
Java(TM) API for XML Messaging

(JAXM) v1.1

Please send technical comments to: jaxm-final@sun.com

Maintenance Release – June 2002

Nicholas Kassem <Nick.Kassem@sun.com>
Anil Vijendran <Anil.Vijendran@sun.com>
Rajiv.Mordani <Rajiv.Mordani@sun.com>

FINAL
i

M

ii
JavaTM API for XML Messaging (JAXM) Specification ("Specification")
Version: 1.1
Status: FCS
Release: June 11, 2002

Copyright 2002 Sun Microsystems, Inc.

4150 Network Circle, Santa Clara, California 95054, U.S.A
All rights reserved.

NOTICE; LIMITED LICENSE GRANTS

Sun hereby grants you a fully-paid, non-exclusive, non-transferable, worldwide, limited license (without the right
to sublicense), under the Specification Lead's applicable intellectual property rights to view, download, use and
reproduce the Specification only for the purpose of internal evaluation, which shall be understood to include
developing applications intended to run on an implementation of the Specification provided that such applications
do not themselves implement any portion(s) of the Specification.

Sun also grants you a perpetual, non-exclusive, worldwide, fully paid-up, royalty free, limited license (without the
right to sublicense) under any applicable copyrights or patent rights it may have in the Specification to create and/
or distribute an Independent Implementation of the Specification that:(i) fully implements the Spec(s) including all
its required interfaces and functionality; (ii) does not modify, subset, superset or otherwise extend the Licensor
Name Space, or include any public or protected packages, classes, Java interfaces, fields or methods within the
Licensor Name Space other than those required/authorized by the Specification or Specifications being
implemented; and (iii) passes the TCK (including satisfying the requirements of the applicable TCK Users Guide)
for such Specification. The foregoing license is expressly conditioned on your not acting outside its scope. No license
is granted hereunder for any other purpose.

You need not include limitations (i)-(iii) from the previous paragraph or any other particular "pass through"
requirements in any license You grant concerning the use of your Independent Implementation or products derived
from it. However, except with respect to implementations of the Specification (and products derived from them) by
the your licensee that satisfy limitations (i)-(iii) from the previous paragraph, You may neither:(a) grant or otherwise
pass through to your licensees any licenses under Sun's applicable intellectual property rights; nor (b) authorize
your licensees to make any claims concerning their implementation's compliance with the Spec in question.

For the purposes of this Agreement:"Independent Implementation" shall mean an implementation of the Specification
that neither derives from any of Sun's source code or binary code materials nor, except with an appropriate and
separate license from Sun, includes any of Sun's source code or binary code materials; and "Licensor Name Space"
shall mean the public class or interface declarations whose names begin with "java", "javax", "com.sun" or their
equivalents in any subsequent naming convention adopted by Sun through the Java Community Process, or any
recognized successors or replacements thereof.

This Agreement will terminate immediately without notice from Sun if you fail to comply with any material
provision of or act outside the scope of the licenses granted above.

TRADEMARKS

No right, title, or interest in or to any trademarks, service marks, or trade names of Sun or Sun's licensors is granted
hereunder. Sun, Sun Microsystems, the Sun logo, Java, and the Java Coffee Cup logo are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

DISCLAIMER OF WARRANTIES

THE SPECIFICATION IS PROVIDED "AS IS". SUN MAKES NO REPRESENTATIONS OR WARRANTIES, EITHER
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, THAT THE CONTENTS OF THE SPECIFICATION
ARE SUITABLE FOR ANY PURPOSE OR THAT ANY PRACTICE OR IMPLEMENTATION OF SUCH CONTENTS
WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADE SECRETS OR OTHER RIGHTS.
This document does not represent any commitment to release or implement any portion of the Specification in any
product.
aintenance Release

iii
THE SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION THEREIN; THESE CHANGES WILL BE
INCORPORATED INTO NEW VERSIONS OF THE SPECIFICATION, IF ANY. SUN MAY MAKE
IMPROVEMENTS AND/OR CHANGES TO THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN
THE SPECIFICATION AT ANY TIME. Any use of such changes in the Specification will be governed by the then-
current license for the applicable version of the Specification.

LIMITATION OF LIABILITY

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE FOR
ANY DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUE, PROFITS OR DATA, OR FOR
SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF OR RELATED TO ANY FURNISHING,
PRACTICING, MODIFYING OR ANY USE OF THE SPECIFICATION, EVEN IF SUN AND/OR ITS LICENSORS
HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You will indemnify, hold harmless, and defend Sun and its licensors from any claims arising or resulting from:(i)
your use of the Specification; (ii) the use or distribution of your Java application, applet and/or clean room
implementation; and/or (iii) any claims that later versions or releases of any Specification furnished to you are
incompatible with the Specification provided to you under this license.

RESTRICTED RIGHTS LEGEND

U.S. Government:If this Specification is being acquired by or on behalf of the U.S. Government or by a U.S.
Government prime contractor or subcontractor (at any tier), then the Government's rights in the Software and
accompanying documentation shall be only as set forth in this license; this is in accordance with 48 C.F.R. 227.7201
through 227.7202-4 (for Department of Defense (DoD) acquisitions) and with 48 C.F.R. 2.101 and 12.212 (for non-
DoD acquisitions).

REPORT

You may wish to report any ambiguities, inconsistencies or inaccuracies you may find in connection with your use
of the Specification ("Feedback"). To the extent that you provide Sun with any Feedback, you hereby:(i) agree that
such Feedback is provided on a non-proprietary and non-confidential basis, and (ii) grant Sun a perpetual, non-
exclusive, worldwide, fully paid-up, irrevocable license, with the right to sublicense through multiple levels of
sublicensees, to incorporate, disclose, and use without limitation the Feedback for any purpose related to the
Specification and future versions, implementations, and test suites thereof.

(LFI#113415/Form ID#011801)

M

iv
aintenance Release

Contents

Contents ...v
Status ..vii

JAXM.S.1 Status of This Documentvii
JAXM.S.2 Acknowledgements ..vii
JAXM.S.3 Terminology ..vii

Preface ..ix
JAXM.P.1 Audience ..ix
JAXM.P.2 Abstract ..ix
JAXM.P.3 Change History ..x

Background ...1
JAXM.1.1 Conceptual Model ..1
JAXM.1.2 Scope ..2
JAXM.1.3 Interoperability ...6
JAXM.1.4 SOAP Packaging Model7

JAXM.1.4.1 SOAP Message with Attachments7
JAXM.1.4.2 SOAP Message without Attachments9

JAXM.1.5 JAXM, JMS & JavaMail9
Infrastructure ..13

JAXM.2.1 JAXM Client ..13
JAXM.2.1.1 JAXM Client Using a JAXM Provider13
JAXM.2.1.2 Standalone JAXM Client ...14
JAXM.2.1.3 The Relationship between JAXM Clients14
JAXM.2.1.4 Client and Service Implementations14

JAXM.2.2 Error Messages ...15
JAXM.2.3 Messaging Profiles ...16
JAXM.2.4 JAXM Deployment ..17
JAXM.2.5 OnewayListener ...17
JAXM.2.6 ReqRespListener ..17
JAXM.2.7 Message Security ...18

Package Overview ...19
v

M

vi
JAXM.3.1 javax.xml.messaging Package19
JAXM.3.1.1 Endpoint & URLEndpoint ...20
JAXM.3.1.2 ProviderConnection & Factory21
JAXM.3.1.3 ProviderMetaData & JAXMException22
JAXM.3.1.4 Oneway and Request-Response Listeners23

JAXM.3.2 A simple Message Producer example24
JAXM.3.3 A simple Message Consumer example28

Package javax.xml.messaging ..31
JAXM.4.1 Endpoint ...33
JAXM.4.2 JAXMException ..35
JAXM.4.3 JAXMServlet ...37
JAXM.4.4 OnewayListener ...41
JAXM.4.5 ProviderConnection ...42
JAXM.4.6 ProviderConnectionFactory45
JAXM.4.7 ProviderMetaData ..48
JAXM.4.8 ReqRespListener ..50
JAXM.4.9 URLEndpoint ...52

References ..55
aintenance Release

Status

JAXM.S.1 Status of This Document

This specification is being developed following the JavaTM Community Process
(JCP2.1). Comments from experts, participants, and the broader developer commu-
nity were reviewed and incorporated into this specification.

This document is the JAXM Specification, version 1.1 and is a manitenance
release of the JavaTMAPI for XML Messaging (JAXM) 1.0 specification. JAXM 1.0
was the final deliverable of JSR067 Expert Group (EG). The proposed changes
specified in the JSR067 changelog and accepted on 15 April 2002, have been
incorporated in this document.

JAXM.S.2 Acknowledgements

This maintenance release is the product of collaborative work within the Java
Community.

JAXM.S.3 Terminology

The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT,
SHOULD, SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL, when they
appear in this document, are to be interpreted as described in RFC 2119 as quoted
here:

MUST: This word, or the terms “REQUIRED” or “SHALL”, mean
that the definition is an absolute requirement of the specification.
vii

M

viii
MUST NOT: This phrase, or the phrase “SHALL NOT”, mean that
the definition is an absolute prohibition of the specification.

SHOULD: This word, or the adjective “RECOMMENDED”, mean
that there may exist valid reasons in particular circumstances to
ignore a particular item, but the full implications must be
understood and carefully weighed before choosing a different
course.

SHOULD NOT: This phrase, or the phrase “NOT
RECOMMENDED”, mean that there may exist valid reasons in
particular circumstances when the particular behavior is acceptable
or even useful, but the full implications should be understood and
the case carefully weighed before implementing any behavior
described with this label.

MAY: This word, or the adjective “OPTIONAL”, mean that an item
is truly optional. One vendor may choose to include the item
because a particular marketplace requires it or because the vendor
feels that it enhances the product while another vendor may omit
the same item. An implementation which does not include a
particular option MUST be prepared to interoperate with another
implementation which does include the option, though perhaps
with reduced functionality. In the same vein an implementation
which does include a particular option MUST be prepared to
interoperate with another implementation which does not include
the option (except, of course, for the feature the option provides.)
aintenance Release

Preface

JAXM.P.1 Audience

This document is intended for developers using the Java programming language,
e-commerce architects, and application developers focused on the development of
business-to-business messaging applications. Such developers typically build-on
and extend the SOAP 1.1 messaging specifcations.

Familiarity with the SOAP specifications (including the associated processing
model), MIME standards, and XML is assumed.

JAXM.P.2 Abstract

The JavaTM API for XML Messaging (JAXM v1.1) enables developers to write busi-
ness applications that support messaging standards based on the SOAP1.1 and
SOAP with Attachments specifications. Because the XML messaging standards are
being developed outside of the JavaTM Community Process and are evolving at dif-
ferent rates (driven by a diverse set of business and technical requirements), the
JAXM 1.1 specification does not mandate the use of any specific XML messaging
standard. The term standard is being used here to denote a specific usage of SOAP
messaging. Within the context of this document, the term Profile is used to refer to a
specific protocol based on SOAP1.1 (with Attachments).

JAXM compatible implementations must support SOAP1.1 [See “SOAP” on
page 55] and SOAP with Attachments [See “SOAP Messages with Attachments”
on page 55]. They may additionally support one or more SOAP message Profiles
[See “Messaging Profiles” on page 16]. This specification makes no assumption
about the number of such Profiles but assumes that they must be named in a con-
sistent and standard way.
ix

M

x

JAXM.P.3 Change History

This document is based on the JAXM 1.0 specification and includes the
“accepted changes”, as specified in the JSR067 changelog. The key changes are as
follows:

� javax.xml.soap package was moved from the JAXM specification to a new
document designates as the SOAP with Attachments API for JavaTM (SAAJ)
version 1.1.

� the JAXM 1.1 specification require that SOAPCOnnectionFactory objects as
specified in the SAAJ 1.1 specification produce SOAPConnection objects that
support URLEndpoint objects.
aintenance Release

C H A P T E R JAXM.1

Background

JAXM.1.1 Conceptual Model

The following figure presents a conceptual relationship between JAXM and other
architectural elements required in web-based, business-to-business messaging.

Figure 1. B2B Messaging Conceptual Model

Organization ‘A’

Organization ‘B’

SOAP Provider

SOAP Message

SOAP
Messaging
Client

JAXM Provider

SOAP Message

HTTP HTTP

SMTP/
POP
IMAP

JAXM Service API
1

BACKGROUND

M

2

JAXM is intended to be a lightweight messaging API for the development of
XML-based business messaging applications. These applications appear prima-
rily, though not exclusively, at the edge of organizations. The term edge is being
used loosely to denote the set of applications that, collectively, deal with the pro-
duction and consumption of standard business messages. The requirement for
processing such messages is being fueled by the increasing need of organizations,
irrespective of their size, to exchange business documents electronically. An
application designed to consume specific business documents in an agreed-upon
manner, and in response, to produce appropriate business documents, is infor-
mally referred to as a business service. Such services, when deployed in a Web
Container are typically called Web Services. The formal specification of such ser-
vices is outside the scope of this document.

Figure 1. makes a logical distinction between an application that uses the
JAXM API for messaging (“JAXM client”) and a messaging provider that is
implemented to support the JAXM API (“JAXM provider”). The latter is responsi-
ble for the actual transmission and reception of SOAP messages.

JAXM.1.2 Scope

Message exchange scenarios based on JAXM are always document-centric, that is,
they involve the exchange of XML documents. These exchanges, which are gener-
ally between business partners, fall into five broad categories. One type of message
exchange is an update whose response is simply an acknowledgement that the
update was received. Another type of exchange is an inquiry whose response is
information of some sort, typically data requested in the original message. Both of
these exchange scenarios may be either synchronous or asynchronous. When the
exchange is synchronous, the sender of the update or inquiry waits until the response
is received. When the exchange is asynchronous in nature, the response is sent in a
separate operation at a later time. A fifth possible exchange scenario is the one
where the sender simply sends a message and does not expect a reply.

Note that when a messaging provider is being used, all messages go through
it. That is, when a JAXM client sends a message, the message first goes to the
JAXM provider, which then handles the actual transmission of the message to its
destination. When a JAXM client receives a message, the provider has actually
received the message on the client’s behalf and then forwarded the message to the
client. For simplicity, the term sender is used here to refer collectively to a JAXM
client/JAXM provider pairing in a message production role. Similarly, the term
aintenance Release

Scope 3
receiver refers to a JAXM client/JAXM provider coupling in a message consumer
role.

Note that it is also possible for a JAXM client to send messages without using
a JAXM provider. In this case, the client is limited to sending synchronous mes-
sages to a specified URL. The advantage of not using a provider is simplicity and
ease of use; the disadvantage is that the client does not get the flexibility or quality
of service that a messaging provider can offer.

All implementations of JAXM must support the five message exchange sce-
narios described at the beginning of this section. These interaction styles are illus-
trated in Figure 2. through Figure 6.

Figure 2. Asynchronous Inquiry

In the asynchronous inquiry scenario, the sender is assumed to send a message
without needing to wait for a response. The receiver is required to read and pro-
cess the request and generate an appropriate reply to the original request. Sending
the reply is a totally separate operation, and the time interval between a request
and a reply may be measured in days. JAXM implementations must therefore be
able to support long-lived transactions.

BACKGROUND

M

4

Figure 3. Asynchronous Update with Acknowledgement

Figure 3. depicts a scenario in which the reception of an acknowledgement
message denotes the successful completion of an earlier request. An acknow-
ledgement message must be correlated to the request message to which it refers.
Note that JAXM does not specify how this is done.

Figure 4. Synchronous Update

Figure 4. reflects a synchronous scenario, in which the sender either cannot or
must not proceed until a response to the request being sent is received. A typical
aintenance Release

Scope 5
response to an update is an acknowledgement message, which implies the suc-
cessful completion of the request that was sent.

Figure 5. Synchronous Inquiry

The scenario in Figure 5. is a simple variation on the previous case. The
sender waits for a reply message to the request that was sent. The distinction is
that in this case, the reply message does not relate to the request but is instead a
message whose only function is to unblock the calling application. This is in con-
trast to an acknowledgement message, which must identify the earlier message
whose receipt it is acknowledging.

Figure 6. Fire and Forget

The case shown in Figure 6. implies that the sender is not expecting a
response to the request message being sent.

BACKGROUND

M

6

JAXM may facilitate the automation of portions of an overall business pro-
cess, but its use does not necessarily apply to the entire business process. The
applicability of JAXM to the larger business system is a function of an overall
business process model that is specific to a particular group of trading partners or
vertical industries. This specification does not address the ways in which business
objects are expressed in XML.

JAXM.1.3 Interoperability

An important notion presented in the “B2B Messaging Conceptual Model” on
page 1 is that a JAXM client must be capable of interoperating with a peer business
application, whether or not the other application uses JAXM. One of the key ingre-
dients enabling standards-based interoperability is the widespread adoption of the
following:

• a transport-neutral packaging model

• agreements on message header structures, manifests, and so on.

Although JAXM is heavily biased towards using industry standards, the only
requirement placed on JAXM 1.1 providers is that they must support the SOAP1.1
and SOAP with Attachments specifications. In addition, JAXM providers may
optionally choose to support higher level industry messaging protocols built on
top of the SOAP standard. As stated earlier, a specific industry usage of SOAP is
referred to here as a Profile. A JAXM Profile, therefore, represents a given indus-
try or standards group’s particular use of SOAP.

JAXM 1.1 providers must implement their transport bindings in accordance
with the SOAP 1.1 specification and must therefore support SOAP 1.1 bindings
for the HTTP protocol but may, in addition, choose to implement other standard
networking protocols, such as FTP and SMTP(IMAP, POP). The points (within
network topologies) at which JAXM providers produce and consume SOAP1.1
messages bound to HTTP are referred to as “JAXM interoperability points”. The
existence of such “points” establishes a basis or minimum standard for interop-
erasbility between JAXM and non-JAXM implementations of SOAP. In all cases,
JAXM applications assume that SOAP messages are being transported by the
communications infrastructure. The assured level of interoperability is therefore
the SOAP Message and not specific transport bindings. In order for a JAXM Cli-
ent (or Service) to interoperate with a JAXM or non-JAXM Service (or Client),
aintenance Release

SOAP Packaging Model 7
the parties must first agree on SOAP Transport bindings as well as messaging Pro-
files.

JAXM.1.4 SOAP Packaging Model

There are two packaging models for SOAP messages, one that includes attachments
and one that does not. JAXM provides a standard way of both producing and con-
suming SOAP messages with or without attachments.

JAXM.1.4.1 SOAP Message with Attachments

Communication Protocol Envelope (HTTP,SMTP...)

SOAP1.1 + Attachments MIME Envelope

SOAP Part

SOAP-ENV:Envelope

SOAP-ENV:Header

SOAP-ENV:Body

Attachment Part
SOAP Attachment
(XML or non-XML)

BACKGROUND

M

8

Figure 7. SOAP1.1 with Attachments

Figure 7. depicts the conceptual model of a JAXM message that includes one
or more attachments. This message is aligned with the SOAP1.1 and SOAP with
Attachments specifications, which all JAXM implementations must support.

A JAXM client may choose whether to create and/or consume SOAP attach-
ments based on application-specific requirements. For instance, an acknowledge-
ment message need not have an attachment part, but a message with content that is
not in XML format must have an attachment part to contain the non-XML data.
This is true because the attachment part of a message can contain any kind of con-
tent, from image files to plain text, whereas the SOAP part can contain only data
in XML format.

Whether a JAXM client sends a message that contains an attachment part is
up to the application developer; however, a JAXM client that receives a message is
required to recognize the presence of any attachment part(s) and also to process
them. How this processing is done is up to the application developer.

A message that contains one or more attachments must have a MIME enve-
lope, which contains the SOAP part of a message and also the attachment part. A
JAXM client does not have to do anything about this, however. When a client cre-
ates an AttachmentPart object, the MIME envelope is automatically created.

JAXM uses the JavaBeansTM Activation Framework (JAF) to support a flexible
way of handling SOAP attachments based on the MIME types. Refer to “Java-
Beanstm Activation Framework Version 1.0a” [see page 55] .
aintenance Release

JAXM, JMS & JavaMail 9
JAXM.1.4.2 SOAP Message without Attachments

Figure 8. SOAP1.1 Packaging Model without Attachments

Figure 8. shows the packaging model for a message with no attachments. In
addition to not having an attachment part, it also has no MIME envelope. Without
attachments, the MIME Multipart/Related outer wrapper is redundant, and a
JAXM implementation must not produce one.

JAXM.1.5 JAXM, JMS & JavaMail

The JavaTM 2 Platform provides APIs for three distinct messaging infrastruc-
tures:

� Web Services (SOAP1.1 based messaging)
� Message Oriented Middleware (MOM)
� Mail

Communication Protocol Envelope (HTTP,SMTP...)

SOAP1.1 Message Package

SOAP-ENV:Envelope

SOAP-ENV:Header

SOAP-ENV:Body

BACKGROUND

M

10
Although these infrastructures share similarities at the conceptual level, in
reality they are sufficiently different that developers have required and gravitated
towards APIs optimized for each infrastructure.

The underlying similarities between messaging infrastructures have, over
time, resulted in hybrid use cases. For example, there are cases where mail mes-
sages are transported over MOM infrastructures as opposed to conventional
e-mail backbones. These variations and cross-infrastructure use cases are typically
not visible to individual developers and rarely influence their architectural
choices. For example, a developer using the JavaTM Message Service (JMS) typi-
cally requires a MOM infrastructure at both ends of a particular application. The
end-to-end applications developed are typically conceived of as MOM applica-
tions and not as (say) Mail applications. The fact that a given MOM infrastructure
may be transporting the messages over an e-mail backbone has no bearing on the
application model developers choose to adopt.

Similarly, JAXM is an abstraction on an emerging Web-centric messaging
infrastructure. In essence, JAXM is promoting a programming model for an infra-
structure that fits somewhere between e-mail and MOM. The key notion is that a
JAXM application may be written such that it is a SOAP-based Web service, is a
client of a SOAP service, or is both. An application based on the JAXM API is
therefore quite different from an application based on the JMS API, which in turn
is distinct from an application based on the JavaMailTM API. Each API is equally
valid and relevant with respect to, and in the context of, its associated infrastruc-
ture. Beyond some superficial similarities between these APIs, they differ prima-
rily in the communication concepts represented by the semantics of their message
headers. SOAP 1.1 is silent on the contents of the message header, but JAXM Pro-
files (for example, the Profile for ebXML Message Service) introduce the concept
of 'separate' SOAP infrastructures.

Application developers are likely to choose JAXM in cases where they wish to
communicate over SOAP infrastructures. The fact that SOAP has specified more
than one transport binding (and indeed has not precluded bindings for MOM
infrastructures) does not undermine the notion that the conceptual model for
JAXM developers is one in which the application endpoints are in fact SOAP end-
points. Having said this, a given JAXM provider may choose to transport SOAP
messages over a MOM infrastructure. This is an implementation detail that is
completely invisible to the application, and it does not in any way transform a
JAXM application into a MOM application.
aintenance Release

JAXM, JMS & JavaMail 11
In summary, JAXM is not intended to be a ‘grand unification’ API, and its
role and relationship to a SOAP infrastructure is equivalent to the relationship that
JMS has with MOM infrastructures. JAXM, JMS, and JavaMail are APIs focused
on meeting the needs of their respective constituencies by utilizing the distinct
characteristics of SOAP, MOM and Mail infrastructures, respectively.

BACKGROUND

M

12
aintenance Release

C H A P T E R JAXM.2

Infrastructure

As used here, the term infrastructure refers to the implementation-specific function-
ality required to support a JAXM implementation.

JAXM.2.1 JAXM Client

A JAXM client, which is essentially synonymous with an application, falls into two
broad categories, one that uses a JAXM messaging provider and one that does not.

JAXM.2.1.1 JAXM Client Using a JAXM Provider

It is expected that in the majority of web messaging scenarios, a JAXM client will
use a JAXM provider. In such a scenario, a JAXM client is deployed in a container,
which means that it can send messages both synchronously and asynchronously.
The container may be either a JavaTM 2 Platform Enterprise Edition (J2EETM) Web
Container or a J2EE Enterprise JavaBeansTM (EJBTM) Container. The client maintains
a connection with its JAXM provider, and all messages that the client sends or
receives go through that messaging provider.

A JAXM messaging provider works behind the scenes, offering functionality
such as message routing and reliable messaging. Different providers may vary
widely in what they offer, and their specific capabilities fall outside the scope of
this document. The services of a JAXM provider are part of the communications
infrastructure, as opposed to being specific to an application. As a consequence,
they are completely transparent to the JAXM client, which is unaware of the pro-
vider except when it establishes a connection with its provider. A JAXM client can
get information about its JAXM provider via the javax.xml.messaging.Provi�
derMetaData interface.
13

INFRASTRUCTURE

M

14
JAXM.2.1.2 Standalone JAXM Client

A JAXM client may be a standalone JavaTM 2 Platform Standard Edition (J2SETM)
application, in which case it does not use a JAXM provider. A standalone client
implements only the client view of the JAXM API and is considered to be a special
case because, for whatever reason, it does not need to use the services of a JAXM
messaging provider. A standalone client is assumed to be a client of a point-to-point
synchronous web service offering only a request-response style of interaction. Such
a client establishes a connection directly with the service (using a URL), sends its
request, and is blocked until it gets the response.

JAXM.2.1.3 The Relationship between JAXM Clients

The relationship between JAXM clients (applications) is fundamentally peer-to-
peer, which means that from a programming model perspective, a JAXM client may
choose to play a client (application) role or a server (service) role. In addition,
depending on a specific context or messaging choreography, a JAXM client is free
to switch roles.

By way of example, suppose that three businesses, A, B, and C, are all JAXM
clients. Business A sends a purchase order to B, and B sends a batch of purchase
orders to C, which is a purchase order consolidation service. In this scenario, A is
acting as a client when it sends its purchase order to B. B is acting in a server role
with respect to A because it will fulfill the orders. B takes on a client role with
respect to C when it sends its purchase orders to C to be consolidated. In other
scenarios, A could be implementing a service requested by other businesses, thus
putting it in the server role. And C could be functioning in a client role when it
requests a service of another business. In general, then, a JAXM application
assumes a client role when it requests a service, and assumes a server role when it
performs a service.

JAXM.2.1.4 Client and Service Implementations

Another consideration for the developer of JAXM applications, in addition to
whether they are acting in a client or server role, is whether messages are sent as
one-way messages (asynchronously) or as request-response messages (synchro-
nously).

The simplest case is that of the standalone JAXM application because of the
limitations placed on it. Because asynchronous messaging requires a JAXM pro-
vider, a standalone JAXM application is limited to sending messages synchro-
nously. Further, it is limited to acting in a client role. That is, a JAXM application
aintenance Release

Error Messages 15
that has no JAXM provider and is not operating from within a container can act
only as a client and can send its requests using only the request-response style of
messaging.

An application that uses a JAXM provider and is deployed in a J2EE con-
tainer, on the other hand, has much more flexibility with regard to the style of
messaging it can use and the roles it can assume. It can use either or both kinds of
messaging, and it can assume both client and server roles.

There are some requirements placed on a JAXM application operating in a
service role, however. One requirement is that it must be capable of consuming all
messages that conform to the SOAP 1.1 and SOAP with Attachments specifica-
tions. Thus, the service must be able to consume all standard SOAP messages,
including those sent by non-JAXM clients. Another requirement is that a service
must be implemented to handle one-way or request-response styles of messaging
but not both. The implementation of point-to-point request-response messaging,
which does not require a provider, ensures that a JAXM application in a service
role is capable of receiving requests from a standalone JAXM application.

When a JAXM application is deployed in a J2EE Web Container, the
SOAP1.1 protocol must be bound to HTTP. However, the way in which a JAXM
application communicates with a JAXM provider is considered to be a private
implementation detail. A JAXM application is not required to be co-located with
its provider, nor is it required to be in a different virtual machine.

JAXM.2.2 Error Messages

JAXM implementations must adopt a best effort strategy for ensuring the validity of
messages produced and sent to peer entities. JAXM providers, on receiving a mal-
formed message, are responsible for producing an appropriate error message and
sending it to the offending peer entity. The structure and addressing of inter-provider
error messages is Profile-specific. JAXM does not make a distinction between error
messages and any other Profile-specific message. Given that JAXM providers are
“Profile-aware”, they may choose to map an error condition onto a Profile-specific
error message. Such messages would be delivered to a client in the same manner as
any other message. It is the responsibility of a JAXM application to consume error
messages and take application-specific corrective action.

INFRASTRUCTURE

M

16
JAXM.2.3 Messaging Profiles

As stated previously, JAXM implementations must support the SOAP1.1 and SOAP
with Attachments specifications. However, these specifications provide only a very
basic packaging model and offer no specific addressing scheme or message struc-
ture for the routing of messages between peer entities. These may be supplied by a
Profile that operates on top of SOAP.

By way of example, a specific Profile may stipulate a specific usage of a
SOAP header. JAXM does not specify what specific XML content must be placed
in the SOAP header, body, or attachments. Most enterprise-grade usages of SOAP
messaging will typically specify critical information regarding the sender, recipi-
ent, message ID, and correlation information. (Correlation information identifies
the previously sent request for which the current message is a response.)

JAXM implementations may choose to support a number of industry standard
messaging Profiles. Profiles are identified by a name that uniquely identifies a par-
ticular industry/standards body’s usage of SOAP messaging. A JAXM client must
use the URI of the schema associated with a given Profile as the Profile name. For
example, the Profile for ebXML Message Service Specification (MS) could be
identified by the following URI:

http://www.ebxml.org/project_teams/transport/messageHeader.xsd

Developers are required to specify, either at run time or at deployment time,
critical system-level information necessary to correctly route, deliver and correlate
messages. The way in which this information is mapped on to a given message
depends on the Profile being used. JAXM makes no assumptions about where this
information, if present, is stored within a message. An explicit contract must
therefore exist between a JAXM client and its JAXM provider. A Profile string is
used to establish this contract at run time. In order for JAXM applications to be
able to exchange business messages with peer entities, they must have an agree-
ment to use the same Profile. The way in which such agreements can be estab-
lished is outside the scope of this document.

By way of example, an ebXML MS Profile clearly specifies how a SOAP
header should be populated with necessary addressing and message identification
information. A JAXM application, when using such a Profile, is responsible for
constructing a SOAP header as per the specifications associated with this Profile.
All providers supporting the same Profile (identified by a Profile name) will there-
fore have a common understanding of the message structure and message seman-
tics. Note that a JAXM application may specify a Profile name when it creates a
MessageFactory object. Message objects produced by such a MessageFactory
aintenance Release

JAXM Deployment 17
object will be specific to the named Profile. In addition, JAXM implementations
may choose to pre-populate a Message object with critical information, such as the
sender and recipient, in a Profile-specific manner.

If an application chooses not to specify a standard Profile, the JAXM provider
must default to using an application-specific (that is, private) Profile. In such
cases, developers cannot be assured of any level of interoperability based on pub-
lic standards. It is conceivable that a given provider may support multiple applica-
tion-specific Profiles.

JAXM.2.4 JAXM Deployment

JAXM applications may be deployed in Servlet 2.2 and/or J2EETM1.3 containers. It
is anticipated that future versions of the J2EE specification will include JAXM-spe-
cific deployment information.

Standalone JAXM applications, which implement only a request-response
style of messaging, are considered to be J2SE applications. No new deployment
requirements will be introduced for such applications.

JAXM.2.5 OnewayListener

JAXM promotes a standard way of delivering messages asynchronously to JAXM
clients, namely through a message listener interface. In the case of EJB containers,
the OnewayListener interface may be implemented using J2EE Message Driven
Beans (MDB). In the case of Servlet containers, JAXM applications may extend the
JAXMServlet interface and implement the onMessage method.

As mentioned previously, the provider-to-client contract is based on the
SOAP1.1 and SOAP with Attachments specifications. In other words, irrespective
of where a JAXM application is deployed, a SOAP message enveloping scheme
must be used. Furthermore, there is a clear assumption that when a JAXM client is
deployed in a Servlet container, the asynchronous activation model is built on
SOAP1.1 (with attachments) bound to HTTP.

JAXM.2.6 ReqRespListener

The ReqRespListener interface is intended to enable the development of request-
response style JAXM services. JAXM services implementing this interface typically
do not require a provider. Their SOAP messages must be bound to HTTP.

INFRASTRUCTURE

M

18
JAXM.2.7 Message Security

JAXM introduces no new security requirements. Messages are assumed to have both
a transitory as well as a persistent confidentiality requirement. Support for security
features and capabilities assuring confidentiality while messages are in transit are
implementation details of the JAXM provider. Although HTTP is the transport of
choice, support for protocols such as SSL may be appropriate and adequate. In the
case of SMTP infrastructures, JAXM providers may choose to use PGP and or S/
MIME.

JAXM provides no specific interfaces to digital signatures that span an entire
message. The assumption is that developers will have access to “user” level por-
tions of a message—where “user” level is defined as the application-specific parts
of a message. Note that the signing or encrypting of the SOAP header in a manner
that would prevent the message from being interpreted and therefore correctly
routed will raise a JAXM exception. A developer may require some application-
specific (and therefore potentially nonstandard) encryption algorithms and/or
security functions to be applied to predefined portions of a message. In such cir-
cumstances, developers must select an appropriate Profile known to the JAXM
provider.

Developers may choose to use digital signature technologies to sign applica-
tion-level XML fragments as they see fit. As mentioned earlier, the application of
specific signing technology must not interfere with the routing of messages by the
JAXM infrastructure.

The authentication of JAXM clients to JAXM providers is considered to be an
implementation detail and beyond the scope of this specification.
aintenance Release

C H A P T E R JAXM.3

Package Overview

This chapter presents an overview of the JAXM API, which consists of a single
package:

• javax.xml.messaging

Note that this specification depends on the javax.xml.soap package and
hence requires support for the SAAJ1.1 specifcation.

The following sections give an overview of the functionality in this package
and also present some code samples to illustrate how the packages are used. Note
that the examples are not exhaustive and should not be considered a normative
part of this specification. The intent is to provide an overview of the packages, the
details of which are provided in the API documentation included later in this doc-
ument and the SAAJ1.1 specification.

JAXM.3.1 javax.xml.messaging Package

The javax.xml.messaging package provides a higher level abstraction than the
javax.xml.soap package offers on its own. JAXM clients intending to support
asynchronous one-way messaging must do so by using an implementation of the
messaging package, which includes the appropriate connection, listener, and end-
point objects.
19

PACKAGE OVERVIEW

M

20
JAXM.3.1.1 Endpoint & URLEndpoint

In most messaging applications, mes-
sages are typically addressed such that
the recipient and originator of the mes-
sage are conveyed as part of the mes-
sage itself. The notion of self-addressed
messages is fundamental to true mes-
saging since messages can be routed in
a manner that is independent of the
underlying communication infrastruc-
ture and network topology. In this
sense, the notion of SOAP messaging is
somewhat of a misnomer. The
SOAP1.1 specifications allow for mes-
sages to contain the necessary address-

ing information but do not define a standard way for this information to be
represented within a message. JAXM therefore relies on Profiles, that is, industry
standard usages of SOAP, for interoperable addressing conventions. Given that
JAXM supports both one-way and request-response forms of messaging, the End�
point object has been modeled such that it must be specified explicitly on the
call method of the SOAPConnection class. By contrast, the send method of the
ProviderConnection class does not allow for the specification of an Endpoint
object because there is an assumption that one-way messaging is inherently asyn-
chronous, thus requiring self-addressed (that is, Profiled) messages.

The URLEndpoint object is a direct subclass of an Endpoint class and is
intended to support a special but common use-case. JAXM clients wishing to con-
tact a SOAP-based service in a point-to-point, request-response (that is, synchro-
nous) manner, may choose to do so without utilizing the services of a JAXM
provider. A URLEndpoint object contains a URL that is passed to the call method
to send a message to a SOAP service and block while waiting for a response from
the service.

Note that JAXM 1.1 requires that SAAJ1.1 implementations fully support the
call method of the SOAPConnection class and hence the newInstance method
of the SOAPConnectionFactory must not throw an UnsupportedOper-
ationException.
aintenance Release

javax.xml.messaging Package 21
JAXM.3.1.2 ProviderConnection & Factory

The ProviderConnection and associated ProviderConnectionFactory
objects must be used when a JAXM application requires one-way (asynchronous)
messaging semantics.

The ProviderConnectionFactory object is an administered object created by
the container (a Servlet or Enterprise JavaBeansTM container) on which the appli-
cation has been deployed. The information necessary to set up a ProviderConnec�
tionFactory is specified at deployment time. The connections created by the
factory will be to a particular messaging provider. Factory objects are registered
with a naming service such as one based on Java Naming and Directory Inter-
faceTM (JNDI) technology and are retrieved from that naming service in order to
create a ProviderConnection object.

JAXM clients that choose to use the services of a messaging provider must
create a ProviderConnection object that connects the application to the provider.
In order to do this, the application must look up the relevant ProviderConnection�
Factory object using a pre configured logical name. The returned factory object
can subsequently be used to create the connection to the specific messaging pro-
vider. In cases where JNDI support is not available, JAXM applications may cre-
ate a default ProviderConnectionFactory object by using the newInstance()
method. This latter model is intended for a relatively small set of use-cases and is
the less preferred approach as compared with the JNDI look-up pattern.

Once a JAXM client has
established a connec-
tion to its messaging
provider, it must then
create profile-specific
MessageFactory
objects. These objects
can then be used to cre-

PACKAGE OVERVIEW

M

22
ate SOAPMessage objects. Note that SOAP messages must be “populated” in a pro-
file-specific and application-specific manner. Once a SOAPMessage object has been
created and populated, it can be sent asynchronously by calling the
javax.xml.messaging.ProviderConnection.send method. The message can also
be sent synchronously by calling the method javax.xml.soap.SOAPConnec�
tion.call.

JAXM.3.1.3 ProviderMetaData & JAXMException

Provider-specific information can be
obtained using an instance of a Provider�
MetaData object created using the get�
MetaData method of the
ProviderConnection object.

A JAXMException object
is a subclass of SOAPEx�
ception and may contain
a String denoting the
reason for the exception,
an embedded Throwable
object, or both.
aintenance Release

javax.xml.messaging Package 23
JAXM.3.1.4 Oneway and Request-Response Listeners

A JAXM service must implement either the OnewayListener or the ReqRe�
spListener marker interface. The choice of which to implement is application-
specific. The OnewayListener interface is intended for services that are imple-
mented to use a one-way, that is, asynchronous, style of messaging. Similarly,
ReqRespListener is intended to be used by developers wishing to implement a
service that uses a request-response messaging style, that is, one that is synchro-
nous. Both interfaces contain an onMessage method that must be implemented to
define how messages that are received are to be handled. Irrespective of the type
of service being implemented, the onMessage method must be called by code that
is specific to the container hosting the service. Thus, although the service supplies
the implementation of the onMessage method, it is container code that invokes it.

The JAXMServlet class is a utility class, and there is no requirement that it be
implemented or extended. However, an implementation of a JAXM service that is
deployed in a Servlet container will need to implement similar functionality in
order to support the required behavior for the two types of listener interfaces.
Developers who choose simply to extend JAXMServlet must avoid overriding the
doPost method. If they choose to do so, they must faithfully implement the JAXM
client contract.

PACKAGE OVERVIEW

M

24
JAXM.3.2 A simple Message Producer example

/*

* $Id: SendingServlet.java,v 1.3 2001/09/17 21:01:27 akv Exp $

* $Revision: 1.3 $

* $Date: 2001/09/17 21:01:27 $

*

* Copyright 2000�2001 by Sun Microsystems, Inc.,

* 901 San Antonio Road, Palo Alto, California, 94303, U.S.A.

* All rights reserved.

*

* This software is the confidential and proprietary information

* of Sun Microsystems, Inc. ("Confidential Information"). You

* shall not disclose such Confidential Information and shall use

* it only in accordance with the terms of the license agreement

* you entered into with Sun.

*/

package simple.sender;

import java.net.*;

import java.io.*;

import java.util.*;

import javax.servlet.http.*;

import javax.servlet.*;

import javax.xml.messaging.*;

import javax.xml.soap.*;

import javax.activation.*;

import javax.naming.*;

/**

* Sample servlet that is used for sending the message.

*

* @author Rajiv Mordani (rajiv.mordani@sun.com)

* @author Anil Vijendran (anil@sun.com)

*/

public class SendingServlet extends HttpServlet {

String to = null;

String data = null;

ServletContext servletContext;

// Connection to send messages.

private SOAPConnection con;
aintenance Release

A simple Message Producer example 25
public void init(ServletConfig servletConfig) throws

ServletException {

super.init(servletConfig);

servletContext = servletConfig.getServletContext();

try {

SOAPConnectionFactory scf =

SOAPConnectionFactory.newInstance();

con = scf.createConnection();

} catch(Exception e) {

System.err.println("Unable to open a SOAPConnection", e);

}

InputStream in

= servletContext.getResourceAsStream("/WEB�INF/

address.properties");

if (in != null) {

Properties props = new Properties();

try {

props.load(in);

to = props.getProperty("to");

data = props.getProperty("data");

} catch (IOException ex) {

// Ignore

}

}

}

public void doGet(HttpServletRequest req,

HttpServletResponse resp)

throws ServletException {

String retval ="<html> <H4>";

try {

// Create a message factory.

MessageFactory mf = MessageFactory.newInstance();

// Create a message from the message factory.

SOAPMessage msg = mf.createMessage();

// Message creation takes care of creating the SOAPPart� a

// required part of the message as per the SOAP 1.1

// specification.

SOAPPart sp = msg.getSOAPPart();

// Retrieve the envelope from the soap part to start

PACKAGE OVERVIEW

M

26
// building the soap message.

SOAPEnvelope envelope = sp.getEnvelope();

// Create a soap header from the envelope.

SOAPHeader hdr = envelope.getHeader();

// Create a soap body from the envelope.

SOAPBody bdy = envelope.getBody();

// Add a soap body element to the soap body

SOAPBodyElement gltp = bdy.addBodyElement(

 envelope.createName("GetLastTradePrice",

"ztrade",

"http://wombat.ztrade.com"));

gltp.addChildElement(

envelope.createName("symbol",

"ztrade",

"http://wombat.ztrade.com")).addTextNode("SUNW");

StringBuffer urlSB=new StringBuffer();

urlSB.append(req.getScheme()).append("://")

.append(req.getServerName());

urlSB.append(":").append(req.getServerPort()).append(

req.getContextPath());

String reqBase=urlSB.toString();

if(data==null) {

data=reqBase + "/index.html";

}

// Want to set an attachment from the following url.

// Get context

URL url = new URL(data);

AttachmentPart ap =

msg.createAttachmentPart(new DataHandler(url));

ap.setContentType("text/html");

// Add the attachment part to the message.

msg.addAttachmentPart(ap);

// Create an endpoint for the recipient of the message.

if(to==null) {

to=reqBase + "/receiver";

}

URLEndpoint urlEndpoint = new URLEndpoint(to);

System.err.println("Sending message to URL:"

+urlEndpoint.getURL());
aintenance Release

A simple Message Producer example 27
System.err.println(

"Sent message is logged in\"sent.msg\"");

retval += " Sent message (check \"sent.msg\") and ";

FileOutputStream sentFile = new

FileOutputStream("sent.msg");

msg.writeTo(sentFile);

sentFile.close();

// Send the message to the provider using the connection.

SOAPMessage reply = con.call(msg, urlEndpoint);

if (reply != null) {

FileOutputStream replyFile = new

FileOutputStream("reply.msg");

reply.writeTo(replyFile);

replyFile.close();

System.err.println(

"Reply logged in \"reply.msg\"");

retval +=

" received reply (check \"reply.msg\"). </H4> </

html>";

} else {

System.err.println("No reply");

retval += " no reply was received. </H4> </html>";

}

} catch(Throwable e) {

e.printStackTrace();

System.err.println("Error in constructing or sending

message "

+e.getMessage());

retval += " There was an error " +

"in constructing or sending message. </H4> </html>";

}

try {

OutputStream os = resp.getOutputStream();

os.write(retval.getBytes());

os.flush();

os.close();

} catch (IOException e) {

e.printStackTrace();

System.err.println("Error in outputting servlet

response”+ e.getMessage());

}

}

}

PACKAGE OVERVIEW

M

28
JAXM.3.3 A simple Message Consumer example

/*

* $Id: ReceivingServlet.java,v 1.2 2001/09/17 21:01:27 akv Exp $

* $Revision: 1.2 $

* $Date: 2001/09/17 21:01:27 $

*

* Copyright 2000�2001 by Sun Microsystems, Inc.,

* 901 San Antonio Road, Palo Alto, California, 94303, U.S.A.

* All rights reserved.

*

* This software is the confidential and proprietary information

* of Sun Microsystems, Inc. ("Confidential Information"). You

* shall not disclose such Confidential Information and shall use

* it only in accordance with the terms of the license agreement

* you entered into with Sun.

*/

package simple.receiver;

import javax.xml.messaging.*;

import javax.xml.soap.*;

import javax.servlet.*;

import javax.servlet.http.*;

import javax.xml.transform.*;

import javax.naming.*;

/**

* Sample servlet that receives messages.

*

* @author Rajiv Mordani (mode@eng.sun.com)

* @author Anil Vijendran (anil@sun.com)

*/

public class ReceivingServlet

extends JAXMServlet

implements ReqRespListener {

static MessageFactory fac = null;

static {

try {

fac = MessageFactory.newInstance();

} catch (Exception ex) {

ex.printStackTrace();

}

};
aintenance Release

A simple Message Consumer example 29

public void init(ServletConfig servletConfig)

throws ServletException {

super.init(servletConfig);

// Not much there to do here.

}

// This is the application code for handling the message..

// Once the message is received the application can retrieve

// the soap part, the attachment part if there are any, or

// any other information from the message.

public SOAPMessage onMessage(SOAPMessage message) {

System.out.println("On message called in receiving servlet");

try {

System.out.println("Here's the message: ");

message.writeTo(System.out);

SOAPMessage msg = fac.createMessage();

SOAPEnvelope env = msg.getSOAPPart().getEnvelope();

env.getBody().addChildElement(

env.createName("Response"))

.addTextNode("This is a response");

return msg;

} catch(Exception e) {

System.err.println(

"Error in processing or replying to a message", e);

return null;

}

}

}

PACKAGE OVERVIEW

M

30
aintenance Release

C H A P T E R JAXM.4

Package javax.xml.messaging

This package specifies the API for using a messaging provider to send and receive SOAP1.1 messages. A client
using JavaTM API for XML Messaging technology (“JAXM client”) makes its connections to a messaging pro-
vider, which means that all messages it sends or receives go through the provider. The messaging provider is
responsible for the delivery of messages and performing many functions behind the scenes.

With a messaging provider, it is possible to send a message to multiple destinations, and a messaging provider
can be configured to do the following:

• maintain a list of endpoints to which messages will be sent
• send, and if necessary, resend a message until the message is delivered successfully or until the specified

Class Summary

Interfaces

OnewayListener41 A marker interface for components (for example, servlets) that are intended to be con-
sumers of one-way (asynchronous) JAXM messages.

ProviderConnection42 A client’s active connection to its messaging provider.

ProviderMetaData48 Information about the messaging provider to which a client has a connection.

ReqRespListener50 A marker interface for components that are intended to be consumers of request-
response messages.

Classes

Endpoint33 An opaque representation of an application endpoint.

JAXMServlet37 The superclass for components that live in a servlet container that receives JAXM mes-
sages.

ProviderConnectionFac
tory45

A factory for creating connections to a particular messaging provider.

URLEndpoint52 A special case of the Endpoint class used for simple applications that want to com-
municate directly with another SOAP-based application in a point-to-point fashion
instead of going through a messaging provider.

Exceptions

JAXMException35 An exception that signals that a JAXM exception has occurred.
31

Package javax.xml.messaging
limit for retries is reached
• log messages in a specified directory

In addition, a messaging provider can make it possible for a protocol such as ebXML or SOAP RP to operate on
top of SOAP, extending the Quality of Service available to JAXM messages.

The API in the javax.xml.messaging package makes it possible to do one-way messaging. One-way
messaging allows the client to send a message and immediately go on to other work because the response, if
there is one, will be sent as a separate operation at some time in the future.

The javax.xml.messaging package requires the javax.xml.soap package, which provides the API
for constructing SOAP messages and retreiving their content. The javax.xml.soap package is defined in
the SOAP with Attachments API for JavaTM (SAAJ) 1.1 specification.
32

Package javax.xml.messaging
javax.xml.messaging

JAXM.4.1 Endpoint
Declaration

public class Endpoint

java.lang.Object
|
+--javax.xml.messaging.Endpoint

Direct Known Subclasses: URLEndpoint52

Description
An opaque representation of an application endpoint. Typically, an Endpoint object represents a business
entity, but it may represent a party of any sort. Conceptually, an Endpoint object is the mapping of a logical
name (example, a URI) to a physical location, such as a URL.

For messaging using a provider that supports profiles, an application does not need to specify an endpoint when
it sends a message because destination information will be contained in the profile-specific header. However, for
point-to-point plain SOAP messaging, an application must supply an Endpoint object to the SOAPConnec-
tion method call to indicate the intended destination for the message. The subclass URLEndpoint52 can
be used when an application wants to send a message directly to a remote party without using a messaging pro-
vider.

The default identification for an Endpoint object is a URI. This defines what JAXM messaging providers
need to support at minimum for identification of destinations. A messaging provider needs to be configured
using a deployment-specific mechanism with mappings from an endpoint to the physical details of that end-
point.

Endpoint objects can be created using the constructor, or they can be looked up in a naming service. The lat-
ter is more flexible because logical identifiers or even other naming schemes (such as DUNS numbers) can be
bound and rebound to specific URIs.

Member Summary

Fields
protected id34

A string that identifies the party that this Endpoint object represents; a URI is the
default.

Constructors
public Endpoint(String)34

Constructs an Endpoint object using the given string identifier.

Methods
public

java.lang.String

toString()34
Retrieves a string representation of this Endpoint object.
33

Package javax.xml.messaging
Fields

4.1.1 id

protected java.lang.String id

A string that identifies the party that this Endpoint object represents; a URI is the default.

Constructors

4.1.2 Endpoint(String)

public Endpoint(java.lang.String uri)

Constructs an Endpoint object using the given string identifier.

Parameters:
uri - a string that identifies the party that this Endpoint object represents; the default is a URI

Methods

4.1.3 toString()

public java.lang.String toString()

Retrieves a string representation of this Endpoint object. This string is likely to be provider-specific, and
programmers are discouraged from parsing and programmatically interpreting the contents of this string.

Overrides: java.lang.Object.toString() in class java.lang.Object

Returns: a String with a provider-specific representation of this Endpoint object

Inherited Member Summary

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
34

Package javax.xml.messaging
javax.xml.messaging

JAXM.4.2 JAXMException
Declaration

public class JAXMException extends SOAPException114

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--javax.xml.soap.SOAPException114

|
+--javax.xml.messaging.JAXMException

All Implemented Interfaces: java.io.Serializable

Description
An exception that signals that a JAXM exception has occurred. A JAXMException object may contain a
String that gives the reason for the exception, an embedded Throwable object, or both. This class provides
methods for retrieving reason messages and for retrieving the embedded Throwable object.

Typical reasons for throwing a JAXMException object are problems such as not being able to send a message
and not being able to get a connection with the provider. Reasons for embedding a Throwable object include
problems such as an input/output errors or a parsing problem, such as an error parsing a header.

Member Summary

Constructors
public JAXMException()36

Constructs a JAXMException object with no reason or embedded Throwable
object.

public JAXMException(String)36
Constructs a JAXMException object with the given String as the reason for the
exception being thrown.

public JAXMException(String, Throwable)36
Constructs a JAXMException object with the given String as the reason for the
exception being thrown and the given Throwable object as an embedded exception.

public JAXMException(Throwable)36
Constructs a JAXMException object initialized with the given Throwable object.

Inherited Member Summary

Methods inherited from class java.lang.Object
35

Package javax.xml.messaging
Constructors

4.2.1 JAXMException()

public JAXMException()

Constructs a JAXMException object with no reason or embedded Throwable object.

4.2.2 JAXMException(String)

public JAXMException(java.lang.String reason)

Constructs a JAXMException object with the given String as the reason for the exception being
thrown.

Parameters:
reason - a String giving a description of what caused this exception

4.2.3 JAXMException(String, Throwable)

public JAXMException(java.lang.String reason, java.lang.Throwable cause)

Constructs a JAXMException object with the given String as the reason for the exception being
thrown and the given Throwable object as an embedded exception.

Parameters:
reason - a String giving a description of what caused this exception

cause - a Throwable object that is to be embedded in this JAXMException object

4.2.4 JAXMException(Throwable)

public JAXMException(java.lang.Throwable cause)

Constructs a JAXMException object initialized with the given Throwable object.

Parameters:
cause - a Throwable object that is to be embedded in this JAXMException object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait

Methods inherited from interface SOAPException114

getCause()116, getMessage()116, initCause(Throwable)116

Methods inherited from class java.lang.Throwable

fillInStackTrace, getLocalizedMessage, printStackTrace, printStackTrace, printStack-
Trace, toString

Inherited Member Summary
36

Package javax.xml.messaging
javax.xml.messaging

JAXM.4.3 JAXMServlet
Declaration

public abstract class JAXMServlet extends javax.servlet.http.HttpServlet

java.lang.Object
|
+--javax.servlet.GenericServlet

|
+--javax.servlet.http.HttpServlet

|
+--javax.xml.messaging.JAXMServlet

All Implemented Interfaces: java.io.Serializable, javax.servlet.Servlet, javax.servlet.ServletConfig

Description
The superclass for components that live in a servlet container that receives JAXM messages. A JAXMServlet
object is notified of a message’s arrival using the HTTP-SOAP binding.

The JAXMServlet class is a support/utility class and is provided purely as a convenience. It is not a manda-
tory component, and there is no requirement that it be implemented or extended.

Note that when a component that receives messages extends JAXMServlet, it also needs to implement either
a ReqRespListener object or a OnewayListener object, depending on whether the component is writ-
ten for a request-response style of interaction or for a one-way (asynchronous) style of interaction.

Member Summary

Fields
protected msgFactory38

The MessageFactory object that will be used internally to create the SOAPMes-
sage object to be passed to the method onMessage.

Constructors
public JAXMServlet()39

Methods
public void doPost(HttpServletRequest, HttpServletResponse)39

Internalizes the given HttpServletRequest object and writes the reply to the
given HttpServletResponse object.

protected static
javax.xml.soap.Mime-

Headers

getHeaders(HttpServletRequest)39
Returns a MimeHeaders object that contains the headers in the given Http-
ServletRequest object.

public void init(ServletConfig)39
Initializes this JAXMServlet object using the given ServletConfig object and
initializing the msgFactory field with a default MessageFactory object.

protected static void putHeaders(MimeHeaders, HttpServletResponse)40
Sets the given HttpServletResponse object with the headers in the given
MimeHeaders object.
37

Package javax.xml.messaging
Fields

4.3.1 msgFactory

protected MessageFactory78 msgFactory

The MessageFactory object that will be used internally to create the SOAPMessage object to be
passed to the method onMessage. This new message will contain the data from the message that was
posted to the servlet. Using the MessageFactory object that is the value for this field to create the new
message ensures that the correct profile is used.

public void setMessageFactory(MessageFactory)40
Sets this JAXMServlet object’s msgFactory field with the given Message-
Factory object.

Inherited Member Summary

Methods inherited from class javax.servlet.GenericServlet

destroy, getInitParameter, getInitParameterNames, getServletConfig, getServletCon-
text, getServletInfo, getServletName, init, log, log

Methods inherited from class javax.servlet.http.HttpServlet

doDelete, doGet, doOptions, doPut, doTrace, getLastModified, service, service

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Member Summary
38

Package javax.xml.messaging
Constructors

4.3.2 JAXMServlet()

public JAXMServlet()

Methods

4.3.3 doPost(HttpServletRequest, HttpServletResponse)

public void doPost(javax.servlet.http.HttpServletRequest req,
javax.servlet.http.HttpServletResponse resp)
throws ServletException, IOException

Internalizes the given HttpServletRequest object and writes the reply to the given HttpServlet-
Response object.

Note that the value for the msgFactory field will be used to internalize the message. This ensures that the
message factory for the correct profile is used.

Overrides: javax.servlet.http.HttpServlet.doPost(javax.servlet.http.HttpServletRequest,
javax.servlet.http.HttpServletResponse) in class javax.servlet.http.HttpServlet

Parameters:
req - the HttpServletRequest object containing the message that was sent to the servlet

resp - the HttpServletResponse object to which the response to the message will be written

Throws:
ServletException - if there is a servlet error

IOException - if there is an input or output error

4.3.4 getHeaders(HttpServletRequest)

protected static MimeHeaders83 getHeaders(javax.servlet.http.HttpServletRequest req)

Returns a MimeHeaders object that contains the headers in the given HttpServletRequest object.

Parameters:
req - the HttpServletRequest object that a messaging provider sent to the servlet

Returns: a new MimeHeaders object containing the headers in the message sent to the servlet

4.3.5 init(ServletConfig)

public void init(javax.servlet.ServletConfig servletConfig)
throws ServletException

Initializes this JAXMServlet object using the given ServletConfig object and initializing the msg-
Factory field with a default MessageFactory object.
39

Package javax.xml.messaging
Overrides: javax.servlet.GenericServlet.init(javax.servlet.ServletConfig) in class
javax.servlet.GenericServlet

Parameters:
servletConfig - the ServletConfig object to be used in initializing this JAXMServlet
object

Throws:
ServletException

4.3.6 putHeaders(MimeHeaders, HttpServletResponse)

protected static void putHeaders(MimeHeaders83 headers,
javax.servlet.http.HttpServletResponse res)

Sets the given HttpServletResponse object with the headers in the given MimeHeaders object.

Parameters:
headers - the MimeHeaders object containing the the headers in the message sent to the servlet

res - the HttpServletResponse object to which the headers are to be written

See Also: getHeaders(HttpServletRequest)39

4.3.7 setMessageFactory(MessageFactory)

public void setMessageFactory(MessageFactory78 msgFactory)

Sets this JAXMServlet object’s msgFactory field with the given MessageFactory object. A
MessageFactory object for a particular profile needs to be set before a message is received in order for
the message to be successfully internalized.

Parameters:
msgFactory - the MessageFactory object that will be used to create the SOAPMessage object
that will be used to internalize the message that was posted to the servlet
40

Package javax.xml.messaging
javax.xml.messaging

JAXM.4.4 OnewayListener
Declaration

public interface OnewayListener

Description
A marker interface for components (for example, servlets) that are intended to be consumers of one-way (asyn-
chronous) JAXM messages. The receiver of a one-way message is sent the message in one operation, and it
sends the response in another separate operation. The time interval between the receipt of a one-way message
and the sending of the response may be measured in fractions of seconds or days.

The implementation of the onMessage method defines how the receiver responds to the SOAPMessage
object that was passed to the onMessage method.

See Also: JAXMServlet37, ReqRespListener50

Methods

4.4.1 onMessage(SOAPMessage)

public void onMessage(SOAPMessage128 message)

Passes the given SOAPMessage object to this OnewayListener object. This method is invoked behind
the scenes, typically by the container (servlet or EJB container) after the messaging provider delivers the
message to the container. It is expected that EJB Containers will deliver JAXM messages to EJB compo-
nents using message driven Beans that implement the javax.xml.messaging.OnewayListener
interface.

Parameters:
message - the SOAPMessage object to be passed to this OnewayListener object

Member Summary

Methods
public void onMessage(SOAPMessage)41

Passes the given SOAPMessage object to this OnewayListener object.
41

Package javax.xml.messaging
javax.xml.messaging

JAXM.4.5 ProviderConnection
Declaration

public interface ProviderConnection

Description
A client’s active connection to its messaging provider.

A ProviderConnection object is created using a ProviderConnectionFactory object, which is
configured so that the connections it creates will be to a particular messaging provider. To create a connection, a
client first needs to obtain an instance of the ProviderConnectionFactory class that creates connections
to the desired messaging provider. The client then calls the createConnection method on it.

The information necessary to set up a ProviderConnectionFactory object that creates connections to a
particular messaging provider is supplied at deployment time. Typically an instance of Provider-
ConnectionFactory will be bound to a logical name in a naming service. Later the client can do a lookup
on the logical name to retrieve an instance of the ProviderConnectionFactory class that produces con-
nections to its messaging provider.

The following code fragment is an example of a client doing a lookup of a ProviderConnectionFactory
object and then using it to create a connection. The first two lines in this example use the JavaTM Naming and
Directory Interface (JNDI) to create a context, which is then used to do the lookup. The argument provided to
the lookup method is the logical name that was previously associated with the desired messaging provider.
The lookup method returns a Java Object, which needs to be cast to a ProviderConnectionFactory
object before it can be used to create a connection. In the following code fragment, the resulting Provider-
Connection object is a connection to the messaging provider that is associated with the logical name
“ProviderXYZ”.

Context ctx = new InitialContext();
ProviderConnectionFactory pcf = (ProviderConnectionFactory)ctx.lookup(“ProviderXYZ”)

;
ProviderConnection con = pcf.createConnection();

After the client has obtained a connection to its messaging provider, it can use that connection to create one or
more MessageFactory objects, which can then be used to create SOAPMessage objects. Messages are
delivered to an endpoint using the ProviderConnection method send.

The messaging provider maintains a list of Endpoint objects, which is established at deployment time as part
of configuring the messaging provider. When a client uses a messaging provider to send messages, it can send
messages only to those parties represented by Endpoint objects in its messaging provider’s list. This is true
because the messaging provider maps the URI for each Endpoint object to a URL.

Note that it is possible for a client to send a message without using a messaging provider. In this case, the client
uses a SOAPConnection object to send point-to-point messages via the method call. This method takes an
Endpoint object (actually a URLEndpoint object) that specifies the URL where the message is to be sent.
See SOAPConnection95 and URLEndpoint52 for more information.

Typically, because clients have one messaging provider, they will do all their messaging with a single
ProviderConnection object. It is possible, however, for a sophisticated application to use multiple con-
nections.
42

Package javax.xml.messaging
Generally, a container is configured with a listener component at deployment time using an implementation-
specific mechanism. A client running in such a container uses a OnewayListener object to receive messages
asynchronously. In this scenario, messages are sent via the ProviderConnection method send. A client
running in a container that wants to receive synchronous messages uses a ReqRespListener object. A
ReqRespListener object receives messages sent via the SOAPConnection method call.

Due to the authentication and communication setup done when a ProviderConnection object is created, it
is a relatively heavy-weight object. Therefore, a client should close its connection as soon as it is done using it.

JAXM objects created using one ProviderConnection object cannot be used with a different
ProviderConnection object.

Methods

4.5.1 close()

public void close()
throws JAXMException

Closes this ProviderConnection object, freeing its resources and making it immediately available for
garbage collection. Since a provider typically allocates significant resources outside the JVM on behalf of a
connection, clients should close connections when they are not needed. Relying on garbage collection to
eventually reclaim these resources may not be timely enough.

Throws:
JAXMException35 - if a JAXM error occurs while closing the connection.

4.5.2 createMessageFactory(String)

public MessageFactory78 createMessageFactory(java.lang.String profile)

Member Summary

Methods
public void close()43

Closes this ProviderConnection object, freeing its resources and making it
immediately available for garbage collection.

public
javax.xml.soap.Mes-

sageFactory

createMessageFactory(String)43
Creates a MessageFactory object that will produce SOAPMessage objects for
the given profile.

public javax.xml.mes-
saging.ProviderMeta-

Data

getMetaData()44
Retrieves the ProviderMetaData object that contains information about the mes-
saging provider to which this ProviderConnection object is connected.

public void send(SOAPMessage)44
Sends the given SOAPMessage object and returns immediately after handing the
message over to the messaging provider.
43

Package javax.xml.messaging
throws JAXMException

Creates a MessageFactory object that will produce SOAPMessage objects for the given profile. The
MessageFactory object that is returned can create instances of SOAPMessage subclasses as appropri-
ate for the given profile.

Parameters:
profile - a string that represents a particular JAXM profile in use. An example of a JAXM profile is:
“ebxml”.

Returns: a new MessageFactory object that will create SOAPMessage objects for the given profile

Throws:
JAXMException35 - if the JAXM infrastructure encounters an error, for example, if the endpoint
that is being used is not compatible with the specified profile

4.5.3 getMetaData()

public ProviderMetaData48 getMetaData()
throws JAXMException

Retrieves the ProviderMetaData object that contains information about the messaging provider to
which this ProviderConnection object is connected.

Returns: the ProviderMetaData object with information about the messaging provider

Throws:
JAXMException35 - if there is a problem getting the ProviderMetaData object

See Also: ProviderMetaData48

4.5.4 send(SOAPMessage)

public void send(SOAPMessage128 message)
throws JAXMException

Sends the given SOAPMessage object and returns immediately after handing the message over to the mes-
saging provider. No assumptions can be made regarding the ultimate success or failure of message delivery
at the time this method returns.

Parameters:
message - the SOAPMessage object that is to be sent asynchronously over this
ProviderConnection object

Throws:
JAXMException35 - if a JAXM transmission error occurs
44

Package javax.xml.messaging
javax.xml.messaging

JAXM.4.6 ProviderConnectionFactory
Declaration

public abstract class ProviderConnectionFactory

java.lang.Object
|
+--javax.xml.messaging.ProviderConnectionFactory

Description
A factory for creating connections to a particular messaging provider. A ProviderConnectionFactory
object can be obtained in two different ways.

• Call ProviderConnectionFactory.newInstance method to get an instance of the default Pro-
viderConnectionFactory object. This instance can be used to create a ProviderConnection object
that connects to the default provider implementation.
 ProviderConnectionFactory pcf = ProviderConnectionFactory.newInstance();
 ProviderConnection con = pcf.createConnection();

• Retrieve a ProviderConnectionFactory object that has been registered with a naming service based on
Java Naming and Directory InterfaceTM (JNDI) technology.
In this case, the ProviderConnectionFactory object is an administered object that was created by a
container (a servlet or Enterprise JavaBeansTM container). The ProviderConnectionFactory object was
configured in an implementation- specific way, and the connections it creates will be to the specified messaging
provider. Registering a ProviderConnectionFactory object with a JNDI naming service associates it
with a logical name. When an application wants to establish a connection with the provider associated with that
ProviderConnectionFactory object, it does a lookup, providing the logical name. The application can
then use the ProviderConnectionFactory object that is returned to create a connection to the messaging
provider. The first two lines of the following code fragment uses JNDI methods to retrieve a ProviderCon-
nectionFactory object. The third line uses the returned object to create a connection to the JAXM provider
that was registered with "ProviderXYZ" as its logical name.
 Context ctx = new InitialContext();
 ProviderConnectionFactory pcf = (ProviderConnectionFactory)ctx.lookup(

"ProviderXYZ");
 ProviderConnection con = pcf.createConnection();

Member Summary

Constructors
public ProviderConnectionFactory()46

Methods
public abstract

javax.xml.messag-
ing.ProviderConnec-

tion

createConnection()46
Creates a ProviderConnection object to the messaging provider that is the pro-
vider associated with this ProviderConnectionFactory object.
45

Package javax.xml.messaging
Constructors

4.6.1 ProviderConnectionFactory()

public ProviderConnectionFactory()

Methods

4.6.2 createConnection()

public abstract ProviderConnection42 createConnection()
throws JAXMException

Creates a ProviderConnection object to the messaging provider that is the provider associated with
this ProviderConnectionFactory object.

Returns: a ProviderConnection object that represents a connection to the provider associated with
this ProviderConnectionFactory object

Throws:
JAXMException35 - if there is an error in creating the connection

4.6.3 newInstance()

public static ProviderConnectionFactory45 newInstance()
throws JAXMException

Creates an instance of the default ProviderConnectionFactory object.

Returns: a new instance of a ProviderConnectionFactory

public static
javax.xml.messag-

ing.ProviderConnec-
tionFactory

newInstance()46
Creates an instance of the default ProviderConnectionFactory object.

Inherited Member Summary

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Member Summary
46

Package javax.xml.messaging
Throws:
JAXMException35 - if there was an error creating the default ProviderConnectionFactory
47

Package javax.xml.messaging
javax.xml.messaging

JAXM.4.7 ProviderMetaData
Declaration

public interface ProviderMetaData

Description
Information about the messaging provider to which a client has a connection.

After obtaining a connection to its messaging provider, a client can get information about that provider. The fol-
lowing code fragment demonstrates how the ProviderConnection object con can be used to retrieve its
ProviderMetaData object and then to get the name and version number of the messaging provider.

ProviderMetaData pmd = con.getMetaData();
String name = pmd.getName();
int majorVersion = pmd.getProviderMajorVersion();
int minorVersion = pmd.getProviderMinorVersion();

The ProviderMetaData interface also makes it possible to find out which profiles a JAXM provider sup-
ports. The following line of code uses the method getSupportedProfiles to retrieve an array of String
objects naming the profile(s) that the JAXM provider supports.

String [] profiles = pmd.getSupportedProfiles();

When a JAXM implementation supports a profile, it supports the functionality supplied by a particular messag-
ing specification. A profile is built on top of the SOAP 1.1 and SOAP with Attachments specifications and adds
more capabilities. For example, a JAXM provider may support an ebXML profile, which means that it supports
headers that specify functionality defined in the ebXML specification “Message Service Specification: ebXML
Routing, Transport, & Packaging, Version 1.0”.

Support for profiles, which typically add enhanced security and quality of service features, is required for the
implementation of end-to-end asynchronous messaging.

Member Summary

Methods
public int getMajorVersion()49

Retrieves an int indicating the major version number of the messaging provider to
which the ProviderConnection object described by this ProviderMeta-
Data object is connected.

public int getMinorVersion()49
Retrieves an int indicating the minor version number of the messaging provider to
which the ProviderConnection object described by this ProviderMeta-
Data object is connected.

public
java.lang.String

getName()49
Retrieves a String containing the name of the messaging provider to which the
ProviderConnection object described by this ProviderMetaData object is
connected.
48

Package javax.xml.messaging
Methods

4.7.1 getMajorVersion()

public int getMajorVersion()

Retrieves an int indicating the major version number of the messaging provider to which the
ProviderConnection object described by this ProviderMetaData object is connected.

Returns: the messaging provider’s major version number as an int

4.7.2 getMinorVersion()

public int getMinorVersion()

Retrieves an int indicating the minor version number of the messaging provider to which the
ProviderConnection object described by this ProviderMetaData object is connected.

Returns: the messaging provider’s minor version number as an int

4.7.3 getName()

public java.lang.String getName()

Retrieves a String containing the name of the messaging provider to which the Provider-
Connection object described by this ProviderMetaData object is connected. This string is provider
implementation-dependent. It can either describe a particular instance of the provider or just give the name
of the provider.

Returns: the messaging provider’s name as a String

4.7.4 getSupportedProfiles()

public java.lang.String[] getSupportedProfiles()

Retrieves a list of the messaging profiles that are supported by the messaging provider to which the
ProviderConnection object described by this ProviderMetaData object is connected.

Returns: a String array in which each element is a messaging profile supported by the messaging
provider

public
java.lang.String[]

getSupportedProfiles()49
Retrieves a list of the messaging profiles that are supported by the messaging provider
to which the ProviderConnection object described by this ProviderMeta-
Data object is connected.

Member Summary
49

Package javax.xml.messaging
javax.xml.messaging

JAXM.4.8 ReqRespListener
Declaration

public interface ReqRespListener

Description
A marker interface for components that are intended to be consumers of request-response messages. In the
request-response style of messaging, sending a request and receiving the response are both done in a single
operation. This means that the client sending the request cannot do anything else until after it has received the
response.

From the standpoint of the sender, a message is sent via the SOAPConnection method call in a point-to-
point fashion. The method call blocks, waiting until it gets a response message that it can return. The sender
may be a standalone client, or it may be deployed in a container.

The receiver, typically a service operating in a servlet, implements the ReqRespListener method
onMessage to specify how to respond to the requests it receives.

It is possible that a standalone client might use the method call to send a message that does not require a
response. For such cases, the receiver must implement the method onMessage such that it returns a message
whose only purpose is to unblock the call method.

See Also: JAXMServlet37, OnewayListener41, call(SOAPMessage, Endpoint)96

Methods

4.8.1 onMessage(SOAPMessage)

public SOAPMessage128 onMessage(SOAPMessage128 message)

Passes the given SOAPMessage object to this ReqRespListener object and returns the response. This
method is invoked behind the scenes, typically by the container (servlet or EJB container) after the messag-
ing provider delivers the message to the container. It is expected that EJB Containers will deliver JAXM
messages to EJB components using message driven Beans that implement the
javax.xml.messaging.ReqRespListener interface.

Member Summary

Methods
public

javax.xml.soap.SOAP-
Message

onMessage(SOAPMessage)50
Passes the given SOAPMessage object to this ReqRespListener object and
returns the response.
50

Package javax.xml.messaging
Parameters:
message - the SOAPMessage object to be passed to this ReqRespListener object

Returns: the response. If this is null, then the original message is treated as a “oneway” message.
51

Package javax.xml.messaging
javax.xml.messaging

JAXM.4.9 URLEndpoint
Declaration

public class URLEndpoint extends Endpoint33

java.lang.Object
|
+--javax.xml.messaging.Endpoint33

|
+--javax.xml.messaging.URLEndpoint

Description
A special case of the Endpoint class used for simple applications that want to communicate directly with
another SOAP-based application in a point-to-point fashion instead of going through a messaging provider.

A URLEndpoint object contains a URL, which is used to make connections to the remote party. A standalone
client can pass a URLEndpoint object to the SOAPConnection method call to send a message synchro-
nously.

Member Summary

Constructors
public URLEndpoint(String)53

Constructs a new URLEndpoint object using the given URL.

Methods
public

java.lang.String

getURL()53
Gets the URL associated with this URLEndpoint object.

Inherited Member Summary

Fields inherited from class Endpoint33

id34

Methods inherited from class Endpoint33

toString()34

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
52

Package javax.xml.messaging
Constructors

4.9.1 URLEndpoint(String)

public URLEndpoint(java.lang.String url)

Constructs a new URLEndpoint object using the given URL.

Parameters:
url - a String giving the URL to use in constructing the new URLEndpoint object

Methods

4.9.2 getURL()

public java.lang.String getURL()

Gets the URL associated with this URLEndpoint object.

Returns: a String giving the URL associated with this URLEndpoint object
53

Package javax.xml.messaging
54

C H A P T E R JAXM.5

References

• ebXML Transport, Routing & Packaging V1.0 - Message Service Specifica-
tion

� http://www.ebxml.org/specs/ebMS.pdf

• XML Messaging Requirements specification

� http://search.ietf.org/internet-drafts/draft-ietf-trade-iotp2-req-00.txt

• MIME-based Secure EDI

� http://search.ietf.org/internet-drafts/draft-ietf-ediint-as1-13.txt

• SOAP

� http://www.w3.org/TR/SOAP

• SOAP Messages with Attachments

� http://www.w3.org/TR/SOAP-attachments

• JavaBeansTM Activation Framework Version 1.0a

� http://java.sun.com/products/javabeans/glasgow/jaf.html

• Java API for XML Processing - Version 1.1 Final Release

� http://java.sun.com/xml/xml_jaxp.html
55

REFERENCES

M

56
• SOAP with Attachments API for JavaTM (SAAJ) - Version 1.1 Maintenance Re-
lease

� http://java.sun.com/xml/saaj/index.html
aintenance Release

	Java(TM) API for XML Messaging
	Contents
	Status
	Preface
	Background
	JAXM.1.1 Conceptual Model
	JAXM.1.2 Scope
	JAXM.1.3 Interoperability
	JAXM.1.4 SOAP Packaging Model
	JAXM.1.4.1 SOAP Message with Attachments
	JAXM.1.4.2 SOAP Message without Attachments

	JAXM.1.5 JAXM, JMS & JavaMail

	Infrastructure
	JAXM.2.1 JAXM Client
	JAXM.2.1.1 JAXM Client Using a JAXM Provider
	JAXM.2.1.2 Standalone JAXM Client
	JAXM.2.1.3 The Relationship between JAXM Clients
	JAXM.2.1.4 Client and Service Implementations

	JAXM.2.2 Error Messages
	JAXM.2.3 Messaging Profiles
	JAXM.2.4 JAXM Deployment
	JAXM.2.5 OnewayListener
	JAXM.2.6 ReqRespListener
	JAXM.2.7 Message Security

	Package Overview
	JAXM.3.1 javax.xml.messaging Package
	JAXM.3.1.1 Endpoint & URLEndpoint
	JAXM.3.1.2 ProviderConnection & Factory
	JAXM.3.1.3 ProviderMetaData & JAXMException
	JAXM.3.1.4 Oneway and Request-Response Listeners

	JAXM.3.2 A simple Message Producer example
	JAXM.3.3 A simple Message Consumer example

	Package javax.xml.messaging
	JAXM.4.1 Endpoint
	JAXM.4.2 JAXMException
	JAXM.4.3 JAXMServlet
	JAXM.4.4 OnewayListener
	JAXM.4.5 ProviderConnection
	JAXM.4.6 ProviderConnectionFactory
	JAXM.4.7 ProviderMetaData
	JAXM.4.8 ReqRespListener
	JAXM.4.9 URLEndpoint

	References

