobile Inventory Management System

6.3.2 User Interface Design

Once again, the user interface design is a very important task in this project. This section
describes the graphical user interface of the Warehouse Management Tool, and how each screen
provides the required functionalities to the users.

This section shows the main screens of the inventory management tool. For other screens of the
application, please refer to Appendix | at the end of this report.

6.3.2.1 Order List Screen

° The order list screen is the start screen
of the warehouse management tool.

l.{&;" Order List

o< 11:35

° The order list initialised with all the
customer orders stored in the local

1d: Q59773 Date: 10,17/ 2003
Comp: AE Food Group Price: $366.00
Cust: Kitchen Cuisine ...

SQL CE database.

Each order item in the list gives info
about the order ID, name of the client
company, customer name, the order
date and total price of the order.

Id: TR42885

| Comp: Oresse Group

| Cust: Country Kitchen
| 1d: QC92673

|| Comp: AE Food Group
| Cust: Fabulous Foods

| Comp: AE Food Group

Date: 10/17/2003
Price: $433.00

Date: 10/17/2003
Price: $927.00

Date: 10/17/2003
Price: $493.00

e There is a splitter control at the top of Jrutitie fods

the order list, it is used to adjust the

i X X Pickup
column width of the list view.

Yiew

Stocktake

° The user can redirect to the “Pickup s

Form” by clicking “Pickup” option under
the context menu or by selecting the
“Pickup” option under the “Action” main
menu. The “View” option provides the
same functionality, but it will redirect to
the “View” tab in the “Pickup form”.

36/36 Confidential

Mobile Inventory Management System

orbiz

WACHG N OF CRACHL

Under the “Action” Menu, the “Close”
option simply closes the warehouse
management tool. The “Putaway” and
“Stocktake” options will redirect the
user to the “Putaway Screen” and the
“Stocktake Screen” respectively.

Note that the “Task List Control”
mentioned in Section 5.4.2.2 is used
again in order to provide a multi-line list
view.

13 | Order List o 11:35

Id: Q59773
Comp: AE Food Group
Cust: Kitchen Cuisine ...

Id: TR42885 Date: 10,/17,/2003
Comp: Oresse Group Price: !

Cust: Country Kitchen

Id: QC92673
Comp: AE Food Group
Cust: Fabulous Foods
| Id: ¥30972

Comp: AE Food Group Price: $493.00
Cust: Life Foods

Date: 10/ 17,2003

Price: $927.00

Price: $366.00 —

Date: 10/17/2003 |=

Action = | =

6.3.2.2 Pickup Screen

The “Pickup” screen is shown when
the user clicked the “Pickup” option in
the “Order List Form”.

The purpose of the “Pickup Form” is to
allow users to look through each item
in a customer order. It requires the
user to confirm the barcode, the
source location of the product, and the
amount of stock to be pickup to fulfil
the customer order.

An item number is shown at the top
indicating the total number of ordered
items in the current customer order.

The product ID, product name, brand
name, product size and the ordered
amount is shown as labels, indicating
the product to be confirmed.

There are three input fields on the
form, they are used to confirm the
barcode, the location ID and the

e
P e

55555555-5555-55

Marme Peanut Butter Cri

Brand

Size
Crdered Arnt
Barcode

Location

Save
Yehicle

37137

Confidential

Mobile Inventory Management System

orbiz

WACHG N OF CaAC

amount of stock to be pickup.

The user is expected to use a Pocket
PC with barcode reading ability, so he
can scan the product barcode very
easily.

For the input of the location ID, the
user can either scan the location ID
with a barcode reader, or alternatively,
he can click on the [<<] button beside
the location field. This will redirect the
user to the “Location Form”.

The “amount” input field sets the
amount of stock to be picked from the
source location.

The “Next” button shows info of the
next ordered item in the customer
order.

When the “Confirm” button is clicked, it
flags that the current product is being
picked. It will update the list of
confirmed items shown in the “View”
tab.

When the “View” menu is clicked, all
items belong to the customer order will
be displayed [See the figure on the
right]. It highlights which items are
picked and saved in the database
already [highlighted with green colourl].
Which items are confirmed but not yet
saved [highlighted with blue colour],
and which items are not yet confirmed.

In the “View” tab, the user can choose
to display a selected product, or he
can decide to reset a previously
confirmed item.

As described in Section 6.2.3, the
“Pickup” process models the stock
movement from the source location
onto a delivery vehicle. Therefore, the
user must be able to select a delivery
vehicle as the target location.

When an item is confirmed, it is not yet
saved in the database, the user must
select the “Save” option under the
“Action” menu in order to update the
database.

.:'J_i:.j' Pickup Form

Item: 1
Brand: Watti...
<SAYED >

Item: 2
Brand: Wathi...
Item: 3
Brand: Eta

| tem: 4
Brand: Heinz

i Item: 5
Brand: Eta

Id: 428300ef-...
Prod: Sauce T...

Id: 11111111..
Prod: Soup for...
Id: c88f2c6a-...

Prod: Peanut ...

Id: Sec3828a-...
Prod: Ketchup ...
Src: Box_70

Id: 55555555...
Prod: Peanut ...

Size: 575g

Size: 300g

Size: 1kg

Size: 300m|

Reset
Display

£33 Pickup Form

Yehicle Settings

Yehicle Id

Yehicle Reg

13554dbf-7633-< +

38/38

Confidential

Mobile Inventory Management System

orbiz

WACHG N OF CRACHL

6.3.2.3 Put-away Screen

The “Putaway Form” is shown when
the user selects the “Putaway” option in
the “Action” menu of the “Order List
Form”.

The purpose of the “Putaway Form” is
to record stock movement from one
location to another location within the
system.

The design of the “Putaway Form” is
similar to the “Pickup Form” mentioned
in Section 6.3.2.2.

All the input fields in the form are
cleared when the form starts.

When the barcode is set by the user
[Using a barcode reader], the product
info will be retrieved from the database
and displayed on screen automatically.
The user must set the source location
ID and the target location ID in order to
record the stock movement. It can be
done using a barcode reader, or by
selecting a location via the “Location
Form”.

There is a “View” tab associated with
the “Putaway Form”, it displays all the
stock-move entries recorded by the
user. Also, it highlighted which
transactions are saved in the database
already.

When an item is confirmed, it is not yet
saved in the database. The user must
select the “Save” option under the
“Action” menu in order to update the
database. If the user decided to close
the form, the application will prompt for
saving before exiting the application.

Barcode
MName
Brand
Size

Source

Amount

Destination

At available

33333333-3333-33

Spaghetti & Saus

Wattig's
(HA[n}

a87d8688-3a0 |=<

f15eeesb-dib

Confirm

[S50 B o)
nen

< 11:39

==

E I

‘.:'E.f'j" Putaway

Brand: Watti...
Id:1i111111...
Src: Box_11
Brand: Eta
Id: 4444444...
Src: Cabinet ...
Brand: Eta
| Id: 5555555...
| Src: Cabinet ...

Prod: Soup fo...

Amt: 3

Drest: Contain...

Prod: Peanut...

Amt: 13

Dest: Contain...

Prod: Peanut...

Amb: 7
Dest: Front s...

Size: 300g

<SAVED >
Size: 373g

<NEW >
Size: 375q

<NEW

39/39

Confidential

Mobile Inventory Management System

orbiz

WACHG N OF CaAC

6.3.2.4 Stock-take Screen

The “Stocktake Form” is shown when
the user selects the “Stocktake” option
under the “Action” menu of the “Order
List Form”.

The design of the “Stocktake Form” is
similar to the “Putaway Form”
mentioned in Section 6.3.2.3.

All the input fields in the form are
cleared when the form starts.

When the barcode is set by the user
[using a barcode reader], the product
info will be retrieved from the database
and displayed on screen automatically.
The user must set the location ID of the
product, it can be done using a barcode
reader, or by selecting a location from
the “Location Form”.

When the location ID is set, the form
returns the expected amount of stock at
the selected location.

The user enters the actual quantity in
the “amount” input field.

When the user presses the “Confirm”
button, the application checks whether
the expected amount recorded in the
system equals the actual amount
entered by the user.

If the two values are the same, then
this entry will be recorded in a list of
confirmed items.

If the two values are different, then the
user will be redirect to another screen,
in which the user is able to enter a
reason for the variance. Once the
reason is confirmed, this entry will be
added to the list of confirmed items.
There is a “View” tab associated with
the “Stocktake Form”. It displays all the
stocktaking entries confirmed by the
user. It highlights which of these entries
are saved in the database, which
entries are not yet saved, and those
entries where a variance exists.

£33 |stocktake {2 11:40

Barcode 11111111-1111-11
MNarne Soup for Cine
Brand

Size 300g

:ocation haZf464-31e

Expected amt |15
Actual Amt 16

Confirm

lfl_r?i' Stocktake

Enter the reason for the difference
Product IDr
Mame Spaghett & Saus
eran
ez
Wariance

Reason

lss due to fire
goods stolen
damaged goods
invalid system recor
unknown

others

Action Yiew

40/40

Confidential

Mobile Inventory Management System

orbiz

WECE NI OF CRACHL

When an item is confirmed, it is not yet
saved in the database. The user must
select the “Save” option under the
“Action” menu in order to update the
database. If the user decided to close
the form, the application will prompt for
saving before exiting the application.

L.;'a_r.wg" Stocktake

Brand: Watti... Prod: Soup fo... Size: 300g
Id: 1111111... Amk: 3 Src: Containg
<SAVED =

Brand: Watti... Prod: Spaghe... Size: 300g
Id: 3333333... Amt: 13 Src: Box_50

Brand: Watti... Prod: Spaghe... Size: 4159
Id: 2222222, Amt: 15 §rc: Shelf_54

| Yar: 4 Desc: damaged goods

6.3.2.5 Location Screen

The “Location Form” is used by each of
the three forms in the warehouse
management application. It allows
users to select the location ID when
moving a stock from one location to
another.

There are two filters in the location
form, they are the “Region” filter, the
“Site” filter.

When the “Location Form” starts, the
application seeks for all locations that
contain the required product. Then the
“Region” filter and the “Site” filter are
filled appropriately.

The user can find out the required
location by changing the filters.
Descriptions about the location are
updated when the user changes the
selected item in the location box.

When the “Confirm” button is pressed,
the selected location ID will be returned
to the requesting form.

The “Back” button is used to return to
the parent form without setting the
location ID.

L.EE;-"‘ Location Form L 11:42

Select the source location

Region Palmerston Morth -+
Site Name kKED Stare i

Location

Description

41/41

Confidential

WACHG N OF CaAC

Mobile Inventory Management System

6.3.3 Database Design

In addition to those data table added in Section 5.3.3, the Warehouse Management Tool requires
additional tables to capture stock movement and the stocktaking operations.

These tables have been added for tracking reasons. Whenever a stock is moving from one
location to another, an entry must be made in the database to verify the transaction. Also, the
system must record the person who is responsible for the transaction. In case of stocktaking, the
variance must be recorded in the database, so that managers can analyse the reasons for stock
variance. Figure 6.3.3 shows the tables used in the warehouse management tool.

stock_move

7 [+tm_id : :
et 1oc i old L _|location L:.:m‘ stock_level ‘ ‘31te_lype

stn_loc_id_new]
shin_aomt

st timestamnp
shim_son_id

|stm_ste ad e L! ﬂ‘ site ‘

_|stm el id 8
| - &J stock F

stock_variance ﬁ

| s _id
atv_sth_id _,7| 3¥3_1user |
EACE = ﬁ ﬁ

atv_expected _amt -~ I

T atv_actual amt 1',;! o E

| |stv_description | order_line "I':E" order_header " “='}“'| customer ‘

Bl 111

Figure 6.3.3 — Data tables used by the warehouse management tool.

42/42 Confidential

WACHG N OF CaAC

Mobile Inventory Management System

Two additional tables are added to the database, they are the “stock_move” table and the
“stock _variance” table. Each of these tables is described below.

Table stock_move

Descriptions | The purpose of this table is to record any stock movement generated by the
“Pickup Form” and the “Putaway Form”. Each entry records the source location,
destination, the amount of stock being moved, the person who is responsible for
the transaction and a timestamp of the transaction.

° stm_id — the primary key of the stock_move table. ldentifies a particular entry in the
stock_move table.

° stm_loc_id_old — a foreign key to the location table. Indicates the original location of the
product before the movement.

° stm_loc_id_new — a foreign key to the location table. Indicates the new location of the
product after the movement.

° stm_amt — the amount of stock moved.

° stm_timestamp — a timestamp to the transaction.

° stm_syu_id — a foreign key to the system user table. Indicates who is responsible for the
transaction.

° stm_stk_id — a foreign key to the stock table. Indicates the stock being moved.

° stm_orl_id — a foreign key to the order line table. Indicates which order the transaction is
associated with.

Table stock_variance

Descriptions | The purpose of this table is to record the variance when stocktaking is done. This
table is used by the “Stocktake Form”. Each entry in the table record the product
being verify, the expected stock amount recorded in the system, and the actual
stock amount counted by the user. In case a variance exists between the two
values, a description of the difference is also recorded. This table also tracks the
transaction time and who is responsible for the transaction.

stv_id — the primary key of the stock_variance table. Identifies a particular entry in the
stock_variance table.

stv_stk_id — a foreign to the stock table. Indicates the product involved in stocktaking.
stv_loc_id — a foreign key to the location table. Indicates the location of the product.
stv_expected_amt — the amount recorded the system.

stv_actual_amt — the actual amount counted by the user.

stv_description — a reason for the variance.

stv_timestamp — a timestamp to the transaction.

stv_syu_id — a foreign key to the system user table. Indicates who is responsible for the
transaction.

43/43 Confidential

orbiz

WACHG N OF CaAC

Mobile Inventory Management System

6.4 Implementation

This section describes how the Warehouse Management Tool was implemented. It describes the
reasons for using the selected approach, the components used in the implementation, and some
of the classes written to perform the operations.

6.4.1 Approaches

From the experience gathered during the development of the Inventory Management Tool, it
shows that the traditional programming approach is only suitable when the business logic of the
application is simple. For the Warehouse Management Tool, the logics involved are a lot more
complex than the Inventory Management Tool. It involves retrieving and updating the database,
and it involves a lot of error checking on the user inputs. Furthermore, testing the application
manually doesn't seem to be efficient. Therefore, alternative approaches are chosen to
implement the Warehouse Management Application.

By doing researches, the “Test Driven Development” methodology and the “MVC paradigm”
seem to be a good choice to implement the Warehouse Management Application. Each of these
approaches will be explained in the following sections.

6.4.2 Test Driven Development (TDD)

Test-driven development (TDD) attempts to produce high quality, well-tested code by writing the
test cases before writing the actual code. With traditional testing, a problem in the code is
identified if a successful test case fails, the developer fixes the code to fulfil the test case and run
the test cases again. With TDD, the developer starts by writing a test unit to verify a specific
function in the application, if the test unit passes, then the developer continues to write another
test case. But if the test unit fails, then the developer needs to write the code to fulfil the function.
This process is summarized by the figure below.

Start 2 Afd g test l——[nass] Run the tests ! Finish
T [
[pass| [fail]
¥
Run ihe iests [fil] —— ‘Wirita the funclional

cade

° The developer starts by writing test cases to test the current prototype.

° If the test cases passed, then the developer continues to write more test cases to test the
functionalities of the application.

° If a test case fails, then the developer add in the code to fix the problem, and continues
to fix the code until all the test cases pass.

Note that TDD does not replace traditional testing. Instead, it defines a proven way to ensure
effective unit testing. Furthermore, the test cases used in TDD are working examples for invoking
the code, which proofs the code functions in a way the developer expected it to.

44/44 Confidential

WACHG N OF CaAC

Mobile Inventory Management System

6.4.3 MVC paradigm

“‘MVC” stands for Model-View-Controller, there are the three types of object used in the MVC
paradigm. The idea of MVC model is to separate the graphical interface from the business logic
of the application. The View object manages the graphical interface of the application. The
Controller object wholes all the business logic of the application. And the Model object manages
the behaviour and data of the application.

In the Warehouse Management Application, each of the forms designed in Section 6.3.2 are
separated into the three classes mentioned above. For example, the “Pickup Form” is
implemented using three different classes, with the “PickupForm” class representing the View
object. The “PickupFormController” class representing the Controller object. And the
“PickupFormModel” class representing the Model object. When the user interacts with the View
object, the event handlers in the View object simply calls a method in the Controller class, and the
method inside the Controller class will do the required functions. The Controller class will make
any necessary updates to the data stored in the Model class and notified any subscribers for the
changes. The View class subscribes to the events inside the Controller class through the use of
delegates. Therefore, the View class will be updated wherever the Controller signals a changes.

The use of MVC paradigm facilitates Test-Driven Development, because it allows developers to
test the business logic of an application without worrying the graphical interface.

6.4.4 Components

The components used to implement the warehouse management tool are exactly the same as
the ones described in Section 5.4.2. The purpose for each of these components is very similar to
the inventory management tool, and therefore will not be repeated here.

To see the descriptions on how these components are used in the warehouse management tool,
please refer to the design specification on Section 6.3.2.

45/45 Confidential

WACHG N OF CaAC

Mobile Inventory Management System

6.4.5 Code Samples

6.4.51 Code Sample | - MVC Demo

Descriptions | (1) As described in Section 6.4.3. MVC coding technique is used to implement
the warehouse management application. Three classes are shown below,
they are the “LocationFormModel” class, the “LocationForm” and the
“LocationFormController” class, and these classes represent the “Model-
View-Controller” paradigm respectively.

(2) The “LocationFormModel” class acts as a storage place for all the variables
used in location screen.

(3) The “LocationForm” class presents the graphical interface of the location
screen. It contains handlers to captures system events, and it subscribes to
the events in the “LocationFormController” class.

(4) The “LocationFormController” class holds the business logic of the location
form. Basically, all actions and computations are handled by this class.

(5) The code samples shown are the trimmed version of the actual classes,
most code related to business logic and error checking has been truncated.
These code samples aim to illustrate how to work with MVC coding.

(6) Again, pseudo codes are highlighted in brown.

internal class LocationFormModel

{
private int _selectedLocationlndex=-1, _selectedSitelndex=-1; //NOTE (1)
private ArrayList _locationList=new ArrayList(), _siteList=new ArrayList();
protected internal LocationFormModel() {}
protected internal int SelectedIndex { get{...} set{...} } //INOTE (2)
protected internal int SelectedSitelndex { get{...} set{...} }
protected internal ArrayList LocationList { get{...} set{...} }
protected internal ArrayList SiteList { get{...} set{...} }

}

class LocationForm : System.Windows.Forms.Form
{

private LocationFormController _controller; //NOTE (3)

private void InitController(string stockId)

{
_controller=new LocationFormController(); /INOTE (4)
_controller.OnSiteDatalLoaded += new VoidEventHandler(this.DoSiteDatalLoaded); //NOTE (5)
_controller.OnLocationDatalLoaded += new VoidEventHandler(this.DoLocationDataloaded);
_controller.OnFormConfirmed += new StringIntEventHandler(this.DoFormConfirmed);
_controller.InitController(stockld);

}

private void cbLocationName SelectedIndexChanged(object sender,System.EventArgs e)//NOTE (6)

{
_controller.PerformSetSelectedIndex(the_selected_index);

}

private void btnConfirm_Click(object sender, System.EventArgs e) {...}

private void btnBack Click(object sender, System.EventArgs e) //NOTE (7)

{
//DO: Closes the form and return to the pervious form

}

protected internal void DoSiteDataloaded() { /INOTE (8)
//DO: fill the combo box using the list of sites.

}

protected internal void DoLocationDataloaded() {}

protected internal void DoFormConfirmed() {}

46/46 Confidential

orbiz

WACHG N OF CaAC

Mobile Inventory Management System

class LocationFormController

{

}

private LocationFormModel _model=new LocationFormModel(); /INOTE (9)

public event VoidEventHandler OnSiteDataloaded; //NOTE (10)
public event VoidEventHandler OnLocationDataloaded;
public event StringlntEventHandler OnFormConfirmed;

protected internal void PerformLoadLocationData(string siteld,
string stockLevelld) //NOTE (11)
{
_model.LocationList=LoadLocationData(siteld, stockLevelld);
NotifyLocationDatalLoaded(); //NOTE (12)
}
protected internal void PerformLoadSiteData(string stocklId) {...}
protected internal void PerformSetSelectedLocationIndex(int selectedIndex) {...}
protected internal void PerformSetSelectedSitelndex(int selectedIndex) {...}
protected internal void PerformConfirmForm() {...}

protected internal void NotifyLocationDatalLoaded() //NOTE (13)
{
1f (OnLocationDataloaded != null)
OnLocationDatalLoaded();
}
protected internal void NotifySiteDataloaded() {...}
protected internal void NotifyFormConfirmed() {...}

Notes (1

) The Model class contains variables that are used across the 3 MVC classes.
) The Model class provides getter and setter properties to local variables.

(3) The View class contains a pointer to the Controller class.

) When the View class is initiated, the Controller class is created. The View
class then subscribe to various event handlers provided in by Controller.

(5) For example, when the Controller raises an “OnSiteDatalLoaded” event, then
the “DoSiteDataLoaded” method in the View class will be called.

(6) When a system event occurs, for example, when the “SelectedindexChanged”
event is fired, the View class doesn’t do any actual processing or computation,
it simply calls the corresponding method provided by the Controller class.

(7) For those events which don’t implicate the business logic, the View class will
handle it without calling the Controller class.

(8) A method that subscribes to an event in the Controller class will perform its
actions when the event is fired.

(9) When the Controller class is initiated, it creates a Model object for data
storage.

(10)The Controller class has various events in which the View class can subscribe
to.

(11)The actual business logic and computation is handled in the Controller class.
In the example, the location list in the Model will be filled by data retrieved
from the SQL CE database.

(12)When the Controller finishes the required operations, it calls the notify method
to signal the changes.

(13)If there is a subscriber to an event fired in the Controller class, the

corresponding method in the View class will be called to update the graphical

interface.

47/47 Confidential

orbiz

WACHG N OF CaAC

Mobile Inventory Management System

6.4.5.2 Code Sample Il - Transaction

Descriptions | (1) The code below shows the “PerformUpdateDatabase” method used in the
“PutawayFormController” class. As described in Section 6.3.2.3, an entry is
kept on any stock moving between locations within the system. The purpose
of this method is to update the database when the user decides to “Save”
these entries into the SQL CE database.

(2) This method illustrates an important issue when updating a database, which
is the concept of “transaction”. The “transaction” concept means that an
update to the database will be commit only if the database remains
“consistence” during and after the update. If an error occurs during several
related updates, then the database must be able to rollback to a
consistence state.

(3) In order to maintain data consistency, a “SqlTransactionObject” is written. A
“SqlTransactionObject” contains methods to perform query and updates to
the database. This object allows a group of SQL commands to be executed
before committing the transaction. If any one of the SQL commands in the
group gives rise to an error, then the “SqglTransactionObject” will raise an
exception, which is caught by the application, and rolls back the pervious
updates.

(4) Alot of code in the sample is converted into readable pseudo code
(highlighted in brown), this is because the original code is very complex to
understand without looking at other code in the same file.

(5) Similar methods are written inside the “PickupFormController” class and the
“StocktakeFormController” class, which are used to update the database as
well.

protected internal void PerformUpdateDatabase()

{
ArrayList list=_model.Confirmedltems; //NOTE (1)
ArrayList problemltems=new ArrayList();

for(int 1=0; i<list.Count; i++)
{
PutawayObject o=(PutawayObject)list[i]; /INOTE (2)
1f(o.IsUpdated)
{
LocationObject source=(LocationObject)o.SourcelLocation;
LocationObject target=(LocationObject)o.TargetLocation;

SqlTransactionObject sql=new SqlTransactionObject(); /INOTE (3)
bool noError=true;

try

{
Cursor.Current = Cursors.WaitCursor; //NOTE (4)
Cursor.Show();

//CASE 1: IF (the stock move between 2 locations in the same physical site)//NOTE (5)
{
//1F (the source location has more stock than required)
//UPDATE: deducts the stock amount on the source location

//ELSE IF (all the stock in the source location are moved)
//UPDATE: deducts the stock amount on the source location
//UPDATE: removes the link between the location entry and the stock level entry

//DO: updates the amt at target location
}

48/48 Confidential

orbiz

Mobile Inventory Management System

//CASE 2: IF (the stock moves to a different site)
{
//1F (the source location has more stock than required)
//UPDATE: deducts the stock amount on the source location

//ELSE IF (all the stock in the source location are moved)
//UPDATE: deducts the stock amount on the source location

//DO: decreases the amount attribute in the stock level entry because stock is
moving to another site

//1F (the stock amount on the stock_level entry is 0)
//UPDATE: deletes the entry from stock level table

//1F (the target location already got an associated stock level
entry on the product)
//UPDATE: updates the amount at target location
//UPDATE: updates the stock amount in stock_level table

//ELSE IF: (the target is not related to any stock_level entry)
//INSERT: creates a new stock_level entry for the target site.

}

//DO: add an entry in the stock_move table to record the transaction
}
catch(Exception exception) //NOTE (6)
{
problemltems.Add(o);
sql.Rollback();
o.IsUpdated=true;
noError=false;
}
finally
{
Cursor.Current = Cursors.Default;
Cursor.Show();

}

if(noError) //NOTE (7)
{
sql.Commit();
o.IsUpdated=false;
o.IsConfirmed=true;
}
}

}
~model .Problemltems=problemItems; //NOTE (&)

NotifyDatabaseUpdated();
}

Notes (1) Two array lists are used, the “list” array contains all the confirmed items
stored in the “PutawayFormModel” class. The “problemltems” array is used
to store any incorrect updates

(2) Each item in the confirmed list is checked, if the item is newly updated, then
it will be saved in the database.

(3) A “SqlTransactionObject” is created to maintain a transaction.

(4) Since the SQL updates always induces a waiting period to the user,
therefore, the cursor is changed to a “wait cursor” when the database is

49/48 Confidential

orbiz

WACHG N OF CaAC

Mobile Inventory Management System

being updated.
(5) The actual update to the database depends on the amount of stock being
relocated, and it also depends on the source and destination of the stock.
(6) If an exception arises, the updates related to the current stock-move entry
are being rollback. The error entry will be kept in the “problemltems” array.
(7) The transaction will be stored in the database only if all the necessary SQL
commands are correctly issued and passed.
(8) The list of error items will be stored in the model class. The “PutawayForm”
will be notified once the database is updated.

6.5 Testing

The use of Test-Driven Development makes it easier to test the application. Instead of testing the
whole application after the application is done, testing is done as the application is developed.

In additional to the application testing described in Section 5.5. Testing for the Warehouse
Management Tool is also done via a NUnit module. NUnit is a tool used to test a .NET class.

Figure 6.5 shows the NUnit module used to test each function in the Controller class of the
“Pickup Form”. With the help of MVC paradigm, testing can be done on the business logics
without worrying the graphical interface. Using NUnit, the test module displays an error message
whenever a test case fails. The example shows that the “Amount” field in the Model class is not
correctly set, and the database connection can not be establish when the application tries to
update the database.

o le
Emulator Help

Orbiz Unit Test M =

Start Test

Module I Test I Result

PickupFormTests Test_PerformSetPickupList (04

PickupFormTests Test_PerformLoadyehicleData 2k

PickupFormTests Test_PerformResetlitem 2

PickupFormTests Test_PerformbDisplayltem (04

PickupFormTests Test_Perfor mLoadMesxtItem [y

PickupFormTests Test_PerformSetFroductld Ok,

PickupFormTests Test_PerformSetSourcelocationld (84

PickupFormTests Test_PerformSetStockOnLocation 2k

PickupFormTests Test_PerformSetamaunt Fail: Arnount not match

PickupFormTests Test_Perfor mSetyehiclelhde: 2

PickupFormTests Test_PerformConfirmyehicle Ok,

PickupFormTests Test_PerformConfirmFarm (04

PickupFormTests Test_PerformClearinputField (04

PickupFaormTests Test_PerformlUpdateDatabasze Fail: Errar opening SqlCeCaonnection

| || »
#7start [[orbiz Unit Test L 3 11:55 pM

Figure 6.5 — Unit testing

50/49 Confidential

orbiz

Mobile Inventory Management System

6.5.1 Test Case Example

Descriptions | (1) When the “PerformLoadVehicleData” method inside the
“PickupFormController” class is called, it loads all the vehicle data from the
database, and it stores the result into the “PickupFormModel” class.

(2) The “Test_PerformLoadVehicleData” method shown below is a test case in
the NUnit model. It is used to verify the “PerformLoadVehicleData” method.

(3) Testing is done by comparing the expected result with the actual result, the
test case will raise an exception if the results are different.

public void Test_PerformLoadVehicleData()
{
//PRODUCE THE EXPECTED RESULT
DataSet ds=new DataSet("DS"); //NOTE (1)
ds.ReadXml (@"\VehicleData.xml");
DataView dv=ds.Tables[0].DefaultView;
Hashtable expected=new Hashtable();
for(int i=0; i<dv.Count; i++)
{
string id=dv[1]["1d"].ToString();
string name=dv[i]["name"].ToString();
expected.Add(id, name); /INOTE (2)
}

//PRODUCE THE ACTUAL RESULT

PickupFormController _controller=new PickupFormController(); //NOTE (3)
_controller.PerformLoadVehicleData();

ArrayList actual=_controller.Model.Vehicles; /INOTE (4)

//COMPARE THE ACTUAL RESULT WITH THE EXPECTED RESULT
TestCondition.Assert(expected.Count == actual.Count, "Fail: num of items not match.");
for(int 1=0; i<actual.Count; 1++)
{
VehicleObject vo=(VehicleObject)actual[i]; //NOTE (5)
1f(expected[vo.Id]==null)
TestCondition.Assert(false, "Fail: vehicle 1d not found");
if(expected[vo.Id]!=vo.Name)
TestCondition.Assert(false, "Fail: invalid vehicle data");

Notes (1) The expected result is produced by reading a predefined dataset from an XML
file.

(2) The expected result is stored into a Hashtable for further comparison.

(3) The actual result is produced by actually calling the
“PerformLoadVehicleData” method of the Controller object.

(4) If no errors occur, the vehicle data is expected to be storage inside the Model
object.

(5) The actual dataset is compared to the expected result. If they don’t match
each other, an exception will be raise, and caught by the NUnit module.

51/51 Confidential

orbiz

WACHG N OF CaAC

Mobile Inventory Management System

6.6 Deployment

The deployment phase is exactly the same as described in Section 5.6. Since both the Inventory
Management Tool and the Warehouse Management Tool are combined into one project.
Therefore, the cab files generated by Visual Studio .NET actually include the whole Mobile
Inventory Management System application. [See Appendix | for screenshots.]

6.7 Section Summary

° The development of the warehouse management tool is divided into five phases. They are
the requirement analysis phase, design phase, implementation phase, testing and
deployment.

° The primary function of the warehouse management tool is to provide a convenient way to
record stock movements. A record is kept in the database when a product changes its
location within the system. The second objective of the warehouse management tool is to
facilitate stocktaking.

° The warehouse management tool is a mini version of a real-life warehouse management
tool, it only models the “Pickup” process, the “Put-away” process and the “Stocktaking”
process.

° The “Pickup” process involves picking up stock to fulfil a customer order. The “Put-away”
process involves moving stock from one location to another. The “Stocktaking” process
involves validating the stock amount at a particular location. Each process is associated with
a user form, which provides the graphical interface to capture user actions.

e The design phase involves the design of user interfaces, the design of application flow and
database design.

° Two additional tables are added to the SQL Server database, they are needed to capture
stock movements and the stocktaking process.

° The “Test Driven Development” methodology and the “MVC paradigm” are used to
implement the warehouse management application.

° The aim of TDD is to produce a well tested application. It achieves this by writing test cases
before writing the actual functional code. Instead of testing the whole application at the end
of the development, testing is done on each function of the application as the application is
developed. Using TDD, a set of test cases can be run over and over again, it speeds up the
testing process.

° The idea of MVC model is to separate the graphical interface from the business logic of the
application. The View object manages the graphical interface of the application. The
Controller object wholes all the business logic of the application. The Model object manages
the behaviour and data of the application.

° Each form used in the warehouse management application is implemented using the Model-
View-Controller approach.

° The main advantage of using MVC model is its reusability. Since all the business logics are
implemented inside the Controller class and all the data are stored in the Model class, that
means changing the graphical interface of the application only involves coding the View
class again. Both the Controller class and the Model class can be reuse without making
major changes to the code.

° The main disadvantage of using TDD and MVC model is the complexity of the code. It
requires a lot of effect to separate the business logic completely from the graphical interface.
It requires a lot of time writing test cases to test every aspect of the business logic.

52/52 Confidential

orbiz

WACHG N OF CaAC

Mobile Inventory Management System

Custom controls are written to provide specific functions to the user. The “Task List Control”
and the “Column Header Control” are used again to implement the warehouse management
tool.

The method used to retrieve data from the SQL CE database is similar to the way used in
the inventory management tool.

Updating the database involves building up SQL statements from user inputs, and then
executes the “ExecuteNonQuery” command from a SqlCeCommand object. When a group
of related SQL statements are executed, a transaction is needed to make sure the database
has been updated correctly. If an exception happens during a transaction, all the related
updates must be roll back as well, this ensures the database is consistent after the update.

Testing is a very important phase in the development lifecycle. Testing for the warehouse
management tool is done using NUnit. With the help of the MVC model, each part of the
application can be tested using predefined code. The idea is to write test cases that
simulate a user action, and then compares the actual result with the expected result.
However, manual testing on the graphical interface is still needed to ensure the usability of
the application.

The deployment of the warehouse management tool is simple, it involves building the
installation cab file using Visual Studio .NET, and run it on the Pocket PC. The underlying
Windows CE operating system on the Pocket PC must have support for NET Compact
Framework.

53/53 Confidential

orbiz

WACHG N OF CaAC

Mobile Inventory Management System

7. Discussions / Challenges

° The use of Microsoft SQL Server 2000 and the Microsoft SQL CE database is a very good
choice for this project. SQL Server 2000 is a very powerful database system that handles a
lot of problems related to synchronization and confliction of updates. For example, when
two independent users updated the stock amount of a product, each user thinks that the
data stored on the local device shows the most recent view of the database. After each user
synchronizes the local SQL CE database with the main Server, the main server will check
for confliction between the updates. If conflicts occur, SQL Server will try to resolve the
conflicts using user predefined rules, such as priority-based conflict resolution or custom
defined confliction resolution. SQL Server will keep an entry in a conflict table to denote the
conflict.

° In order to test the mobile inventory management application, a dummy database is created
using SQL scripts. As mentioned in Section 4.1.1, Pocket PCs are limited in storage space,
although it is usual to have external memory card plugged onto the device to increase the
storage, but this increase is considerably small compared to a hard disk used in desktop
computers. For the dummy database, it took about 300Mb of disk space in the main server,
it is usually not feasible and uneconomical to store a 300Mb data file on the Pocket PC. But
surprisingly, when the SQL CE database synchronizes with the main server, the data file
produced on the Pocket PC is only about 2Mb. This significant decrease probably means
that SQL Server used a lot of disk space to support replication, or it might mean that SQL
Server wasted a lot of space to whole indices and other unnecessary functions. Further
investigation shows that a lot of functions are not propagated to the SQL CE database. For
examples, stored procedures, views, use-defined functions and triggers are not propagated
to a SQL CE subscriber when replication occurs. Moreover, when configuring publication in
SQL Server, the user can choose which tables are replicated to the subscribers.

° With the current setup, the mobile inventory management application retrieves data from the
local SQL CE data file, which is synchronized with a SQL Server database resides in the
main server. An alternative method for data retrieval is to use the combination of Web
Service and XML files. The mobile inventory management application can alternatively
retrieve data from a Web Service, and store the data as XML files on the local device. Since
a Web Service is a common standard, therefore the application doesn’t need to worry about
the type of database used in the backend. This approach might be a better choice for those
companies that don’t want to use Microsoft SQL Server at their backend. While SQL CE
database doesn’t support compression natively, the use of XML files allows developers to
add on other functionalities such as compression and encryption. However, the cost of using
this approach is that the developer needs to handle all those complex confliction problems.
In this project, the warehouse management tool is not suitable to use the Web Service
technique mentioned above, this is because the updated database on the Pocket PC needs
to be synchronized with the main server. But for the inventory management tool, since data
only goes from the main server onto the Pocket PC, and the application never updates the
data, therefore the Web Service technique might be feasible.

° The programming approach used in the inventory management tool is different to the
approach used in the warehouse management tool. The simple, traditional programming
approach is used when business logics of the application are simple. There is no separation
between business logics and the graphical interface, which means all the functions are hard
coded into the form class. An application developed using the traditional programming
approach usually requires less time to develop. The test driven approach is facilitated by the
MVC paradigm, it requires longer development time and carefully planned test units.
However, it is quite good when the quality of the application is important, because testing is
done whenever a new function is added to the application. Moreover, the separation
between Models, Views and Controllers classes makes it very easy to change the program,
and it is especially good if multiple versions are needed for the same application. With the
help of MVC model, migration of the application to another platform is relatively easy. It
mainly involves changing the View class to suit the new platform, and most business logic in
behind stays the same.

54/54 Confidential

orbiz

WACHG N OF CaAC

Mobile Inventory Management System

When the inventory management tool was first developed, the Pocket PC emulator provided
by Visual Studio .NET is used to test the application. The application actually ran very slowly
under the emulator, further testing confirmed that the application took a lot of time retrieving
data from the SQL CE database. In order to increase the running performance of the
application, the idea of caching frequently used data has been considered. On a Pocket PC,
there is no such thing call the virtual memory, it's because all programs and data files share
the same physical RAM. When a running application requires more memory to operate, the
memory allocation unit simply assign more physical RAM to the application. The maximum
amount of memory an application can use is limited by the total memory minus the amount
of memory allocated to file storage. Initially, the Pocket PC emulator has a total memory of
16Mb, in which approximately 8Mb are engaged by the default Windows CE programs in the
emulator. When the inventory management application is deployed and run in emulator,
the .NET runtime environment and the data file took about 7Mb of memory, then means the
emulator only has about 1Mb of free memory. When caching is done on frequently used
data, the inventory management tool seems to run a bit smoother. However, as more and
more data are cached into the memory, the Pocket PC starts to complain on the lack of
memory. By allocating more memory to the Pocket PC emulator, the lack of memory
problem seems to be solved. However, when the application is tested on a real Pocket PC,
caching data into memory seems to have no real benefit on the performance. Furthermore,
it is very hard to predict how much data the user stored in the database, and there is no way
to predict how much memory is available on the Pocket PC running the application.
Therefore, the idea of caching data into memory becomes unfavourable.

In the current project implementation, each site is divided into many locations. Each location
has a unique ID and it declares the exact position of a product. This is not an effective way
to identify the location of a product, because when the user needs to move a group of
product from one location to another location, it is very time consuming to scan the location
ID for each individual product. A solution to this is to add a location type that acts as a
“container” to a group of locations, hence that the user can quickly redefine the location of a
group of products without scanning the location ID for each product.

55/55 Confidential

WACHG N OF CaAC

Mobile Inventory Management System

8. Conclusions

The Mobile Inventory Management System project has been completed. Both the inventory
management tool and the warehouse management tool function in the way specified in the initial
plan.

This project reveals a number of differences between developing Pocket PC applications and
normal desktop applications. These differences are mainly due to the limited screen size and the
limited amount of memory available on a Pocket PC. These limitations largely impact the design
of user interface, and they affect the way the application was implemented. It also illustrates that
techniques such as caching data might not be feasible for Pocket PCs, because the amount of
memory available is usually small, so it should not be done without careful planning.

The development lifecycle of this project is divided into five different phases, each phase has its
importance to the development of the application. If a mistake is made in one phase, all the
following phases will be affected as well. For example, if the database design is not done
correctly, then the problem will propagate to the implementation phase, and it will be time
consumption and troublesome to fix a design error once a prototype is developed.

A number of approaches are used during the project, such as the traditional programming
approach, the test driven development approach and the MVC paradigm. Each of these
approaches has its advantages and disadvantages. No one approach can override another
approach completely, the choice as to which approach to use depends on the nature of the
application. For example, if the application is simple, and the application doesn’t require any
future development, then the traditional coding style might be the best approach to use.

From the project, it illustrates that there are many alterative ways to implement an application. For
example, the current implementation uses SQL Server and SQL CE database for data retrieval,
whereas a Web Service and XML files combination is a feasible solution too. Concerning coding,
different methods can be used to achieve the same result. For example, both the DataReader
object and the DataSet object can be used to retrieve data from the database. The DataSet
object keeps the full dataset in the memory, whereas a DataReader object only keeps a pointer to
one data row at a time. Again, the decision to decide which alterative to use heavily depends on
the project requirement and the behaviour of the application.

56/56 Confidential

orbiz

Mobile Inventory Management System

9. Appendix | - Screenshots

——

;;j synchronisation o 11:35 @l
Synchronising

Syhchronising database

Ready

L.fgj" Inventory Manager (£ 11:15

wWelcome, Tony Lee

Inventory

Warehouse

Synchronise

1) The “Inventory” button, the “Warehouse” button and the | 2) After synchronization is run, a SQL CE data file is
“Synchronize” button will initialize the Inventory created on the Pocket PC.

Management Tool, the Warehouse Management Tool and
the “Synchronization Form” respectively.

L.EE.‘?" Inventory

g

Inventory

Product

Baleed Beans
Crder: 44

Spaghetti
Order: 12

Sauce Tomato
Order: 110

| Product | Wehicle |

Product | ‘ehicle |

| Action Clear

| Action Clear

57157 Confidential

orbiz

WECE NI OF CRACHL

Mobile Inventory Management System

3) When the Inventory Management Tool starts, the
product list is cleared. The user can display a product by
changing the filters.

4) After the filters are set, the product list will be
updated.

Brand Product Size

Dalk Baked Beans 429gq N
At 138 Order: 44 B
Dak Spaghetti 429gq
At 372 Order: 12
Oa auce Tomato 504

Site Info

Product | ‘ehicle |

Action Clear

5) To display site info, the user can select the “Site Info”
option in the context menu, or selects the “Site Info” under
the Action menu.

£ |site Info
Erand: Cak Size: GH0g
Praduct: Sauce Tarmata

\Warehouse I Amount

Marne: Auckland Mini storage 21
Location: Hazstings
Marne: Easy Store]
Location: Helson
| Mame: PPP warehouse 52
| Location: Otago
| Mamne: Cuick Mini storage 14
| Lecation: Palmerston Morth
| Marne: Store-That 15
| Lecation: Timar
| Mame: ¥ warehouse 49
| Location: Queenstown

wfarehouse | Cwder | “ehicle |

6) The “Site List Screen” displays all the sites that
contain the selected product. The first tab page
displays the stock amount in each warehouse.

£33 |site Info
Brand: Qak Size: GE0g
Product: Sauce Tamata

Drate due I Amaunt
10717 f2003 5:32:43 &AM 13

10717 2003 5:33:04 AM 50

| 10/17 /2003 5:33:02 AM 47

it arehouse | Crder | Wehicle |

7) The second tab page displays stocks that are on order
from suppliers.

3 |site Info
Erand: Cak Size: SE0g
Praduct: Sauce Taomato

wehicle: | Armount

Mamea: Big Fat Truck El]
Location: Timar

uirareholize | Crder | Wehicle |

8) The third tab page of the site form displays stocks
that are on vehicle.

58/57

Confidential

Mobile Inventory Management System

orbiz

WECE NI OF CRACHL

£1¥|site Info
Brand: Cak Size: S20g
Product: Sauce Tomato

Warehouse I Arnount

Marne: Auckland Mini storage
Location: Hastings

Marme: PPP warshouss

| Location: Otago
Marne: Guick Mini storage
Location: Palmerston MHorth
Mame: Store-That

| Location: Timar

| Mame: % warehouse
Location: Queenstown

9) The user can see the exact location of the selected
stock by opening the “Location List Screen”.

l.:'a_‘?" |Location List
Erand: Cak
Product: Sauce Tomato

Tarne. Drezc

Size: 5809

Side store_13 big slot

Room_1 No description 30
Cabinet _13 big slot
Cabinet _39 big slot

&

23

10) The “Location List Screen” lists the exact location
where the selected product resides.

Product | ‘Wehicle |

Action Clear

11) On the “Inventory List Screen”. The user can select
the vehicle tab, which display all stocks reside on the
current vehicle.

i‘rj’ nyentory Manager

Welcome, Tony Lee

Inventory

Warehouse

Synchronise

orbi2

12) Closing the Inventory Management Tool will return

to the opening screen.

59/59

Confidential

Mobile Inventory Management System

orbiz

WECE NI OF CRACHL

l.:'J_E.;j Order List

Id: Q59773 Date: 10/17,/2003
Comp: AE Food Group Price: $366.00
Cust: Kitchen Cuisine ...
Id: TR42885

Comp: Oresse Group
Cust: Country Kitchen

Id: QCIZ2673 Date: 10/17,/2003
Comp: AE Food Group Price: $927.00
Cust: Fabulous Foods

Id: ¥30972 Date: 10/ 17/2003
Comp: AE Food Group Price: $493.00
Cust: Life Foods

Date: 10/ 17,2003
Price: $433.00

13) When the warehouse management tool starts, the
“Order List Screen” is displayed. It lists all the customer
orders stored in the database.

Id: Q59773

Date: 10,17/2003 |a

Comp: AE Food Group Price: $366.00
Cust: Kitchen Cuisine ...

Id: Q92673

Date: 10 00
Yiew
Date: 10

Comp: AE Food Group Price: $927.00

Cust: Fabulous Foods

1d: ¥30972

Date: 10/ 17/2003

Comp: AE Food Group Price: $493.00

Cust: Life Foods

14) The user can check out all products related to a

customer order by selecting the “Pickup” option in the

context menu.

L.;'a_f.;g" Pickup

Mame

Brand

Size

Crdered Amt
Barcode
Location

Amount

| Confirm

15) The “Pickup Screen” shows all the items related to a
customer order. It displays info about the requested stock.

l.fa_‘;"j" Location

Select the source location

Region

Site Name

Location

Description

At Available

T -

Hastings

Melkson

Taupo
Palmerston Morth
ey Plymouth
wielington

16) When the [<<] button is clicked, the “Location
Form” is shown. All the sites that contain the
requesting product will be listed in the filters.

60/60

Confidential

orbiz

WECE NI OF CRACHL

Mobile Inventory Management System

L.;'E’ f|Location

Select the source location

Queenstown -

Region

Site Name

Location

Description

At Available

17) The user can choose the correct site by changing the

filters.

.-f'?_"_:-j'i" Location

Select the source location

Region astings

Site Mame uckland Mini sto »

Location Cakinet _31 -

Diescription Srmall storage

Amt Available |2

| Confirm

18) After the user selected the correct location, the
application displays the amount of stock available on
the selected location.

Brand

Size

COrdered At
Barcode
Location

Anvount

2R300ef-db4e-4a
Salce Tomato

7ad

I [o | [[
g S
= o
m
o
B

—

28300ef-db46-43
7349b28-1e3

i
DE

| Confirm

19) When the user confirmed the location, the location ID
is set in the location text field.

Mot enough stock at
selected location

Barcode 428300ef-db4ae-4af
Location 97349h26- 163

Amount

| Confirm

| Action View

20) When the user clicks the confirm button, the
application checks is there enough stock available on
the source location to fulfill the order.

61/61

Confidential

orbiz

Mobile Inventory Management System

.}_rwj' Pickup

Mame
Brand

Size

COrdered Amt

Barcode
Location

Anvount

428300ef-db46-4a
Sauce Tomato

Wiattig's

428300ef-db46-43
Ofda27S0-0fff-

|

MI
A
A

| Confirm

Action Yiew

21) Another location is needed if the source location

doesn’t contain enough stock.

=] Armount picked must equal
the ordered amount

Barcode 428300ef-db46-4af
Location ofda27s0-0fff-

| Confirm | |

Action Yiew

22) When the confirm button is clicked, the application
checks whether the input amount equals to the
ordered amount.

Ttem: 1
Brand: Walti...
Amt: 9

Item: 2
Brand: Watti...

ﬂem: 3
Brand: Eta

Item: 4
Brand: Heinz

| Ttem: 5

Brand: Eta

Id: 428300e...
Prod: Sauce ...
Src: Containe...

Id:1111111..,

Size: 575g
Reset
Display

Prod: Soup fo...
Id: 88f2cBa...
Prod: Peanut...
Id: Bec3828...
Prod: Ketchu...

Id: 5555555...
Prod: Peanut...

Size: 1kg
Size: 300ml

Size: 3753g

Action Back

23) After the item is correctly confirmed, the source
location info will be shown in the “Details” page. The
“Details” screen is accessible by clicking the “View” menu.

Id: 428300e...
Prod: Sauce ...
Src: Containe...

Item: 1

Brand: Watli... fize: 375g

3 Confirmation

Yfou must select a vehicle
before save,

Action Back

24) Because stocks are expected to be moved on to a
delivery vehicle, therefore the application requires the

user to selects a target vehicle when the user wants to
save the updates.

62/62 Confidential

orbiz

WECE NI OF CRACHL

Mobile Inventory Management System

.'!".{-"rj"" Pickup

Yehicle Settings

Yehicle Id 13554dbf-7633-< -
svakitle Soace

Yehicle Settings

Yehicle Id

Save Comnpleted,
Confirm

| Action Back

| Action Back

25) The “Vehicle screen” is displayed, so that users can 26) When the user clicks the “Save” option under the
select the target vehicle. Action menu, the database will be updated.

.f:g' Putaway

Ttem: 1 1d: 428300... Barcode
Brand: Wattie's Prod: Sauce ... Size: 575g
<EAYED >

Ttem: 2 Id: 111111...

Brand: Wattie's Prod: Soup F... Size: 300g
Item: 3 Id: cB8f2¢6...

Brand: Eta Prod: Peanu... Size: 1kg
Item: 4 Id: Bec3828...

Brand: Heinz Prod: Ketchu... Size: 300ml

arme
Brand
Size

Source

Arnt available

Item: 5 1d: 555555...
Brand: Eta Prod: Peanu... Size: 375g

Amount

Destination

Action Back {Action Yiew

27) The “Details” page will show which items are yet to be | 28) The “Put-away Screen” is displayed when the user
pickup, and which update has been saved. selects “Put-away” under the “Action” menu in the
“Order List Form”.

63/63 Confidential

Mobile Inventory Management System

orbiz

WECE NI OF CRACHL

Barcode
Marme

Brand

Size

Source

Amt available
Amount

Destination

11111111-1111-1

oup for Cne

15eeesb-dib

Confirm

= EIEIEIEIEE
B S
| B sk
= il
[y} L
e
fis]
=
o

H H

i) i) =

Action Yiew

29) When the user scans the barcode of a product onto
the barcode text field, info about that product will be

displayed.

Barcode
Mame

Brand

Size

Source

At avallable
Amount

Destination

11111113-1111-11
Soup for One

L =iy

f15eeetb-dib

| Action Yiew

30) After the user enters the source location ID and
destination location ID, he can confirm the form by
clicking the “Confirm” button.

.j_‘rwj Putaway

Brand: Watti... Prod: Soup fo... Size: 300g

Id: 1111111... Amt: 16
Src: Box_11 Drest: Contain... <MEW

Action Back

31) An entry will be made in the “Details” page. The
“Details” page is accessible by clicking “View” menu in the

“Put-away” form.

Brand: Watti... Prod: Soup fo... Size: 300g
Id:1111111... Ami: 16
Src: Bon_11 Dest: Contain... <SAYED >

Action Back

32) By clicking the “Save” option under the “Action”
menu, the entry will be saved into the database.

64/64

Confidential

Mobile Inventory Management System

orbiz

WECE NI OF CRACHL

L.;'a_‘;;;“ Putaway
Barcode

Marme

The stock level at the
source location has been

rmiodified, you must save
the database before you
work on the same location

Drestination aodefaah-a00

| Action ¥iew

33) If the user selects the same location ID twice before
saving it, then an error message will be displayed. This
checking is to ensure data integrity of the database.

Brand: Watti...
Id: 1111111...

Src: Box_11

Brand: Watti...
Id: 3333333...
Src: Zone_83

Prod: Soup Fo...

Amt: 16

Dest: Contain...

Prod: Spaghe...

Amb: 25

Dest: Contain...

Fize: 3009

<SAYED =
Size: 3009

<NEW >

| Action Back

34) The “Details” page will show any stock movement
occurred. Any entries that are already saved in the
database will not be saved again.

i3 |stocktake
Barcode
Marne

Brand

Size

Location

Action Yiew

35) The “Stocktaking” screen is accessible by clicking
“Stock-take” option under the “Action” menu in the “Order
List Form”.

l.;'a_r.:';" Stocktake

Barcode
arme
Brand
Size

Location

Actual Amt

[=
Expected Amt |:|

Confirm

I

Action Yiew

36) When the user scans a barcode of a product, the
barcode will be validated, and product info will be
shown on the screen.

65/65

Confidential

orbiz

WECE NI OF CRACHL

Mobile Inventory Management System

:_:3:' stocktake

Barcode 222222222222
Mame Spaghetti & Saus
eron

Size

l.fgi" Stocktake

Barcode 22222222-2222-22

Marne Spaghettl & Saus

Confirmation

@ Input amaourt differs from

Location F222hdhf the recorded value, QK?

Expected Amt [o3

Actual Amt

|‘|'es ||Nl:||

|

| Action Yiew

| Action Yiew

37) After the user fills in the source location ID and the 38) If the expected amount differs from the actual

amount field, he can click the “Confirm” button to confirm amount, the application will ask the user whether the
the check. entry is valid.

l.:'a_".‘f" Stocktake .-{’.r?;}" Stocktake

Enter the reason for the difference Brand: Watti... Prod: Spaghe... Size: 415¢g

Id: 2222222... Amt: 23 Src: Box_88
Brand: Watti... Prod: Spaghe... Size: 415g
Id: 2222222... Amtb: 45 Src: Cabinet
Yar: -29 Desc: damaged goods

Praduct IC: DRRRRR-222R-22
MName Spaghett & Sals
Brand Wattie's

Size 15g
Wariance _og

Reason

loss due to fire
gonds stolen
darnaged goods
itwalid systerm recor
Unknown

| Action Back

39) If the user confirmed that the two values are different,
then the “Variance” page will be shown. The user needs to
enter a reason for the variance.

40) An entry with variance will be shown in red in the
“Details” page.

66/66 Confidential

orbiz

WECE NI OF CRACHL

Mobile Inventory Management System

ﬁ;—"‘ Stocktake

F
vy

Brand: Watti... Prod: Spaghe... Size: 4159
Id: 2222222, Amt: 23 Src: Box_88
Bragd: W i Prod: It

b Confirmation
Yar:

Do you want to update
the database?

“Fes || Nul

| Action Back

41) If the user wants to quit the application, the application
will ask whether the user wants to save the entries into the
database before exiting.

l.fa_r?';" Stocktake

Brand: Watti... Prod: Spaghe... Size: 415g

Id: 2222222... Amt: 23 Src: Box_88
SAVED >

Brand: Watti... Prod: Spaghe... Size: 415g

Id: 2222222... Amt: 45 Src: Cabinet
Yar: -29 Desc: damag... <SAYED >

Action Back

42) The “Details” page will indicate which items are
saved in the database already. The “Details” page is
accessible by clicking the “View” menu in the “Stock-
take” form.

67/67

Confidential

orbiz

WACHG N OF CaAC

Mobile Inventory Management System

10. Appendix Il - References

http://www.orbiz.biz

http://www.extremeprogramming.org/

http://www.codeproject.com/csharp/model view controller.asp?target=mvc

http://www.codeproject.com/dotnet/tdd in _dotnet.asp?target=test%7Cdriven

http://msdn.microsoft.com

http://www.microsoft.com

http://dse.resultspage.com/search.php?sessionid=3fa104ed0b0d65ee27 3fc0a87f990709&site=&
w=wireless

http://www.cdg.org/

http://www.cdmaonline.com/

http://www.bluetooth.com/

68/68 Confidential

orbiz

WACHG N OF CaAC

Mobile Inventory Management System

11. Appendix Ill- SQL Script

On top of the original database, the following SQL script is written to generate the dummy
database used in the mobile inventory management system project.

--clear old data

PRINT 'DELETING STOCK_MOVE TABLE ...

DELETE from stock_move

PRINT 'DELETING STOCK_VARIANCE TABLE ...

DELETE from stock variance

PRINT 'DELETING LOCATION TABLE ...

DELETE from location

PRINT 'DELETING STOCK_LEVEL TABLE ..."

DELETE from stock level

PRINT 'DELETING LOCATION TABLE ...

DELETE from location

PRINT 'DELETING SITE TABLE ...

DELETE from site

PRINT 'DELETING SITE_TYPE TABLE ...

DELETE from site_type

PRINT 'DELETING ORDER_LINE TABLE ...

DELETE from order _line

PRINT 'DELETING ORDER_HEADER TABLE ...

DELETE from order _header

--clear the stock on hand

UPDATE stock SET stk_stock_on_hand=0

--clear the stock on order

UPDATE stock SET stk stock _on_order=0

--config

DECLARE @NUM_SITE int

SELECT @NUM_SITE =30

DECLARE @NUM_SKL int

SELECT @NUM_SKL = 400

DECLARE @NUM_STOCK_AMOUNT MAX int

SELECT @NUM_STOCK_AMOUNT_MAX = 50

DECLARE @NUM_LOC int

SELECT @NUM_LOC =70

DECLARE @NUM_STOCK int

SELECT @NUM_STOCK = 35 --Num of stock in the stock table, FIXED

DECLARE @NUM_ORDER_HEADER int

SELECT @NUM_ORDER_HEADER=4

--declare var

DECLARE @SIT_NAME varchar(50)

DECLARE @SIT_LOCATION varchar(50)

DECLARE @STT_TYPE varchar(50)

DECLARE @STK_NAME varchar(50)

DECLARE @BRA_NAME varchar(50)

DECLARE @LOC_NAME varchar(50)

DECLARE @SKL_AMOUNT int

69/69 Confidential

WACHG N OF CaAC

Mobile Inventory Management System

DECLARE @SKL_DATE_DUE datetime

DECLARE @stt uniqueidentifier

DECLARE @sit uniqueidentifier

DECLARE @prl uniqueidentifier

DECLARE @stk uniqueidentifier

DECLARE @skl uniqueidentifier

DECLARE @loc uniqueidentifier

DECLARE @syu uniqueidentifier

--clear old data

PRINT 'DELETING ORDER_HEADER TABLE ...

DELETE from order _header

PRINT 'DELETING ORDER_LINE TABLE ...

DELETE from order _line

--declare arrays

DECLARE @SIT_NAMES varchar(200)

SELECT @SIT_NAMES =
"1,ABC,2,HH,3,SSE,4,Super,5,HHR,6,XPEE,7,Happy,8,2S1967,9,0P4398,10,RE1967,11,JDEE
W,12,DF8383,13,DJNWQQ,14,’

DECLARE @NUM_SIT_NAMES int

SELECT @NUM_SIT_NAMES = 13

DECLARE @SIT_LOCATIONS varchar(200)

SELECT @SIT_LOCATIONS =
'1,Auckland,2,Hastings,3,0tago,4,Wellington,5,Nelson,6,Taupo,7,Queenstown,8,Dunedin,9,Hamil
ton,10,Palmerston North,11,New Plymouth,12, Timaru,13,Invercargill,14,’

DECLARE @NUM_SIT_LOCATIONS int

SELECT @NUM_SIT LOCATIONS = 13

DECLARE @STT_TYPES varchar(200)

SELECT @STT_TYPES = '1,Warehouse,2,Vehicle,3,0rder 4,

DECLARE @NUM_STT_TYPES int

SELECT @NUM_STT_TYPES =3

DECLARE @STK_NAMES varchar(200)

SELECT @STK_NAMES = '1,Spaghetti,2,Beans Chilli,3,Soup Big Red,4,Beans
Mexican,5,Spaghetti & Saus,6,Jam Raspberry,7,Soup for One,8,Peanut Butter Crunchy,9,Peanut
Butter Smooth,10,Baked Beans,11,'

DECLARE @NUM_STK_NAMES int

SELECT @NUM_STK_NAMES =10

DECLARE @BRA_NAMES varchar(200)

SELECT @BRA NAMES = '1,Eta,2,Heinz,3,Wattie ,4,Good Taste Co.,5,Craig ,6,0ak,7,

DECLARE @NUM_BRA_NAMES int

SELECT @NUM_BRA_NAMES = 6

--declare other var

DECLARE @COUNTER int

DECLARE @LIMIT_COUNTER int

DECLARE @LIMIT_COUNTER_MAX int

SELECT @LIMIT_COUNTER_MAX =100

DECLARE @RAND_NUM int

DECLARE @RAND_GUID uniqueidentifier

70/70 Confidential

WACHG N OF CaAC

Mobile Inventory Management System

DECLARE @RAND_NUM2 int

DECLARE @COUNTER? int

DECLARE @COUNTERS int

--var for Order table

DECLARE @cus uniqueidentifier

DECLARE @order_number varchar(50)

DECLARE @orh_total_price int

DECLARE @orh uniqueidentifier

DECLARE @orl_amount int

DECLARE @orl_price int

--insert predefined sites

INSERT INTO site_type(stt type) VALUES ('Warehouse")

INSERT INTO site_type(stt type) VALUES ('Vehicle')

INSERT INTO site_type(stt_type) VALUES ('Order")

--insert predefined sys user

DELETE from sys_user WHERE syu_full_name='Tony Lee'

INSERT INTO sys_user (syu_full_name, syu_user_name, syu_password, syu_email_address,
syu_mobile_phone, syu_ddi_phone, syu_sql_user_name, syu_order_number, syu_order_prefix,
syu_admin, syu_deleted)

VALUES ('Tony Lee', 'Tony', 'password', 'tlee@xtra.co.nz', '0211231231', '091231231",
'tlee054',0,'ton','F",'F")

UPDATE sys_user

SET syu_id='00000000-0000-0000-0000-000000000000'

WHERE syu_full_name="Tony Lee'

PRINT ‘tHHHHHHHBHEHHHHHHEHBHHAH

PRINT 'CREATE SITE

PRINT ‘tHHHHHHHHHE AR

--create site table

SELECT @COUNTER =0

SELECT @COUNTER2 =0

SELECT @COUNTER3 =0

WHILE @COUNTER < @NUM_SITE

BEGIN

--loop until a valid site is obtained

SELECT @stt = null

SELECT @syu = null

SELECT @LIMIT_COUNTER =0

WHILE (@stt is null) AND (@LIMIT_COUNTER < @LIMIT_COUNTER_MAX)

BEGIN

--EXEC sp_random_varchar @SIT_NAMES,@NUM_SIT_NAMES,@SIT_NAME OUT

EXEC sp_random_string 5, @SIT_NAME OUT

EXEC sp_random_varchar
@SIT_LOCATIONS,@NUM_SIT_LOCATIONS,@SIT_LOCATION OUT

--EXEC sp_random_varchar @STT_TYPES,@NUM_STT_TYPES,@STT_TYPE OUT

SELECT @RAND_NUM=RAND()*10

SELECT @STT=null

IF (@RAND_NUM<7)

BEGIN

SELECT @STT_TYPE='Warehouse'

71171 Confidential

WACHG N OF CaAC

Mobile Inventory Management System

END

ELSE

BEGIN

SELECT @RAND_NUM=RAND()*10

IF (@RAND_NUM<6)

BEGIN
SELECT @STT_TYPE='Vehicle'
END
ELSE
BEGIN
SELECT @STT_TYPE='Order'
END
END
SELECT @stt = stt_id FROM site type WHERE stt type = @STT_TYPE
END
if (@STT_TYPE = 'Vehicle')
BEGIN
SELECT @syu=syu_id FROM sys_user WHERE syu_full_name = 'Tony Lee'
END

if (@STT_TYPE = 'Warehouse')

BEGIN

SELECT @SIT_NAME="W#'+@SIT_NAME

END

if @STT_TYPE = 'Vehicle')

BEGIN

SELECT @SIT_NAME='V#+@SIT_NAME

END

if (@STT_TYPE = 'Order)

BEGIN

SELECT @SIT_NAME='O#+@SIT_NAME

END

--insert site info

INSERT INTO site(sit_name, sit_location, sit_stt id, sit_syu_id, sit_index)

VALUES (@SIT_NAME,@SIT_LOCATION, @stt, @syu, @COUNTER)

--ADD associate LOCATIONS

if (@STT_TYPE = 'Warehouse') OR (@STT_TYPE = 'Vehicle')

BEGIN

SELECT @sit=sit_id FROM site WHERE sit_index=@COUNTER

SELECT @COUNTER2 = @NUM_LOC

WHILE @COUNTER2 >0

BEGIN

EXEC sp_random_string 5, @LOC_NAME OUT

if (@STT_TYPE = 'Warehouse')

BEGIN

SELECT @LOC_NAME="'W#L#'+@LOC_NAME

END

if @STT_TYPE = 'Vehicle')

BEGIN

SELECT @LOC_NAME='V#L#+@LOC_NAME

END

--insert site info

INSERT INTO location(loc_name, loc_description, loc_sit_id, loc_index, loc_amt)

VALUES (@LOC_NAME, Location # ' + RTRIM(LTRIM(STR(@COUNTERS3))), @sit,

72/72 Confidential

WACHG N OF CaAC

Mobile Inventory Management System

@COUNTER?, 0)

SELECT @COUNTER2 = (@COUNTER2 - 1)

SELECT @COUNTERS = (@COUNTERS + 1)

END

END

SELECT @COUNTER = (@COUNTER + 1)

END

PRINT
B R R B R R R R B R B
#l

PRINT 'CREATE STOCK_LEVEL'

PRINT
B R R R
#l

--Change stk_barcode

--UPDATE stock SET stk_barcode=stk_index

--create stock_level table

SELECT @COUNTER =0

WHILE @COUNTER < @NUM_SKL

BEGIN

--get random amount

SELECT @SKL_AMOUNT = (RAND()* @NUM_STOCK_AMOUNT_MAX+1)

--loop until a random stock is obtained (or excess limit)

SELECT @RAND_NUM = (RAND()* @NUM_STOCK)

SELECT @stk = stk_id FROM stock WHERE stk_index = @RAND_NUM

--loop until a valid site is obtained (or excess limit)

SELECT @RAND_NUM = (RAND()* @NUM_SITE)

SELECT @sit = sit_id FROM site WHERE sit_index = @RAND_NUM

--if site type is "order", then generate due date

SELECT @SKL_DATE_DUE = getdate()

SELECT @stt = sit_stt_id FROM site WHERE sit_id = @sit

SELECT @STT_TYPE = stt_type FROM site_type WHERE stt_id = @stt

if (@STT_TYPE = 'Order)

BEGIN

--random date

—-SELECT @SKL_DATE_DUE = ((STR(RAND()* 11+ 1) + /'+ STR(RAND() * 27 +
1)+''+ STR(RAND()* 1 +2003)))

SELECT @SKL_DATE_DUE = getdate()

END

select @skI=null

select @skl= skl_id from site, stock_level, stock where stk_id=skl_stk_id and
sit_id=skl_sit_id and sit_id=@sit and stk_id=@stk

if(@skl is null)

BEGIN

73172 Confidential

WACHG N OF CaAC

Mobile Inventory Management System

SELECT @skl=newid()

--insert stock_level info

INSERT INTO stock_level(skl_id, skl_amt, skl_date_due, skl_stk_id, skl_sit_id,
skl_index)

VALUES (@skl, @SKL_AMOUNT, @SKL_DATE_DUE, @stk, @sit, @ COUNTER)

END

PRINT @STT_TYPE

--if the site type is not on order

if (@STT_TYPE != 'Order)

BEGIN

PRINT 'NOT ORDER'

SELECT @COUNTER2 = (RAND()*3)+1

WHILE (@COUNTER2>0)

BEGIN

SELECT @loc = null

WHILE (@loc is null)

BEGIN

PRINT 'LOC is NULL'

SELECT @RAND_NUM = (RAND()* @NUM_LOC)

SELECT @loc = loc_id FROM location

WHERE loc_sit_id = @sit
AND loc_index=@RAND_NUM
AND loc_amt=0

END

UPDATE location
SET loc_skl_id= @skl,
loc_amt= (RAND()* 30)+1
WHERE loc_id=@loc

PRINT 'guid='
PRINT @RAND_GUID

SELECT @COUNTER2 = (@COUNTER2 - 1)
END
END
SELECT @COUNTER = (@COUNTER + 1)
END

PRINT ‘tHHHHHHHHH AR AR
PRINT 'CREATE ORDER HEADER TABLE'
PRINT ‘tHHHH AR
--create order_header table
SELECT @COUNTER = @NUM_ORDER_HEADER
WHILE @COUNTER >0

BEGIN

--get sys user

SELECT @syu=syu_id FROM sys_user WHERE syu_full_name = 'Tony Lee'
--get random customer id

74/74 Confidential

WACHG N OF CaAC

Mobile Inventory Management System

SELECT @RAND_NUM = (RAND()* 72)

SELECT @cus=cus_id FROM customer WHERE cus_index = @RAND_ NUM

--get random order number

SELECT @RAND_NUM = (RAND()* 3) + 1

EXEC sp_random_string @RAND_NUM, @order_number OUT

SELECT @RAND_NUM = (RAND()* 100000)+10

SELECT @order_number = @order_number + LTRIM(RTRIM(STR(@RAND_NUM)))

--SELECT @order_number = @order_number

--get random price

SELECT @RAND_NUM = (RAND()* 1000) + 20

SELECT @orh_total_price = @RAND_NUM

--insert order _header data

INSERT INTO order_header(orh_syu_id, orh_cus_id, orh_order_number, orh_total_price,
orh_payment, orh_date)

VALUES (@syu, @cus, @order number, @orh_total price, 'CASH ', getdate())

SELECT @COUNTER = (@COUNTER - 1)

SELECT @orh=orh_id FROM order header

WHERE orh_syu_id=@syu

AND orh_cus_id=@cus

AND orh_order_number=@order_number

AND orh_total_price=@orh_total_price

SELECT @RAND_NUM2 = (RAND()* 5)+1

SELECT @COUNTER2 =0

WHILE @COUNTERZ2 < @RAND_NUM2

BEGIN

SELECT @RAND_NUM = (RAND()* 35)

SELECT @stk=stk_id FROM stock WHERE stk_index = @RAND_NUM

SELECT @RAND_NUM = (RAND()* 9)+1

SELECT @orl_amount=@RAND_NUM

SELECT @RAND_NUM = (RAND()* 50)+1

SELECT @orl_price=@RAND_NUM

INSERT INTO order_line(orl_orh_id, orl_stk id, orl_amount, orl_price, orl_confirmed)

VALUES (@orh, @stk, @orl_amount, @orl_price, -1)

SELECT @COUNTER2 = (@COUNTER2 + 1)

END

END

SET QUOTED_IDENTIFIER OFF

GO

SET ANSI_NULLS ON

GO

7575 Confidential

