Amber
Development
Guide

Page:

Table of Contents

Amber Development GUITEot 1
Tableof ContentS. 2
INtrOdUCEION 4

What IS AMDEr? . . 4
GNP S . . o ottt 4
The Amber Client e 4
The AmbeEr SErVer 4
Building Applicationswith Amber L 6
General OVEIVIBIW 6
HTML Pages-Client Componentsuuuiineneinannen.. 6
Amber Applet Tagot 7
APPIICALIONS . . . 8
ExceptionHandling 14
Server Components(ComponentHandler’'s) 15
EventHandling 17
Specifying the Events Sent over the Network 18
BasiCFUNCLIONS 19

DrawingInsidePanels i 21

Child ComponentHandersinPanels. 21

XY CONSraiNtS . ..ot 23
CreatingyourownPanels 23
ExampleBasePanel Code i 24

Panel Template Groupso oo 30

Example Panel Templatecode 32

Frames e 32

Modal Frames 33
ExampleModalBaseFrame 33

ACHIVEProperties 35
Running Amber Applications i 37
INtrodUuCtion 37
Configuringthe Amber Server 39
PageID/PageSublID ... 40

Database Configuration, 40

Text File Application Configuration 42

Server ArChiteCtUreo 44
AMbEr SErVEr COre ..o 46

UsSiNg Dataases oot 47
Database Managerttt 47
ConNNECtiON POOISo 48
ExampleDatabase Codet 49

USINg DBVICES . ..ottt e e 50

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved Page: 2

INtrOdUCTION . .ot e e e e 50

Usingthe Amber DeviceSystem i 51
Selecting SpecificDevices. 52

Exampleof RequestingaDevice 53
UsingtheDeviceHandler 54

Exampleof UsingaDeviceHandler 54

Creating CompPONESt 56
INtrOdUCEION . . oo e 56
CreatingtheVisual Element 56
CreatingtheClientWrapper Class, 57

HTML Resident Componentsccoitiiinnnnnnannn 58

Panel Resident Companents ... 61

Creating the Server ComponentHandler 65

Non Visua Componentsttt 71
Appendix: Common Amber Applet Tags 72
ConnectioNn MOdUIESttt e e 73

CliENt .. 73

Socket ConnectionModule 74

HTTP Connection Module (Enterprise editiononly) 74

Appendix: Amber Server Core Functionality 76
Appendix: Basic ApplicationHandler Functions 78
Appendix: Basic ComponentHandler Functions 79
Appendix: Panel Spedfic Functionality 81
Panel DravingCommands ...t 81
Component Container FUNCLIONSt 82
Appendix: ComponentHandler Hierarchy 84
Common ComponentHandler's i 85

Menu ComponentHandler's 86

Panel ComponentHandler's i 87
Special ComponentHandler's 88
Appendix: Client Component Hierarchy 89
Basic Client Components.ttt e 0

Panel Client Componants.o it 91

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved Page: 3

Introduction
What is Amber?

Amber isapowerful Client/Server system with the following characteristics:

. It allows remote clients to use browsers to run Applications with a small download.

. The usersare presented with all the normal user interface elements: Buttons text
controls, menus, multiple windows etc.

. Amber is Java based and therefore will run on most operating systems and browsers.

. Amber development is amost identicd to normal Java application devel opment.

. Browser HTML limitations are transcended by the Amber system.

Concepts

An Amber system is composed of two sets of systems. One on theclient and the other at the
server.

. The client system handles the display requirements and interacts with the user. Thisis
in the form of visud display and detecting the various user generated events.
. The server system contains the program logic and any associated business rules.

Communi cation between the two systems is handled by the Amber Application Transfer
Protocol (AATP).

The Amber Client

The Amber client(s) run on the client computer in the target browser. The Amber clients are
one or more Java applets which residein an HTML page in the browsar. The client comects
directly to the Amber server and establishes a unique session with the server. The client then
responds to commands from the server and issues events back to the server as generated by
the client clicking or otherwise interacting with the displayed controls. It contains a repository
of available Amber controls for use by the Amber server. These controlsinclude all the
standard user interface elements such as buttons etc.

The Amber Server

The Amber Server is a stand-alone Java application running on the server computer. It detects
client connection requests, identifies the correct application to create for a connection, creates
the application, then connectsit to the client and starts it running. Once this occurs the
application actsin an almost identical manner to a normal Java application. The server
supports handling multiple simultaneous applications at once.

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved Page: 4

The server acts as an application runner. The correct application (a dass derived from

ApplicationHandler) isidentified when the client connects. This classis instantiated and the

server connects the socket stream to it and starts the application running by calling the start
method in the ApplicationHandler. Once the application is running it functionsin asimilar
manner to anormal stand-alone application. It is this ApplicationHandler which gives the
client sde controlsfunctiona ity and defi nes the program | ogic behind the client display.

Client Broveser

HTML Page

o
/LN

Client Contral Components:

Amber Connection

S HThL over
HTTR(S) Wk Server

Amber Server

/

ApplicationHandler

Databaze

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved

Page: 5

Building Applications with
Amber

General Overview

When creating an Amber application it isimportant to understand how the Amber systemisto
be used. Thiswill help define both the display elements at the client and the required program
logic at the server to make the application function correctly. There will be two sidesto an
Amber application: the client side which is partly HTML and partly Java, and the server side
which generally appears as a slightly modified Java application. In general, a good starting
point is to view the client as displaying the visual components and the server as running the
Java application. The HTML pages provide a structure inside which the visual components
will fit.

We will now consider each of these elementsin turn.

HTML Pages-Client Components

The client part of Amber sitsinside an HTML page To the HTML page Amber controls
appear to be standard Java Applets. The HTML page is formatted for appearance in the
normal way. Applet tags are inserted in location(s) where the controls are required.
Parameters in thetags define thetype of control and the ID of the control. The possible
controls range in complexity from the simple which are buttons or labels to the complex

whi ch are pands of controls. To some degreethe client browser treatstheminthe sameway.

Amber alows multiple controlsto exist inan HTML page. ID numbers are used to distinguish
between the various controls. HTML page controlsmay have ID numbers ranging from O to
199. There must always be an Amber control with an ID of 0. Thisis the master control and
handles the requirements of messaging to the server. Any Amber control type may be a
master. Control 1D’s may not overlap. If two controls share the same ID then the behaviour of
the Amber client system is undeined. As Amber dlows container components such as panels
(see below) it is not absolutely vital to have multiple controls within an HTML page The
panel allows a single component to embed multiple visual controls thereby creatingasimple,
fully viable Amber application.

We will now look at atypical Amber appléd tag and describe some of the salient features.

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved Page: 6

Amber Applet Tag

The following isatypical Amber applet tag which isinserted into the HTML page:

<APPLET

>

<PARAM NAME
<PARAM NAME
<PARAM NAME
<PARAM NAME
<PARAM NAME
<PARAM NAME
<PARAM NAME
<PARAM NAME

ARCHI VE = " AmberClient.jar"
CODE

NAME

W DTH
HEI GHT
HSPACE
VSPACE
ALI GN

"amber.client. RBase. cl ass"
"Mai nPanel "

640

480

0

0

m ddl e

"Component" VALUE = "anber.client.panel.BasePanel ">
"1 D" VALUE = "0">

"SERVER" VALUE = "127.0.0.1">

"Port" VALUE = "21384">

"PAGEI D" VALUE = "2000">

"EVENT MASK" VALUE = "1F">

"Ext ensi on0" VALUE "Name| John" >

"Ext ensi onl" VALUE "Job| Programmer" >

</ APPLET>

The applet tag at thetop isfairly normal for an HTML Java applet. The following fields are
displayed in our example although all the standard properties can be used:

Archive. Thisisthe name of the archive jar which contains the Amber Java client
classes.

Code. Thisisthe name of the primary applet derived class which isto be started. For
most Amber clientsthiswill be amber.client. RBase.

Name. Thisisthe name which is assigned to this applet. Thisisrarely used and is only
relevant where Javascript is used to communicate with the applet.

Width. Thisisthe width of the applet inthe HTML page.

Height. Thisisthe height of the applet inthe HTML page.

Hspace. Thisisthe amount of horizontal space to add around the outside of the
applet.

Vspace. Thisisthe amount of vertical spaceto add around the outside of the applét.
Align. Where in the allocated space for the applet will the applet appear.

The following parameters are unique to Amber. They are used to configure the Amber control
and vary depending on the control displayed.

These are some of the common Amber parameters.

ID. Thisisthe ID number of the Amber control. ThisID number is used to link the
client control with the server ComponentHandler. These numbers must be unique and
there must always be a control with an ID of 0. The ID 0 control is required to have
several other parameters which relate to its role as master control.

Component. Thisisthe client class which isthe display object. In this case the display
object isapanel (amber.client.panel.BasePanel) however any of the normal
components in amber.client.panel can be used.

Server. Optional, only used by ID 0. This defines the location of the server to which

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved Page: 7

the Amber client system will connect. This may be either an IP (Internet Protocol)
address or a standard dotted notation address such asanber . cl earfi el d. comIf
no address is specified then the base address of the server inthe HTML URL is used.

. Pageld. Required, only used by ID 0. Thisintege is used by the Amber server to
identify thetype of application to be attached to this client.

. PageSubld. May be optional, only used by ID 0. Thisinteger is used to further refine
the type of application to attach. The server can be configured to ignore this integer
when identifying the correct application. In this case the number may be ignored or
can be used to pass additional information to the starting ApplicationHandler at the
Sserver.

. ExtensionX. Where X isamonotonically increasing integer starting a O (i.e.
Extension0). Optional. Thisis a series of properties which are to be passed back to the
Amber Server by the the ID 0 componert. These extension properties can be read from
the ApplicationHandler using the getRemoteProperties() function. The value of the
Extension param isinthe form “namejvalue’” where name is the name of the property
and va ueistheva ue given to the property.

Refer to Appendix: Common Amber Applet Tags, for amore detailed list of parameter tags
common to Amber components.

Generally each specific component has additional parameters which depend on the control
which is displayed.

Applications

Applications are the classes which are run in response to an incoming client connection
request from themaster (ID 0) client applet. They all derive off the base dass:

anber . server. application. Appli cati onHandl er.

The Amber serve resides at the server machine. For small servers this will be the same
computer as the Web Server computer. The connection processis as fdlows:

. The Amber server waits for incoming connections on a particular server port. The
default value is 21384, although thisis configurable.

. When an incoming connection from the Amber client master control is received the
Server reads the Page ID and Page Sub ID fields transmitted by the cliert.

. The Server looks in the Amber configuration database and matches the ID’ s to the
corresponding ApplicationHandler.

. The ApplicationHandler extended classis created using its default constructor.

. Initial connection information is used to configure the ApplicationHandler. This

includes the Page 1D and the Page Sub ID fields.

. The start function on the ApplicationHandler is called. Thisfinished the
ApplicationHandler initialisation and creates the required messaging threads. Any
required user initialisation is aso performed in this function.

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved Page: 8

In general, the ApplicationHandler reflects the user interface specified in the HTML page.
The client contrds are associated with ComponentHandlers which areused to alter the date
of the client controls and process any events transmitted.

An ApplicationHandler corresponds to a standard Java Application.

. It handles all the requirements of the AATP to message between the server application
and the corresponding Amber client controls.

. A server application extends the
anber . server. application. Appl i cati onHandl er classto create anew
application.

. An ApplicationHandler contains a number of ComponentHandler derived control
handlersto control Amber client controls. These correpond to thenormal Java AWT
controls.

. An instance of the ApplicationHandler derived classis created for each incoming
Amber connection. Once the ApplicationHandler isinstantiated it acts as a stand-alone
application.

A simple application which corresponds to the previous HTML tag example would look as
follows:

package untitl edPackage;

i mport java.net.* ;
i mport java.io.* ;

i mport anber.type.server.?*;
i mport anber.server.application.?*;
i mport anber.client.RConstants ;

/**

* This is the Application Handler.

*

* @uthor Insert your name here

* @ersion 1.0.0

* @ee amber.server.application. ApplicationHandl er
*/

public class SinpleApplicationHandl er extends ApplicationHandl er

/**

* Decl are any panels or frames this application uses.

* Note that each panel/frame corresponds to one APPLET tag in the
* HTML.
* Al'so note that the panel/frame I D nust match the I D paranmeter in
* the htm.

*/

/**

* Here is the first panel in this sanple application
*/
private GenericPanel pnlMain = new GenericPanel (0, this) ;
/**

* Default constructor
* |

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved Page: 9

public SinpleApplicationHandl er () throws | OException

super (0, RConstants.|nvalidPageSubl d)
defi neComponents ();

* The initialising constructor
* @aram appldentifier. An int uniquely identifying this instance of
* application.

public SinpleApplicationHandl er (int appldentifier) throws | OException

super (appldentifier, RConstants.|nvali dPageSubld)
defi neComponents ();

/**

* The initialising constructor

* @aram appldentifier. An int uniquely identifying this instance of
* application.
* @aram newConnection. The Socket which is connected to the page in
* operation.

*/

publ i c Sinpl eApplicationHandl er (int appldentifier, Socket
newConnection) throws | OException

{
super (appldentifier, RConstants.I|nvali dPageSubld, newConnection);
defi neConponents ();
}
/**
* Do initialisation that needs to be done within the constructor,
* eg add any panels/frames this application uses.
* Use "add" to add the conmponent into the application
* messagi ng | oop.
*/
protected void defineConponents ()
{
[/ Add any panels/frames the application will use here.
add (pnl Main, new XYConstraints (0, 0, 640, 480));
}
/**
* This function initiates the functioning of the ApplicationHandl er
* This function is required as the application handler will not
* immedi ately start operation until it is handed the socket by the
* mai n handling system
* @aram newConnection. The Socket which is connected to the page in
* operation.
* I f null uses the connection already set.
* @xception java.lang.lllegal ThreadSt at eExcepti on contai ni ng any
* probl ens.
*/

public synchronized void start (Socket newConnection) throws
I'll egal ThreadSt at eExcepti on

{
super.start (newConnection);
setUp ();

}

/**

* This function is called when the program first starts.

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved Page: 10

* I nsert into here any initial set up code you may require
*/
public void setUp ()
{

try
{
/1 Add any setup logic required here

catch (Exception ex)

{
}

ex. printStackTrace();

We will now consider the various parts of the ApplicationHandler in turn.

The application dassis called SimpleApplicationHander. It derives off the class
amber.server.application.ApplicationHandler. The ApplicationHandler base class contains the
logi c required to link the server application to theremote client display.

The class which controls the client RPanel is defined in the line;

/**

* Here is the first panel in this sanple application
*/
private GenericPanel pnlMain = new GenericPanel (0, this)

The GenericPanel classis aclass which extends a hierarchy of classes ultimately extending
the ComponentHandler class. This class controls the remote client applet and handles the
specific requirements for the server to remotely control the client display for that panel. The
constructor for this class contains two arguments these are:

. The component ID. Thismust correspond to the ID defined in the applet parameter
tag. In this case thereis only one component and itsID is 0.
. Applicationinterface handle. Thisis a handle which points to the Application which

controls the ComponentHandler. The class ApplicationHandler implements the
Applicationlnterface for you.

The SimpleApplicaionHandler has avariety of constructors but must have a default
constructor with no parameters. It is this constructor which is used when the Amber Server
instantiates the dass.

/**
* Default constructor
*/
publi c Sinpl eApplicati onHandl er () throws | OException

{
super (0, RConstants.I|nvali dPageSubl d)

defi neConponents ();
}

The constructor calls the super constructor for ApplicationHandler and then calls the

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved Page: 11

defineComponentsfunction. This function is required to define the components which will
message to the remote client. It is an abstract function in ApplicationHandler and must be
supplied by the deriving class.

/**
* Do initialisation that needs to be done within the constructor,
* eg add any panels/frames this application uses.
* Use "add" to add the conponent into the application
* messagi ng | oop
*/

protected void defi neComponents ()

/1 Add any panels/frames the application will use here.
add (pnl Main, new XYConstraints (0, 0, 640, 480));

}

This function contans one function add which is used to td| the ApplicationHandler that this
panel exists at the remote client and that its physical characteristics are x, y location 0,0 and
size width=640, height=480. The physical characteristics arenot absolutely required for
remote Browser initiated connedions however they are vitally important for remote
Application initiated connections.

In general, the Amber Server will create the ApplicationHandler extended application using
the default constructor. When the dassisinstantiated it is not connected to the remote client.
When the ApplicationHandler is connected and all the required properties are set the start
function is called in the ApplicationHandler. This function is responsible for the final
initialisation of the ApplicationHandler and any user required initialisation which requires
that the application is actually connected to the remote client. The function typically looks as
follows:

/**
* This function initiates the functioning of the ApplicationHandl er.
* This function is required as the application handler will not
* immedi ately start operation until it is handed the socket by the
* main handling system
* @aram newConnection. The Socket which is connected to the page in
* operation.
* |'f null uses the connection already set.
* @xception java.lang. ||l egal ThreadSt at eExcepti on contai ni ng any
* probl ems.

*/

public synchronized void start (Socket newConnection) throws
I'll egal ThreadSt at eExcepti on
{

super.start (newConnection);
setUp ();

}

It isvitaly important that the first line in the start function is the call to the super.start
function. If thisis not called then the ApplicationHandler will not be correctly initialised.
Once thisline is complete then any required user initialisation may then be performed. In this
example, the SimpleApplicationHandler calls an initialisation function called setUp.

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved Page: 12

In our example the setUp function does nothing however in normal circumstancesit is here
that the final set up of the ApplicationHandler is performed. Any processing which requires
that the ApplicationHandler is properly initialised and that the client is connected to the
ApplicationHandler should be placed here. For example, acall to the getClientScreenSize()
function requires a connection to be established. This function call must be placed in setUp
and not in defineComponents() or the class constructor. For more information on active
parameters seethe later section Active Parameters.

/**
* This function is called when the program first starts.
* Insert into here any initial set up code you may require.
*/
public void setUp ()
{
try
{
/'l Add any setup logic required here
catch (Exception ex)
{
ex. printStackTrace();
}
}

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved Page: 13

Exception Handling

It isworth noting the amber.server.exception structure. All Amber exceptions derive off the
class amber.server.exception.AmberException. This exception can beinstantiated with
another exception. This allows nested chains of exceptionsto be created. This reduces issues
with catching and re-throwing exceptions wherethe stack traceof the original causeislost.
Calling printStackTrace() on an AmberException (or AmberException extended exception)
causes all causal exceptionsto be dumped in sequence from newest to oldest. Thus thelast
exception printed is the original exception generated.

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved Page: 14

Server Components (ComponentHandler’s)

If the ApplicationHandler corresponds to a standard Java application then the
ComponentHandlers correspond to the standard Java AWT controls. They are designed to
closely mimic the standard Javaversion 1.1 AWT controls to facilitate ease of understanding
and use. All server components ultimately extend the

amber.server.component. ComponentHandler class. It is this class which handles the
command and event processing required to allow the remote Amber controls to function.
Amber contains alarge range of available components in the amber.server.component
package incl uding:

. Buttons. anber . server. conponent . But t onHandl er . Thisisthe standard
button.
. Chart recorders. anber . server. conponent . Ti nePl ot Handl er . Thisisa

system which acts as a chart recorder displaying arange of values over time. When the
chart recorder isfull it scrolls to remove the left most value.

. Check boxes. anber . server . conponent . CheckboxHandl er. Thisisa
check box control allowing the user to select a boolean true/false value.
. Check box panels. anber . server. conponent . CheckboxPanel Handl er.

Thisisapanel containing a number of radio state buttons. This allows theuser to
select an item from an available range of options

. Choice controls. anber . ser ver . conponent . Choi ceHandl er . Thisisadrop-
down list of options. The user may select any of theitemsinthelid.
. Complex list controls. anber . server. conponent . Conpl exLi st Handl er.

An extension to the standard list. This control allows multiplecolumns, parent/child
lines, and images.

. Float Buttons. anber . server. conponent . Fl oat But t onHandl er. Thisis
an extended button with the following features: display of an image in the button as
well as a caption, may be configured to togg e state (allowing the button to act as one
of several possible choices).

. Images. anber . server. conponent . | mageHandl er . This control alowsthe
display of images. The types of images which can be displayed are JPEG and GIF.
. Image button. anber . server. conponent . | nageBut t onHandl er. Thisisa

button composed of two images: an up image which is the def ault and a down image
when the button is pressed. Apart from this the image button acts in the same manner
as astandard button.

. Labels. anber . server. conponent . Label Handl er . Thisisastatic control
which can display asingle line of text.

. Lists. anber . server. conponent . Li st Handl er . Thelist isacontrol which
displaysalig of text.

. Menu Bars. anber . server. conmponent . MenuBar Handl er . This component

functions amost identically to the standard Java menu bar control. It may only be
attached to Frame windows.

. Pop-up menus. anber . server. conponent . PopupMenuHandl er . This menu
may be used on any pand or frame component. It allows pop-up stand-alone menus to
be created.

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved Page: 15

Text Areas. anber . server. conponent . Text Ar eaHandl| er . Thisisamulti-
line text entry control.

Text Fields. anber . server. conponent . Text Fi el dHandl er. Thisisa
single line text entry control.

TreeLists. anber . server. conponent . Tr eeLi st Handl er . Thisisacontrol
allowing parent/child data to be displayed inthe form of a hierarchical treeof nodes.
Both text and images may be displayed & each node.

Wrapping Text Aress.

anber . server. conponent . W appi ngText Ar eaHandl| er . Thisissimilar
to the TextAreaHandler however this control can have pre-set margins within which
the text isforced to wrap (move to the next line).

ComponentHandlers are instantiated for use in the ApplicationHandler. A ComponentHandler
may be instantiated anywherein an ApplicationHandler or panel (see below). In our previous
example the SimpleA pplicationHandler instantiated a GenericPanel type of
ComponentHandler.

ComponentHandlers are instantiated in one of two ways. These are:

1.

The ComponentHandler handles a control which will reside inside a panel at the
remote client (see panels section below). In this case there is no corresponding appl et
tag in the HTML page for this component. In this case the Amber Server will
automatically assign an ID for the component and this information is not required.
This form of the ComponentHandler takes one argument whichis:

a Applicationinterface. Thisis the handle to the ApplicationHandler within
which the ComponentHandler resides.

The ComponentHandler is to control a remote component specified directly in an

HTML applet tag. In this case the ID is prespecified in the applet tag and cannot be

changed. For this reason the ComponentHandler tekes two argumerts:

a ID: an integer which corresponds to the ID number specified in the applet tag.
Should these not correspond the ApplicationHandler will not be able to control
or receive events from the remote component.

b. Applicationinterface. Thisis the handle to the ApplicationHandler within
which the ComponentHandler resides.

Typicaly the second form of the ComponentHandler is only ever used within the extended
ApplicationHandler classitself. Inside panels and frames the first form of the
ComponentHandler constructor is used.

Thusto create a ButtonHandler for a panel the following line could be used:

private ButtonHandl er btnTest = new ButtonHandler (this)

To instantiate a ButtonHandler to control a remote button component with an ID of 6
specified in the HTML applet tag the following line could be used:

private ButtonHandl er btnTest = new ButtonHandler (6, this)

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved Page: 16

In both casesit is assumed that the ComponentHandler was constructed from within an
ApplicationHandler extended class. Should the ComponentHandler be constructed with an
Amber pand the constructor changes. The required Application Handler isfound using a
panel member function getParentApplication() which returns a handle to the parent
ApplicationHandler (see panels). The new form would be

private ButtonHandl er btnTest = new ButtonHandl er (getParentApplication()

)

Once instantiated the component must be added to the application or panel. Thisis done using
the add function. The syntax of this function is the same in both ApplicationHandlers and
panelsandis:

public void add (Component Handl er newConmponent, Object constraints)

where the arguments are:
. newComponent. The ComponentHandle to add to the ApplicationHandler or panel.
. constraints. An Object with the constraints to use when creating the component. At the

current point in time this object must be of the type

anber . type. server. XYConstr ai nt s. Thisisthe only constraint class
understood by the Amber system. Use of other standard Java constraints will be
rejected.

For example:

add (btnTest, new XYConstraints (10, 10, 80, 40)) ;

The ComponentHandler is now ready for use. Each ComponentHandler has a set of standard
functions available for use and a set of extension functions which correspond to the normal
functions available in anormal AWT control. The base ComponentHandler classis
responsible for messaging and handles all the extended requirements for event reception and
processing.

Event Handling

Event handling in Amber is almost identical to that of normal Java AWT. The following
events are supported:

. Action Events.

. Component Events.

. Focus Events.

. Item Events.

. Key Events.

. Mouse Events. This includes both standard mouse and mouse motion events.
. Text Events.

. Window Events. Thisis a special case see below.

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved Page: 17

With the exception of Window Events the events thrown are the standard Java AWT event
classes. This alows the normal addListener interface corresponding to the required event to
be used when listening for events. 4/l ComponentHandler derived classes can generate any of
these events. In some cases although the event interface exists no event will ever be sent by
the corresponding control. For example, a ButtonHandler will fire Action events but not ltem
events.

All ComponentHandlers may fire the following events:

. Component Events.
. Focus Events.

. Key Events.

. Mouse Events.

Window Events are a special case in Amber. The Window event used in Amber is an instance
of the classanber . awt . event . Conponent W ndowEvent . The corresponding listener
classisanber. awt . event . Conponent W ndowLi st ener . These classes are designed
to appear similar to the corresponding event and listener in standard Java.

An aternative mechanism for handling events is available when extending existing
ComponentHandlers. By overriding the processEvent functionsit is possible to hande
incoming events without resorting to the listener interface. Comparing this mechanism to that
available in standard Java applications the programmer must enable the events which are to be
processed by calling the enableEvents function with the events to handle. Amber handles this
inasimilar fashion however the function to enable eventsin a ComponentHandler is:

voi d set Event Mask (int event Mask)

Where the eventM ask parameter is one or more of theMask constants specified in

anber . cl i ent. RConst ant s. These mask values correspond tothe types of events
which the ComponentHandler may be expected to process. The event mask values can be seen
in Appendix: Common Ambea Applet Tags.

Specifying the Events Sent over the Network

Normally the programmer will not be required to directly alter which events are transmitted
by the Amber system. Just specifying and calling the addListener functions defines which
events are transmitted from client to server. However there will be occasions when amore
granular definition of exactly which events are transmitted from the dient is required. The
normal reason for this would be to reduce network traffic however we have seen in the

previ ous section that extending ComponentHandlers may require special event handling. In
these cases the default event behaviour of Amber can be overridden for a ComponentHandler
by calling the function:

voi d set Event Mask (int event Mask)

Where the eventM ask parameter is one or more of theMask constants specified in

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved Page: 18

anber . cli ent. RConst ant s. Thisfunction specifies both at the client and server which
events will be transmitted from the client component to the corresponding
ComponentHandler.

For example adding a key listener using the following code line:

component . addKeyLi stener (this)

to acomponent would enable the following:
. Key Pressed Events.

. Key Released Events.

. Key Typed Events.

Often only one event would berequired, Key Released for example. To overridethe default
behaviour and only allow Key Released events the following code segment could be used:

component . addKeyLi stener (this) ;

int mask = conponent.get Event Mask () ;

mask &= ~(RConstants. KeyTypedEvent Mask |
RConst ant s. KeyPressedEvent Mask) ;

conmponent . set Event Mask (mask) ;

The addK eyListener function enables all three events and the following two lines directly
disable Key Typed and KeyPressed for this component. It is important to note that all other
program code will also no longer receive these events from this component.

An alternative to the above code could be used in the case where an extended class wishes to
alter the eventshandled. Thisis by using the protected functions:

addEvent Mask (int eventMasks) ;
removeEvent Mask (int eventMasks) ;

This allows selected event types to be added or removed from the events which will be
created.

Basic Functions

All ComponentHandler extended classes are capable of certain generalised operations useful
to programmers. These operations include:

. public void forceComponentGetUrl (String urlString). This function forces the
remote client browser to get an HTML URL. Thiswould overide the current page the
Amber client residesin.

. public void forceComponentGetUr| (String urlString, String location). Similar to the
other form of forceComponentGetUrl, this function allows the new URL to appear in a
different page. Available location strings are:

. " self" Show in the window and frame that contain the applet.
. " parent" Show in the applet's parent frame. If the applet's frame has no parent

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved Page: 19

frame, actsthe sameas"_self".

. " _top" Show in thetop-level frameof the applet's window. If the goplet's frame
isthetop-level frame, actsthe sameas™_self".

. " blank™ Show in a new, unnamed top-level window.

. Name Show in the frame or window named name. If atarget named name does

not already exist, a new top-level window with the specified nameis created,
and the document is shown there.

. public void setForeground (Color foreground). Sets the foreground color of the
control.

. public void setBackground (Color background). Sets the background (fill) colour of
the control.

. public void setForegroundBackground (Color foreground, Color background). This
allows the programmer to set both foreground and background colours & once.

. public void setFort (String name, int style, int size). Sets the font of the control.

. public void displayMessageBox (String title, String caption). Displays awindow
with acaption and asingle OK button.

. public int queryMessageBox (String title, String caption, int type). Allows the
programmer to ask a question and get a user response.

. public void setCursor (Cursor cursor). Sets the cursor to a defined type.

. public FontCharacteristics getFontCharacteristics (...). These functions allow the
server to query some of the FontMetric type information on the client. This includes
the basic font size information and optionally thewidth of a string in a specified fort.

Note: It isimportant to keep in mind that Amber controls are written to look and behave as
the equivalent Java AWT controls. However Amber controls are not AWT controls and
therefore are not guaranteed to implement all methods and properties of the standard AWT
controls. As the Amber ComponentHandler’ s extend java.awt.Component there are a number
of legacy functions contained in Component which are not supported in the Ambe
ComponentHandler. For this reason it is worthwhile when using Amber controls to check that
the function being called is supported in Amber.

Panels

Panels are one of the more powerful and useful ComponentHandlers available in Amber. A
panel is acontainer class which contains other ComponentHandlers. This allows powerful and
varied application interfaces to be created which have the full functionality of a normal
application.

Panelsin Amber almost invariably extend the class
anber . server. panel . BasePanel . Thisclass contans substantial fundionality
making the use of panelsin Amber simple and straightforward.

Inits simplest form apanel can be considered as a drawing surface on which components are
drawn. At the client browser panel components use different classes to those which reside

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved Page: 20

directly inthe HTML. Typically there will be one to four RPanels defined in the HTML as
applet tags. Each RPand is capabl e of displaying any of the controlsin the package
anber. cl i ent. panel . The RPanel creates the panel controls dynamically as instructed
by the serve. It is possibleto have panels (the panel classis

anber. client. panel . BasePanel) created inside the parent RPand, inthis way a
varied and rich interface can be created as required.

A panél is also capable of performing asimple set of drawing functions. We will describe
each of these capabilitiesin turn.

Drawing Inside Panels

Panels support draving operationsas a series of commands to the pand which are executed in
sequence. Later drawing operations may overlap earlier commands. Thus apiece of text could
belaid over afilled rectangle. The functions relating to drawing ae:

. setBorder. This allows the creation of a border around the entire panel. The border
may be raised, lowered or none.

. addX X X. This addsan operation to the sequence of drawing operations. The possible
operations are:
. Draw Image.
. Draw String.
. Set Colour.

Draw Line.

Draw Rectangle.

Draw Oval.

Draw Arc.

. removeOperation. This command removes a specified drawing operation.

. removeAllOperations. This command removes all operations specified.

See the Appendix: Panel Specific Functionality for a more detailed description of the
available functions.

Child ComponentHandlers in Panels

All panels can contain other controls which extend ComponentHandler (including other
panels). Thus the user can define the controls which are displayed on a panel and create any
user interface required.

All panelsuse aform of X/Y Layout wherethe location and size of the children controls are
defined by describing their bounds within an X/Y grid. Using this schema the control
boundaries are defined by setting the location of the top left corner of the control and the
width and height of the control. No other layout type is possible for Amber panels. Functions
existintheanber . server. panel . BasePanel classwhich allow the manipulation of
the controls inside the panel. These functions are:

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved Page: 21

add. This function adds a ComponentHandler to the panel. The syntax of the
command is:

public void add (ComponentHandler newComponent, Object constraints)

where newComponent is the ComponentHandler to add to the panel and constraintsis
an instance of amber.type.server.XY Constraints defining the size and location of the
control.

It isthe act of adding the component to the panel which creates the visual control at
the browser. For this reason if the component is not added to the panel it will not be
possible to useit.

remove. This fundion removes a control which was aready added to the panel. This
removes all the visual and messaging elements associated with the control. Thisis
important to note when adding visual Frames (window controls, see below) to the
panel. Only when remove is cdled is the window dsposed of. The function syntax is:

public void remove (ComponentHandler component) throws
ComponentHandlerException

where componert is the ComponentHandler to remove from the panel.
setBounds. This function redefines the X/Y /Width/Height of the control inthe panel.
Syntax:

public voi d setBounds (ComponentH andl er component, int X, inty,
int width, int height) throws ComponentHandlerException

public void setBounds (ComponentHandler component, Rectangle rect) throws
ComponentHandl erException

setLocation. A subset of setBounds, this function moves the componert in the panel.
The size of the control is unchanged. Function syntax is:

public void setL ocation (ComponentHandler component, int X, int y) throws
ComponentHandl erException

public void setL ocation (ComponentHandler component, Point point) throws
ComponentHandl erException

setSize. The other subset of setBounds this function leaves the component location
unchanged but resizes the control. Function syntax is:

public void setSize (ComponentHandler component, Dimension dimension) throws
ComponentHandlerException

public void setSize (ComponentHandler component, int width, int height) throws
ComponentHandlerException

See the Appendix: Panel Specific Functionality for a more detailed description of the
available functions.

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved Page: 22

XYConstraints

This class is used when adding a component into a panel. It defines the bounds of the control
and any othe information reguired by the panel when creating the component at the remote
browser. The information held in theclassis:

Component bounds (required). Thisisin the form X, Y, Width, Height coordinates
which define the top left corner of the control and its physical size.

Remote class name (optional). This string overrides the normal behaviour of the
Amber panel. Normally the BasePanel queries the component to determine which
control should be created at the ranote browser. Should this value be s the class
defined in the remote class name string is created instead. Thisisrarely required and
should only bedone with a full understanding of the requirements of Amber panels
and their associated controls. One possible use of this would be the creation of a new
remote panel control which responds to the same control set as another Amber
component. Thus one ComponentHandler could be used to control two types of
remote panel controls. A better way in this case would be to extend the original
ComponentHandler and override the getPanel Type fundion to return the correct
remote class name.

Parameters string (optional). This string can be used to define the initial state of the
remote control. Thisistypically used to simplify the number of calls required to set up
aremote control. For example alabel usually only requires the text to be set. Rather
than calling setText on the associated LabelHandler the label could be included in the
parameters. The structure of the string varies depending on the component. The
possible values of the parametersis defined in the documentation for the associated
ComponentHandler.

Creating your own Panels

Almost all custom parels extend the class: amber.server.panel.BasePanel. Thisclassis
abstract. It is not possible to instantiate this class directly. For this reason the normal
behaviour isto extend this class and add the required functionality. Should a simple panel be
required the class amber.server.panel.GenericPanel should be used instead. The GenericPanel
extends BasePand to give asimple pane with only generic functi onality.

When extending BasePanel the following abstract functions must be defined:

defineComponents. Thisfunction isthe bas ¢ set-up function for the panel class. It
must be called from the constructor in the extended class. It typically defines the base
structure of the components in the panel and the associated listeners. Theinitia filled
state of the componentsis normally placed in fillControls which is called at the end of
defineComponents. This structure can be relaxed if the panel will only ever be added
once and never removed. This structure must be adhered to if the panel isto bea
member of a pand template group (see below). Function syntax is:

protected void defineComponents () ;

fillControls. Thisfunction is called to set up the initial state of the componentsin a

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved Page: 23

panel. It is called every time the panel is recreated in a panel template group (see
below). For this reason functionality which should only be called once such as adding
listeners should never be placed here unless each instance of the panel will only ever
be added once to a container. Function syntax:

public void fillControls () ;

. canClose. Thisfunction is used in panel template groups to determine if the panel can
be replaced with another panel (see below). Return trueif thisis not required.
Function syntax:

public boolean canClose () ;

. saveData. Thisfunction is called inapanel templategroup just before the panel is
replaced (see below) to save the state information of the panel if required. Leave
empty if this fundionality is not requred. Function syntax:

public void saveData () ;

Asthe panel must be connected to a corresponding visual element at the remote browser it is
possible that the panel may not be connected initially. Typically during instantiation the panel
will not be connected to the remote panel. Amber attempts to reduce issues of this type by
gueuing outgoing commands until they can be sent. Should code be required which must be
guaranteed that the remote client is connected then this should be placed in the addNotify
function. Thisfunction is called whenever the panel is set active (i.e. is connected to the
remote component). The corresponding function for when the pand is made inactive is
removeNotify.

Example BasePanel Code

The following is an example of asimple panel it has alabel, an edit field and a button. When
the button is pressad it compares the text against the string and displays a message box with
the results.

package nypackage;
i mport java.net.* ;

i mport anber.type.server.* ;

i mport anber.server.exception.* ;

i mport anber.server.application. ApplicationHandler ;
i mport anber.server. panel.* ;

i mport anber.server.conponent.* ;

i mport java.io.Serializable,;

i mport java.awt.event.?*;

public class MyPanel extends BasePanel inplements ActionListener

{

private ButtonHandl er button =
new ButtonHandl er (getParent Application())

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved Page: 24

private Label Handl er | abel =

new Label Handl er (get Parent Application()) ;
private TextFi el dHandl er edit =

new Text Fi el dHandl er (get Parent Application()) ;

/**
This constructor is initialised by the parent application.
@ar am application. Applicationlnterface which is the parent
* application.
*/
public MyPanel (Applicationlnterface application)
{
super (application) ;
defi neConmponents () ;
}
/**
* This constructor is for HTML panels, in this case the ID
* for this panel is also specified along with the parent
* application.
* @aramid. int ID for this panel.
* @aram application. Applicationlnterface which is the parent
* application.
*/

public MyPanel (int id, Applicationlnterface application)

super (id, application) ;
defi neConmponents () ;

}
/**
* This function determnes if the panel can be cl osed.
* The derived panels nmust determne if this panel can close.
* |f this is not possible the function should return false.
* @eturn boolean false if it is not possible to close this panel.
*/
public bool ean canCl ose ()
{
return true ;
}
/**
* This function is called to save any required information
* in the panel.
* This function is called externally when another panel
* wishes to take
* over the base panel or when closing the panel.
* This function need not actually do sonething.
*/
public void saveData ()
{
}
/**
* This function should be called at the end of recreatePanel.
* |ts specific purpose is to set the controls to a known state once
* they are created.
*/
public void fillControls ()
{

try
{

button. setLabel (“Press Me") ;

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved Page: 25

} catch (Exception ex)

ex. printStackTrace () ;

}
}
/**
* This function is called to define the conponents which are
* a part of this panel
* This function is called by the constructor to set up
* the normal static conponents and their |ocation
*/
protected void defineConmponents ()
{
try
{
add (| abel
new XYConstraints (40, 40, 300, 20
"Enter the text and press the button")) ;
add (edit, new XYConstraints (40, 65, 200, 25))
add (button
new XYConstraints (80, 100, 100, 20, "Press Me")) ;
/1 Add the button listeners
button. addActi onLi stener (this) ;
/1 Now fill the controls with any val ues
fillControls () ;
} catch (Exception ex)
{
ex. printStackTrace () ;
}
}
/**
* This function is called when the button is pressed
@aram e. ActionEvent containing information relating
* to the event which occurred
*/
public void actionPerformed(Acti onEvent e)
{
try
{
String value = edit.getText () ;
if (value.equals (“My Secret Text”))
{
di spl ayMessageBox (“Guess”, “You guessed mnmy secret!!!”) ;
} else
{
di spl ayMessageBox (“Guess”, “Nope, try again”) ;
}
} catch (Exception ex)
{
ex. printStackTrace ()
}
}

Now let’slook at the above example and discuss some of the more important details. First the
class definition:

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved Page: 26

public class MyPanel extends BasePanel inplements ActionListener

This means that the classis called MyPanel and extends the class BasePanel. Thisis normal
for panels. It implements ActionListener which means it can respondto ActionEvents, thisis
how we will handlethe button press.

Now lets look at the ComponentHandler declarations:

private ButtonHandl er button =

new ButtonHandl er (getParentApplication())
private Label Handl er | abel =

new Label Handl er (get Parent Application())
private TextFiel dHandl er edit =

new Text Fi el dHandl er (getParent Application())

If we compare these declarations with those for the ApplicationHandle in the previous
sections we can e that these dedarations contan less arguments. Because these
ComponentHandlers correspond to panel controls we do not have to specify the ID value for
them. Whileit is possible to do so it is more convenient and safer to get the application to do
so for us. The Amber button is ButtonHandler, the Amber label is LabelHandler and the
Amber TextField (edit) control istheTextFieldHandler class.

Now letslook at the constructors:

public MyPanel (Applicationlnterface application)
{

super (application)
defi neComponents ()
}

public MyPanel (int id, Applicationlnterface application)
{

super (id, application)
defi neConmponents ()
}

These constructors are two of many possible constructors for pands. In this simple case we
assume that the panel will either bea sub panel of another panel (thetop constructor) or will
be attached to a panel defined by an HTML applet tag (the second constructor). As required
by all Amber components the classisinitialised by the parent application (which is required
for messaging) and optionally the ID which will be used to connect to the correct remote
client panel. Notice that the defineComponents fundion is called in theconstructors. This
alowsthe classesto define which sub-components wi ll gppear on the pand (see bel ow). If
this function is not called the panel will likely remain blank.

This natually leads to the defineComponents function:

protected void defineConmponents ()

{
try
{
add (| abel,
new XYConstraints (40, 40, 300, 20,

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved Page: 27

"Enter the text and press the button")) ;
add (edit, new XYConstraints (40, 65, 200, 25))
add (button,

new XYConstraints (80, 100, 100, 20))
/1 Add the button listeners
butt on. addActi onLi stener (this)

/1 Now fill the controls with any val ues
fillControls ()
} catch (Exception ex)

ex. printStackTrace ()

}

The function basically consists of a series of add functions which add the various declared
components to the panel. Thisinstructs the remote panel to build the corresponding visual
elements and addsthe ComponentHand ers into the messaging system. The XY Constrants
classes are used to define the characteristics of the controls including size, location and initial
parameters text. The parameters text is passed unchanged to the remote component at the
client browser. It is up to the remote component as to how this string is processed. In thecase
of the LabelHandler component the parameters text is the text of the label.

The action listener for the button is also added at this point. The final thing the function does
is call thefillControls function to set up theinitial state.

public void fillControls ()

{
try

{
button. setLabel (“Press Me”)
} catch (Exception ex)

ex. printStackTrace ()

}

This function sets up the controls to a default state. In this example we set the label of the
button to “Press Me”. While it would have been possible to sa the label in the XYConstraints
parameters field for demonstration purposes we have done so in fillControls. The function
fillControlsis called every time the panel is recreated (see Pand Template Groups).

publ i c bool ean canCl ose ()

{
}

public void saveData ()

{
}

return true ;

These functions are required for panels. They normally only have ause in panel template
groups and hence in this example do little. For amore detailed explanation of these functions
and their use see the Panel Template Group section below.

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved Page: 28

Finaly let’slook at the actionPerformed function which actually does the require functions of
the panel

public void actionPerformed(Acti onEvent e)

{
try
{
String value = edit.getText () ;
if (value.equals (“My Secret Text”))

{

di spl ayMessageBox (“Guess”, “You guessed my secret!!!”)
} else
{

di spl ayMessageBox (“Guess”, “Nope, try again”)

}

} catch (Exception ex)

ex. printStackTrace ()

}

This function calls the function getText on the remote TextField to get the text the user
entered. It then compares thevalue with the string “My Seaet Text”. If the user corredly
entered this string then a message box window is displayed on the dient with the title “Guess”
and the caption “Y ou guessed my secret!!!” otherwise a message box window is displayed
with the caption “Nope, try again”.

While this example is simple it highlights the requirements for creating custom panels and
handling the events which the remote client components transmit.

Panel Template Groups

A panel template group is a special dtuation where several panelsshare the same remote
visual panel at the client browser. In this case the panels act as templates which are
superimposed on the remote panel. This allows a multi-screen system where a browser panel
can have different incarnations depending on requirements. Thisis useful in situations where
the developer does not wish multiple frames (windows) but requires multiple screens of
controls.

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved Page: 29

It is expected for a panel template group that a panel may be reconstructed more than once as
the panels are swapped in and out of the client visual panel. The complexities of this
operation are handled by the class amber.server.panel.Panel TemplateGroup

It isimportant to note that in a panel template group all panels share the same component ID.
Thisisaunique situation in Amber as normally all controls have individual ID’s.

The restrictionson panelsin a pand template group are more stringent than for norma panels.

Brovweser HTML Page
Panel Template

Cliert visual Panel !/}\
s‘ Panel 1

! Panel 2

o Panel 3

Again the panel extends amber.server.panel.BasePanel. All children must be added to the
panel in the defineComponents function. While it is still possible to add controls in other
parts of the codethis must be done carefully. The BasePanel kegps a record of al
ComponentHandlers added to it. When the panel is displayed in the client visual panel it
attempts to recreate all the components it understands. Thusif a ComponentHandler is added
later in the code, when the panel is recreated a second time this control will also be recreaed.
Should the later section of code also be executed again rwo versions of the control will
appear. Thus code which dynamically adds ComponentHandlers must also ensure that old
copies of the ComponentHandler are not there or are removed.

Only one panel can be selected (using the visual pand at once). Thisis done by using the
extended constructor for BasePanel:

public BasePanel (Applicationlnterface pageHandler, Panel TemplateGroup panel Group,

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved Page: 30

boolean selectedState) ;
where pageHandler is the Applicationlnterface (application) the panel is a part of, panel Group

is the Panel TemplaeGroup the pand will be a part of and selectedState defines if the panel is
to be the first displayed on theclient visual pand.

When a panel isrecreated on the client visual panel the following occaurs:

. The function canClose is called on the previous panel. Should this panel return false a
PanelHandlerException is thrown.
. Should the canClose function return true the function saveData is called on the

previous panel. This allows the previous panel to save any data it may later require.

. The previous panel is then deselected. This stops the previous panel from responding
to messages sent to the new panel.

. All the visual components on the client visual panel are removed.

. All the ComponentHandler’ s known to the BasePanel are recreated. Thus all the visual
parts of the Amber ComponentHandlers are regenerated on the client visual panel in
the last known position and size.

. The function fillControlsis called. This allows the panel to be recreated and then the
child controls set to a known predetermined state.

Example Panel Template code

In this sectionwe will discuss the code needed to swap panelsin and out of the client parel.
For the purposes of this discussion we will assume that two panels. panel 1 and panel2 share
one visual panel (ID 0) defined inthe HTML. The code is assumed to be part of the
ApplicationHandler code.

The panels are instantiated using the following code:

private Panel Tenpl ateGroup panels = new Panel TenplateGroup (0) ;

private MyPanel 1 panell = new MyPanell (this, panels, true) ;
private MyPanel 2 panel 2 = new MyPanel 2 (this, panels, false) ;

This code cregtes the panel template group and assigns ashared ID for the group of O. It
creates the two panels assigning them to the panel template group and making panel 1 the first
visual panel.

The following code changes the panel displayed on the client from panel1 to panel 2.

try

{
panel s.setSel ectedPanel HandlerAndCreate (panel2) ;
} catch (PanelHand erException ex)

{
System.err.printin (“Error changing parel”) ;

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved Page: 31

ex.printStackTrace () ;

Frames

A Framein Amber corresponds closely to anormal Java Frame. Thisis a stand-alone window
with atitle bar (caption). Framesmay contain other components. Frames act aimost
identically to Panels. In fact amber.server.panel.BaseFrame extends the normal panel dass
amber.server.panel.BasePanel.

For the above reasons ComponentHandler’ s are added and removed in an identical fashion to
BasePanel. BaseFrames have additional functionality required to handle the extended
requirements inherent in stand-done windows. Thisfunctionality is:

. BaseFrames can generate ComponentWindowEvents. In fact they are one of the few
ComponentHandlers which do so. ComponentWindowEvents closely correspond to
the standard Java WindowEvents. To listen to these events use the
amber.awt.event. ComponentWindowL istener interface (see Event Handling).

. get/setTitle. The title corresponds to the title bar caption. These functions alow the
programmer to ater the caption of the window.

. setBounds. This function allows the top left location of the window and the window
Sizeto be set.

. setl ocation. A subset of setBounds. This function changes the location of the window
in the client screen.

. setSize. Again a subset of setBounds. This function changes the size of the window.

. toBack. Sends thewindow to the back of other windows This function can be used to
change the visual ordering of overlapping windows.

. toFront. Brings the window to the front of all other windows. Again this function

changes the ordering of the windows on the client screen.

Frames are modd ess windows. This means that the launching panel or frame continues to
execute code and respond to events To create a modal window (i.e. one which blocks all
other input) use the M odalBaseFrame class (see below).

Modal Frames

A modal frame adsin avery amilar manner to BaseFrame. It isrelatively straightforward to
create modal frames by extendi ng BaseFrame and i mpl ementi ng the moda code directly.
However, in general the normal method of creating a modal frame is to extend the class
amber.server panel .M oda BaseFrame. M odal BaseFrame extends BaseFrame adding in
required functionality to make the BaseFrame modal.

Modal frames are handled slightly differently in Amber to the Dialog classin standard Java. A

Dialog in Javarequires a parent Frame when constructing the class. Amber does not have this
restriction, a// ComponentHandler classes have the capacity of becoming modd. In general, it

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved Page: 32

Is not meaningful for normal controls such as buttons etc to trap al incoming events.

For a ComponentHandler to become modal the class must call the function
setComponentModal with a boolean argument having avalue of true. From this point on the
ComponentHandler gains a/l/ events sent from the client. To terminate modality call
setComponentModal with afalse argument. The function setComponentModal is protected
and must be called by an extending class.

M odal BaseFrame contains the additional function: show. Calling show causes the modal
frame to set the Frame visible and block all execution and events to the parent class which
called it. Thus theparent code will gop at the show cdl until the window internally cdls
setComponentModal (false). For this reason the Modd BaseFrame extended class must call
setComponentModal (false) (typically asthe result of a button press or window event) or the
application will not continue execution.

Example ModalBaseFrame

The following is asimple example of amodal frame which contains a single button which
closes the window.

package mypackage;

i mport anber.server.application. Applicationlnterface ;
i mport anber.server.panel.* ;
i mport anber.type.server.* ;

public class MyModal Frame extends Modal BaseFrame i npl enents ActionLi stener

{

private ButtonHandl er button =
new ButtonHandl er (getParentApplication())

public MyModal Frame (Applicationlnterface pageHandl er)

{
super (pageHandl er)

defineComponents ()

}
public void fillControls ()
{
button.setlLabel (“Press Me”)
}
protected void defineComponents ()
{
add (button, new XYConstraints (10, 10, 100, 25))
button. addActi onLi stener (this)
fill Controls ()
}
public void actionPerformed (ActionEvent e)
{
set Conponent Modal (false)
}

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved Page: 33

The code that would display thismodal frame is asfollows:

private void showFrame ()

{

/] Create the frame class
MyModal Frame myFrame = new MyModal Franme (
get Parent Application())
/'l Tell the panel to create this frame at the renote client
/'l This displays the frame at |ocation 10, 10
/'l with a size 300*500 pixels
add (myFrame, new XYConstraints (10, 10, 300, 500))
/'l Display the frame and block until it returns
my Frame. show ()
/'l Renove the frame
remove (nmyFrame)

}

Unlike standard Java Framesiit is the parent panel which creates the visual Frame on the
client. For thisreason it should be added to the panel. Calling remove on the panel disposes of
all the associated visual resources for the frame. The XY Constraints class defines the starting
location of the top left point and the physical size of the frame window itself.

Active Properties

There are several properties which are not valid unless the application is connected to the
client. When the ApplicationHandler is first instantiated the application is not connected to
the server and any commands are left in a pending state. It isimportant not to put code in the
constructors which depend on parameters that have not been set when the application is
instantiated. These parameters include:

. Client Screen Size. Thisis attained using the getClientScreenSize function in the
ApplicationHandler. It retums the Dimension of the screen at theclient.

. Page ID. Thisisthe page identifier which was used to identify which
ApplicationHandler extended class to instantiate.

. Page Sub ID. Similar to Page ID it can be used to identify the ApplicationHandler or it
may be used to pass optional configuration information to the application.

. Log object. While the primary Core log object is valid, the log object contained in the
ApplicationHandler will not be.
. The core socket over which the application communicates with the client components.

These properties can be guaranteed valid in thefollowing places:

. ApplicationHandler. The parameters are correctly set by the time the start (Socket
newConnection) function is called. Override this function and place your own code
after the super.start (newConnection) call, i.e.

public void start (Socket newConnection)

{

/'l Initialise the ApplicationHandl er
super.start (newConnection)

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved Page: 34

/'l Performyour own initialisation here

}

. ComponentHandler extended classes. This includes BasePanel and BaseFrame. When
the ComponentHandler is activated (i.e. connected to the remote client) the function
addNotify() is called. When the ComponentHandler is deactivated (i.e. disconneced
from the client) the function removeNotify() is called. By overriding these functionsiit
is possible to creae code which depends on the active parameters.

public void addNotify ()

{
/] Call the super addNotify
super.addNoti fy()
/] Performyour own initialisation here
}

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved Page: 35

Running Amber
Applications

Introduction

Thereis astrong correlation between the HTML page and an Amber application. It isthe
HTML page which is served by the web server to the client browser. The applets (HTML
resident components) initialise and connect to the Amber server typically installed on the
same system as the Web Server. The Amber server then seleds the correct application
(ApplicationHandler extended class) and runsit, initialising it with the connection to the
remote client. Thus the normal initidisation sequence for an Amber gpplication is as follows:

1 The client browser connects to the Web Server and requests an HTML page
containing Amber controls.

2. The browser loads the Amber client jar containing the Amber client dasses.

3. The Amber client (controls) applasinitialise and the ID O contrd establishes a
connection to the specified Amber server, typically listening on port 21384.

4. The Amber server reads the connection packet and extracts the Page ID and Page Sub

ID fields.

5. The Amber server reads the Amber configuration database looking for information
corresponding to the input Page ID and Page Sub ID.

6. If these values are located in the configuration datebase the corresponding

ApplicationHandler extended class is instantiated.

7. The ApplicationHandler isinitialised with required information. This includes the
Page ID, Page Sub 1D and the socket connection to the remate ID O contrd.

8. The ApplicationHandler is started and manages the connection from this point.

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved Page: 36

——1: Initial HTTP Connection ———m

¥

i

Desktu:np%ystem

e | e |
oc—
ac—
—c—
—c—
ac—
—c—

r__,,.—#"

5
o
Fal

JErYEr

2 HTTPHTKML Amber Response Page

3 Amber Connection

1000000~

Amber ’Eerver

Database Search for Application Infarmation

“'H-H______ﬁ_ﬂd-r-’

Amber
Configuration
Databaze

'_____\—‘_’_'_,_,.,-"

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved Page: 37

Configuring the Amber Server

As can be seen the Amber server must be configured to recognise the incoming connection
request and correctly start the right application class. Crucial to this process is the Amber
Configuration Database.

To create and run an Amber application the following process must be followed.

1 The base Amber gpplication must be areated. Thisis aclass which extends the class
amber.server.application.ApplicationHandler. The application may contain
panels/frames or other more simple Amber controls. Thus although an Amber
application starts with an ApplicationHandler class it usually contains a substantial
number of additional classes to handle the processing requirements for the application.

2. The HTML page correspondingto the application is created. Thisis standard HTML
which is formatted in the normal way but contains one o more Amber spedfic
controls. The configuration for the ID O control also contains connection informaion
such as:

a Page ID.

b. Page Sub ID (optional).

C. Amber Server IP address.

d. Amber Server |P Port number (optional).

3. The HTML pageis added to the Web Server at the required |ocaion. Amber makes no
restrictions asto HTML page location. For the default installation the Web root
location is: amberserver/live/htdocs.

4, The application classes are copied into alocation within the Amber class path. The
typical location is either:

a amberserver/dasses.
b. amberserver/usr/classes.
Both these locations are in the normal class path for the Amber server.

5. The required database configuration for the application is added to the Amber Server
configurati on database. This alows the Amber server to match the incoming Page
I D/Page Sub ID information against the applicéion class.

6. The Amber server isrestarted if necessary. If thisis the first time that the classes have
been added this is not necessary. If the Amber server has loaded these classes before
the internal class loader will have cached the application classes. In this case the server
must be restarted.

7. Connect the browser to the HTML page and determine if the applicaion loads

properly.

It is very important when debugging applications to keep looking at the AmberServer.log file.
Thisfile, typicadly located in the amberserver directory iswherethe Amber server displays
errors. More information is logged than displayed on the Java console.

If apage is not loaded the console will contain the error:

Page 2004, -1 not found or could not be | oaded, please check the
Amber Server. | og

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved Page: 38

Thiserror will occur if the appli cation coul d not be started. This may occur if the Page
ID/Page Sub ID cannot be found and if the application threw an exception when instantiated
and initialised. The exception thrown will be logged in the AmberServer.log and can be used
to debug the application initialisation process.

Page ID/Page Sub ID

The Page ID and Page Sub ID’s are used to identify which ApplicationHandler classisto be
started when a connection is received at the Amber server. For this reason they must be
unique. Furthermore the entry in the HTML page must match the corresponding entry in the
configuration database. It is possible to configure the database configuration entry to ignore
the Page Sub ID when identifying the correct ApplicationHandler. This allows the Page Sub
ID to be used to carry simple integer information between the Web Server and the Amber
Server. More extensive information should be stored in a database accessible by both the Web
and Amber servers.

Database Configuration

The Amber configuration database contains two tables needed by the Amber server (in fact it
is possible to have only one table if only one of normal/seaure connections are required). The
table names are configurable in the AmberServer.properties file but default to “Pages’ and
“SecurePages” . Both tables have the same format and field names. There are example script
files for some databases in the amberserver/database/scripts directory. These script files
contain both the table creation SQL along with the row update SQL code for the
demonstration Ambe applications. The structure of the tablesis as follows:

Name Type Description

PagelD integer (32 bit) The identifying page number used to locate the
application

PageSublD integer (32 bit) A secondary number used to refine the location
process. Thisis optiond (see RequireSublD
field).

Handler varchar (255) The fully qualified name of the classto load.

This must extend ApplicationHandler. The
“.class’ should not be appended to the end of
the class name. The package should be included
in the class name.

Info varchar (255) A human readabl e string giving information on
the application.

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved Page: 39

Status

integer

Can be one of 3 staes:

. 0. Pending, waiting for connection.

. 1. Active, the application isrunning.

. 2. Ended, the program has terminated.
These states are not guaranteed to correctly
reflect the state of the application. Should be set
to 0.

CreationDate

date

The date the application was added to the
database.

ExpirationTime

integer (64 bit)

How long the application will run before being
terminated. Thisis specified in milliseconds. A
value of -1 indicates no expiration.

Requi reSubld

integer (boolean)

Shoul d the A mber server use both the Pagel D
and PageSubl D fields when identifying the
correct application. If set to false the
PageSublID field isignored. A 1 is considered
true elsefalse.

Transient

integer (boolean)

If thisflagis set to true (1) the database row is
deleted once a valid connection is detected.
This allows one-shot applications to be created.

Multiple

integer (boolean)

If thisflag istrue (1) only one copy of an
application canrun at any one time. Multiple
connections requests after the initial connection
will be rejected until the current application is
terminated.

PublicHandler

integer (boolean)

When true (1) thisapplication is avalable to
everyone who requestsit. Thisis more
applicable for systems which can request
available applications. Browser based
connections cannot access this information.

MailConnection

integer (boolean)

If thisisset toal (true) and theserver is
capable of connecting to an SMTP server, the
Amber server will e-mail a specified location
every time a connection isreceived. The
following fields must also be correctly set up.

MailMessage varchar (255) The body of the e-mail message to send.
MailRecipient varchar (255) The person to send the e-mail message to.
MailSmtpServer | varchar (255) The SMTP server to attempt to transmit the e-

mail message through.

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved

Page: 40

Mail Sender varchar (255) The sender of the e-mail message.

At the current point in time the following fields are unimplemented:
. ExpirationTime.
. Multiple.

A standard creation SQL query to create the database table could look like:

CREATE TABLE Pages (
Pagel D i nteger NOT NULL,
PageSubl D i nt eger NOT NULL,
Handl er varchar (255) NOT NULL,
Info varchar(255),
Status integer NOT NULL,
Creati onDate date,
ExpirationTime integer NOT NULL,
Requi reSubl D i nt eger NOT NULL,
Transi ent integer NOT NULL,
Mul tiple integer NOT NULL,
Publ i cHandl er i nteger NOT NULL,
Mai | Connecti on i nteger NOT NULL,
Mai | Message var char (255),
Mai | Reci pi ent varchar (255),
Mai | Smt pServer varchar (255),
Mai | Sender varchar (255),
PRI MARY KEY (Pagel D, PageSubl D)
)

Thisisasimple version of the query. More complex versions with default values are more
common however this displays the basic table structure. An example SQL query to add an
application to the database would be:

I NSERT I NTO Pages VALUES (10000, -1, ' dem. DenoPagel', ' Si npl e Amber
Denonstration', 0, curdate(),-1,0,0,1,1, 0, NULL, NULL, NULL, NULL) ;

This query adds the application demo.DemoPagel to the database. It will be loaded for any
connection with aPage ID of 10000. The connedion is permanent dlowing multiple
connections with no expiration time. No mail message will be sent on connection.

Text File Application Configuration

It is possible for simple applications to avoid the use of the configuration database and replace
it with atext file. Thistext file is specified in the config/amberserver/Amber Server.properties
fileinthe:

AmberServer.Normal PreCacheConnectionFile
AmberServer.SecurePreCacheConnectionFile
properties. This points to afile which contains the configuration in atext form. For this
reason for simplerequirements thismay be moreconvenient. The format of thefileis:

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved Page: 41

Pageld, PageSubld, PageSubldRequired, ApplicationHandler class, Information String,
Status, Creation Date, Expiration Time, Start Time, Transient, Multiple Connections, Public,
Mail Connection, Mail Recipient, Mail Sender, Mail SM TP Server, M ail Message

with each field separated by commas. These fields havethe same meanings as the

corresponding database fields. An example of thisfile can be found in the
config/amberserver/ConnectionPrecache.dat file.

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved Page: 42

Server Architecture

The Amber server acts as a flexible framework which can be extended by adding specialised
server objects. The general structure of the saver is shown in the following diagram.

The centre of the server system is the amber.server.manager.Core class. It isthis class which
connects al the various server components of the AmberServer together. The core system
contains a varigy of extension modules which provide the required additional functionality
needed to make the Amber server operate. These extension modules are:

. Connection Manager. The responsibility for this moduleis to handle incoming
connections. Theconnections areprocessed for type and passed to the correct module
to be handled in the appropriate manner.

. Application Manager. This modul e takes the incoming connections and associates the
corresponding ApplicationHandler derived class which will from this point take
control of the comnection and handle events and transmit commands to theremote
client.

. Database Manager. This module handles multiple databases and creates pools of
connections which are availablefor use by the various modules. This mechanismis
also available for use by thevarious ApplicaionHandler objects.

. Device Manager. Thisis responsible for managing a distributed device achitecture
which allows devices on distributed systems on the network to be available for use by
applications and server modules.

Itisrelatively straightforward for additional modules to be added to the server core. Amber
supports two different types of extension modules. These are:

. Other Connection Managers. The current ConnectionManagers avdlable are Browser
based connections, Java application based connedtions and Device connections. It is
possible to extend this to include a new type of incoming connection. These new
managers would implement the ConnectionHandler interface. The Application
Manager and Device Manager are examples of this type of module.

. General extension modules. These expand the functionality of the primary server core
but do not directly interact with theclient connections and the associated applications.
Timer or RMI interface modules would be examples of this type of module.

The additional modules are added to the server by adding therequired information into the

AmberServer.propertiesfile in config/amberserver. For more information on this process see
the Amber Installation Guide.

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved Page: 43

ConnectionHandlerderived

classes to handle other tvpes

Hormal
ApplicationContraller

ApplicationHandle

Secure

E of connecting systems. ! Application Manager ¥ ApplicationController
: ; ApplicationHandle
&
Adminstration
ApplicationCaontraller
ApplicationHandle
—
Marmal
DeviceContraller DreviceSystem
Lratabasehlanager Ll Care - Devicehdanager T
—
Sacure
DeviceContraller DreviceSystem
= 1
ConnectionPool Adminstration
DeviceContraller DeviceSystem

Extensionirterfacedearived ;
classez which do not hawe tol

: handle incoming connections

but extend the functionality of
the Core server. :

Connectionhanager

Marmal Receiver
Thread

Secure Receiver
Thread

Administration
Feceiver Thread

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved

Page: 44

Amber Server Core

The primary engine of the Amber server istheamber.server.manager.Coreclass. This class
contains all other elements which make up the Amber sarver. It is aways possible to gain
access to the Core object. Accessis viathe static function getCore() i.e.

public static Core getCore ()
This function returns the handle to the global Core object.

Once access to the Core has been gained the programmer has access to functionality allowing
the user to access the various managers and al so:

. getAmberRoot. This function returns a string containing the path to the Amber server
root directory at the server.
. getDocumentRoot. Part of the functionality required by Amber is Web based. Images

loaded by image controls, HTML files loaded from within Amber etc are located
relative to the Web server document root. This function returns a string pointing to the
Web server document root. This allowsAmber applications to programmatically
generate web content.

. getProperties. This returns the PropertyHandler object which controls the
AmberServer properties file (config/ambersaver/AmberServer.properties). This
allows propertiesto be set in the server properties file and accessed from an
application.

. setLoggingLevel. This changes the logging level alowing the amount of information
logged by the server to be atered.

See the Appendix: Amber Server Core Functionality for a more detailed desaiption of the
available functions.

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved Page: 45

Using Databases

One of the more common requirements for a server application is the manipulation of
database information. Amber supports multiple databases and allows multiple connections to
the databases to be created and handled in a simple and consistent manner.

The Amber database interface utilises the standard Java Data Base Connectivity (JDBC)
standard giving the widest possible flexibility of use for programmers. This allows the
programmer a simple unified mechanism for database access. It becomes the responsibility of
the Amber server to maintain the database connedions freeing the programmer to concentrate
on program logc rather than the requirements o establishing and maintaining database
connections.

Database Manager

The Amber database interface consists of a single Database Manger which controls a
collection of ConnectionPool’s

(anmber . server. manager . dat abase. Connect i onPool). Each ConnectionPool is
responsible for managing database access to asingle database. The ConnectionPool contains a
series of Connedion’s(j ava. sqgl . Connect i on) to the database.

The Database Manager has the following utility functions available for use:

. createNewConnectionPool. This function allows the programmer to create a new
ConnectionPool object dynamically. The normal method for adding new
ConnectionPools is to add the database configuration details to the
config/database/DatabaseM anager.properties file. However this function alows the
dynamic creation of arequired ConnectionPool.

. getAllConnectionPools. This function returns a Vedor of al possible
ConnectionPools understood by the Database Manager.
. getConnectionPool. This function gets a specific ConnectionPool defined by name.

All ConnectionPools should have unique names. Should more than one
ConnectionPool have the same name the behaviour of the system is undefined.

. getTotal Pools. This returns the number of ConnectionPools registered with the
Database Manager.

The primary Database Manager objec can be accessed from the Core object in Amber server.

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved Page: 46

Connection Pools

Under normal circumstances the programmer will operate most often with one or more
ConnectionPool objects. A connection pool is an interface to a database. The programmer
requests a connection to the database from the connection pool and usesthis connection to
perform database transactions. When finished the programmer rd eases the connection back to
the pool allowing other applications to useit.

A connection pool is configured to have a minimum and maximum number of connections.
The minimum number of connections are opened to the database when the connection pool is
created. If al the minimum numbe of connections are in use and another connection is
requested a new connection is created for the requester. Thiswill continue until the maximum
number of connections is exceeded at which point a requester will be given a null connection.

Connection pools are identified by name. When created the connection pool must be allocated
aunigue name or the wrong connection pool may be returned from the Database Manager.
Each Connection Pool has a unique log file in which database errors are logged.

Operations possible on ConnectionPool objects are:

. getAvailableConnections. Returns the number of available connections for this
connection pool. Thisisthe total number of connections minus the number allocated.
. getConnection. This returns a java.sgl.Connection object to the database. This allows

any normal JDBC operation to be paformed aganst the database The Connection is
checked out to therequesting application and is unavailable for other use until

released.

. getPoolName. Thisis the name of the ConnectionPool. This should be a unique value.

. getMaximumConnections. Returns the absol ute maximum connections which can be
connected to the target database.

. getMinimumConnections. Returns the minimum number of connections which are
connected to the target database when the ConnectionPool is created.

. getTotal Connections. This returns the total number of connections which have been

currently created for connection to the database. This should be compared with
getMinimumConnections and getM aximumConnections. This value may change as
more connections are created under [oad.

. releaseConnection. This function takes an allocated Connection and releases it back
into the pool of avalable connections for use by other applications.

It isimportant to note that a connection should only be requested just before use and then
released. There is no connection penalty to getting a connection as all pooled connections are
constantly kept connected to the database. Maintaining a permanent connection to the
database limits the number of simultaneous sessions the Amber server can support to the
number of available database connections.

Example Database Code

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved Page: 47

The following code demonstrates asimple code segment which accesses a database. Normally
the application would get a handle to the DatabaseM anager and ConnectionPool once rather
than each time the function is called but the example demonstrates the principles involved.

i mport anber.server. manager.* ;
i nport amber.server. manager. database.* ;
i mport java.sql.* ;

public int get RowCount ()

{
Core core = Core.getCore () ;
Dat abaseManager dm = core. get Dat abaseManager () ;
Connecti onPool cp = dm get Connecti onPool (“TestDB”) ;
Resul tSet rs = null ;
Statement statement = null
Connection connection = null
int value = 0 ;
try
{
connection = cp.getConnection () ;
statement = connection.createStatement () ;
rs = statenment.executeQuery (“Select count(*) frominfotab”) ;
value = rs.getlnt (1) ;
} catch (Exception ex)
{
ex. printStackTrace () ;
} finally
{
if (rs != null)
rs.close ()
if (statement != null)
statenment.close ()
cp.rel easeConnection (connection) ;
}
return val ue ;
}

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved Page: 48

Using Devices

Introduction

The Amber server system is cgpable of handling a distributed device system which isflexible
and powerful, allowing the best use of available distributed resources. These devices can be
such things as modems, printers, bar-code readers along with the more simple serial and
parallel ports. Devices are assumed to be connected to a number of nodes on a distributed
network. Each node is capable of managing the physical requirements of one or more devices
and promoting the capabilities of these to the main server systam. So, this makesit possible to
have printers connected to different computers and have an Amber application print to them
irrespective of where they are located. Clients running remote browsers across the world can
connect to Amber servers and control the devices. Thus full remote computer management
becomes smple and easy.

When each Device Manager initialises, it connects and registers it’s characteristics and
resources with the Amber Server. The Amber Serve then creates aserver side entity to
control the remote Device Manager and adds the remote devices to its device pool. These
devices are then available for use by applications running on the Amber Server.

Amber Server

Device Manager Device Manager Device Manager

Device Device Device

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved Page: 49

Using the Amber Device System

The Amber Server allows applications to query the device manager looking for a particular
type of device. The device manager dso contains an elementary security system allowing
devicesto resideinside layers of security. When the applicaion requests adevice it also
provides a security level. Thislevel is used by thedevice manager to identify devices which
are allowed to the application. Higher security levds allow more secure devices to be
accessed.

The structure of the device manager system is as follows:

Devicehanager

DeviceZontroller

SenverDevice Systemintormation

Dewvlce System

]

SenverDevicelnformation

lan

lon

w

DeviceHandler

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved Page: 50

Selecting Specific Devices

To access the device manager inside Amber the following code could be used:

Core core = Core.getCore () ;
Devi ceManager dm = core. get Devi ceManager () ;

This manager can then be queried for available devices. Thisis done using the following
functions:

. getDeviceSystems. This function returns aVedor of the class
amber.type.server.ServerDeviceSysteml nformation which contains information about
the available DeviceSystems. The DeviceSystem classes control the DeviceManagers
on the client systems. The syntax of the function is:

public Vector getDeviceSystems (int type)
The type integer defines thetype of connection which connects the remote

DeviceManager to the Amber server. This constant corresponds to that defined in the
amber.server manager.connection.ListenerThread. Currently these values are:

. Normal Connection (normal connections).

. SecureConnection (encrypted connections).

. AdministrationConnection (non-encrypted administration related connections).
. getMatchingDevices. This fundion is the normal mechanism for querying available

devices. It requests the DeviceManager for any devices which match the input type and
sub-type values. These values can be found in the Device Type Values appendix. The
syntax of the function is:

public Vector getMatchingDevices (int connectionType, int securityLevel, int
deviceType, int deviceSubType)

where the arguments are:

. connectionType. This corresponds to the type of connection (see above).

. securityLevel. Thisisthe security level used to define which devices the
application is allowed to see. The numbers range from O upward.

. deviceType. int defining the major type of device to be searched for. A -1
means any device.

. deviceSubType. int defining the minor type of the device to be searched for. A

-1 means any device defined by the deviceType field.
The function returns a Vector of class amber.type.saver.DeviceMatch which contains
information on the device and the corresponding DeviceSystem.

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved Page: 51

Example of Requesting a Device

The code to request a serial devicecould look as follows:

i mport anmber.server. manager.connection.* ;
i mport anber.server. manager. device.* ;
i mport anber.type.server.*

Core core = Core.getCore ()
Devi ceManager dm = core. get Devi ceManager () ;

Vect or devices = dm get Mat chi ngDevi ces (
Li st ener Thr ead. Nor mal Connection, 0, 1, 1) ;
for (int j=0; j<devices.size(); j++)

{
Devi ceMat ch currentDevice = (DeviceMatch)devices.elementAt (j) ;
String systemName = currentDevice. getDevi ceSystemName () ;
String deviceName = currentDevice. getDeviceName () ;

}

Once the device has been selected it must be allocated. To allocate a device cdl the
accessDevice function for the corresponding DeviceSystem. A device can be opened for
exclusive or shared access. Some devices can only be exclusively allocated. Thus the code to
use a device detected in the previous code could look like:

Devi ceMatch currentDevice = devices.elementAt (0)
if ('currentDevice.getDeviceSystem).accessDevice (
currentDevi ce. get Devi ce(), DeviceSystem ExclusiveAccess))

{
di spl ayMessageBox ("Device Error",
"Unabl e to gain exclusive access to the device") ;
} else
{
/1 Do something with the device
}

/'l Rel ease the device now that we are finished

if (!'currentDevice.getDeviceSystem).rel easeDevice (
currentDevice. getDevice()))

{

di spl ayMessageBox ("Device Error",
"Unable to rel ease exclusive access to the device")

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved Page: 52

Using the Device Handler

Controlling a device in the application is by interacting with the corresponding DeviceHandler
class. The device handlers extend the classanber . devi ce. server. Devi ceHandl er.
These classes have a similar function to the ComponentHandler classes for normal visual
components.

The DeviceHandler is accessed from the DeviceMatch object by calling the function
getDevice(). Once access to the device has been requested and received the remote device can
be manipulated by calling functions in the corresponding DeviceHandler. There are avariety
of functions common to all devices however each device contains extra functionality as
required by the type of device.

Functions common to most DeviceHandler’ s are:

. public void close (). This function closes the device. All outstanding requests are
flushed and terminated.

. public DriverInfo getDriverinfo (). This returns some simple information on the
driver. Thisincludes aversion number and a descriptive string.

. public int getStatus (). Thisreturns an integer status of the device.

. public boolean open (). This opens the device for use. This should not be confused

with the accessDevice() function in the DeviceSystem which merely tells the server to
allocate the device to this application.

. public byte[] read (). Reads al the available input information from the device.

. public void reset (). Resets the device back to a known default state.

Example of Using a Device Handler

This example shows how apanel in an agppli cation coul d write data to a serid device. It
assumes that the device was allocated using similar code to the previous example. The
example opens the device when the open button is pressed, closed when the dose button is
pressed and the text from atext field is transmitted via the serial port when the send button is
pressed. The required declaration code for the controlsis also assumed.

private TextFiel dHandl er txtln = new TextFi el dHandl er (
get Parent Application())

private ButtonHandl er btnOpen = new ButtonHandl er (
get Parent Application()) ;

private ButtonHandl er btnCl ose = new ButtonHandl er (
get Parent Application()) ;

private ButtonHandl er btnSend = new ButtonHandl er (
get Parent Application())

private Serial Handl er serial Port

public void actionPerformed (ActionEvent e)

{
try
{

Obj ect source = e.getSource ()

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved Page: 53

if (source == btnOpen)

{
/'/ Open the device
if (!serialPort.open ())
{
di spl ayMessageBox (“Open Error”,
“Failed to open serial port”) ;
}
} else if (source == btnClose)
/'l Close the device
serial Port.close () ;
} else if (source == btnSend)
{
/] Get the data fromthe text field
String data = txtln.getText() ;
/'l Send it to the serial port,
/] assume default coding for the string
serialPort.write (data.getBytes()) ;
}
} catch (Exception ex)
{
ex. printStackTrace () ;
}

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved Page: 54

Creating Components

Introduction

One of the most complex operationsin Amber isto create a new component for usein the
system. Thisis owing to the degper knowledgeof how Amber works that is requiredto create
a component. Before a component can be used by Amber the following must be done:

1. The visual element of the component must be created. Thisistypicdly one Javadass
which extends Canvas or Panel and performs some visual function. Examples of this
would be ticker components etc.

2. A client wrapper class must be created. This performs the messaging which is required
to receive server commands and send client events.

3. A server component handler must be created. Thisis the server side component which
handles the messaging requirements from the server to the client wrapper class.

Oncethisis done the client parts are added to the deployment jar and the sarver classes added
to the Java classpath. Thiswill then allow the component to be used in any applications
required. We will now treat each of the three parts of the creation processin turn.

Creating the Visual Element

The visual element is used both as a mechanism for displaying information to the user and
gathering usa input events from the user. Ingeneral, Amber visual elements ae created in
exactly the same way asanormal Javavisud bean would be created. For thisreason, it is
outside the scope of this document to describe how avisual element is created. The following
recommendations however should be observed:

. Ensure that the visual element does just what it should do and no more. The visual
element is a moderate proportion of the information downloaded to the client browser.
For this reason any code not strictly required should be removed. In general, functions
which are never to be used by the client wrapper class should not be written.
Remember, the larger the download size, the longer the user must wait before they can
use the application.

. Put the majority of the more complex processing back on the server by placing it in the
server component handler. Again thisrelates to the download size. Thiswill be a
bal ancing act between the download size and the messaging overhead. Asaroughrule
of thumb continuous messaging between client and server should be avoided, however
action type events should be processed at the server.

. Make sure that thevisual element operates corredly in Javaversion 1.1. The mgjority
of browsers using this visual element will only have Java 1.1 resident on the browser.
Thistypically eliminates the use of Swingcomponents for visual elements.

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved Page: 55

. Ensure that the visual element does not trap events needed by Amber, theseinclude:
Key, Focus, Mouse and Mouse Motion Events. If you wish Focus events to work
correctly ensure you override isFocusTraversable from Component to return true.

. Minimise the number of new support classes needed by the visual element. Thereisan
overhead for every new class crested. Thiscan increase the downl oad substantialy.
The optimal number of visual element classes to be downloaded is either O or 1.

. Ensure that the visual element ultimaely extend the java.awt.Component class. While
thisisless of arequirement for HTML resident componentsit is vitally important for
panel resident components.

The best way to develop the visual element isto create a fully functional, bug free visual
element in an applet or applicationfirst. This can then be used by the client wrapper classes.

Creating the Client Wrapper Class

There are two possible wrapper dasses which correspond to how the dient component is
used. The difference between the two depends on whether the component will be placed
directly into the HTML page or as acomponent residing on a panel.

Before the component is written the commands it will respond to and the events it transmits
must be known. In general, thecomponent will send the following events:

. Component Events.

. Key Events.

. Focus Events.

. Mouse Events.

. Mouse Motion Events

These events are automatically handled by an Amber Component. Amber does not generate or
handle Component Events.

When selecting the commands they must be chosen in such away tha the class size is kept to
aminimum. This class, along with the visual element, is deployed to the client browser. For
this reason the class size should be kept to a minimum.

Commands for a component are byte values allocated starting at the offset:

RConst ant s. Ext ensi onCommandBasel d

Packets sent fromthe server areallocated commeand IDs and so too are any response packets
sent back to the server. Thus a command which returns a value back to the server such as
getSelectedindex would use two command | Ds one for thecommand and the second for the
response.

It is often useful to classify commands into groups of like commands which share acommon
command ID, with the first data parameter being an integer defining which group command
thisis. It ishowever unlikely that the number of commands defined for a client component

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved Page: 56

will overrun the dlowed possible command values.

Having decided on the commands/responses and the events the component will handle we
now move onto the details of creating client wrappers. We will now treat each of the two
types of client wrapper classesin turn:

HTML Resident Components

These components extend the amber.client.RComponent class. The RComponent classin turn
extends a standard applet. It is the applet which residesin the HTML code. Normally the
requirement is that the visual element will occupy the entire drawing surface of the applet. For
this reason the normal situation isto use a BorderLayout for the applet and add the visual
element using BorderL ayout. CENTER. The RComponent handles mog of the requirements
involved in messaging to the Amber Server. It handles the events generated by the visual
component and performs initial parsing and processing of incoming Amber AATP packes.

An example of asimple Amber HTML component is.

package nypackage;

i mport java.awt.*;

i mport java.applet.*

i mport java.awt.event.?*;

i mport java.io.*

i mport anber.type. Packet ;

i mport anber.server.conponent.* ;

/**

* Extension to RComponent that presents the user with a new control.
*

* @ee amber.client.RComponent
*/
public class MyHt ml Component extends RConmponent
{

private BorderLayout borderLayout = new BorderLayout();
private MyControl control = new MyControl ();

public void init()

{
/'l Set up the base RComponent

super.init() ;

/'l Set up the |ayout for this component
this.setlLayout (borderLayout);

this.add (control, BorderlLayout.CENTER) ;

/1 Add in additional listeners in here

/1 Set up the default Ilisteners
addBaseli steners (control) ;

/'l Process any conmponent specific applet parameters here

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved Page: 57

public void processPacket (Packet packet)

{
super. processPacket (packet) ;
try
{
switch (packet.get Conmand())
{
case MyHandl er. First Conmand:
{
/'l Put the relevent command processing code here
/'l The dat aDecoder variable contains the
/'l command parameters
int nmyFirstParameter = dataDecoder.readlnt () ;
}
break ;
case MyHandl er. SecondConmand:
{
/] Reset the output data stream
encoderBytes.reset ()
Packet p = new Packet (
MyHandl er| er. SecondCommandResponse
Packet. Serverld, getTrueld(), false) ;
dat aEncoder.writelnt (control.getValue()) ;
p.setData (encoderBytes.toByteArray ()) ;
f orwar dPacket (p) ;
}
break ;
}
catch (Exception err)
{
err.printStackTrace() ;
}
}

Let us now look at the various part of the control wrapper code. First is the declaration
section:

private BorderlLayout borderLayout = new BorderLayout();
private MyControl control = new MyControl ();

In this case the first declared variable is the BorderLayout required to push the control to the
full size of the HTML applet. The other variable is the visual element control you created in
stage 1 of the component generation process.

The next part of the code is the init function. This overrides the init in the RComponent and
ultimately the applet. The code appears as fdlows:

public void init()

{
/] Set up the base RComponent

super.init() ;

/] Set up the layout for this conmponent

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved Page: 58

}

this.setlLayout (borderlLayout);
this.add (control, BorderLayout.CENTER)

// Add in additional listeners in here

/1 Set up the default |isteners
addBaseli steners (control)

/'l Process any conponent specific applet parameters here

This function does the following:

It calls the super.init function to initialise the RComponent code.

It sets up the BorderL ayout as the layout manager for the applet.

It adds the visual control into the goplet.

It sets up any extension event listeners beyond the base set automatically handled by
RComponent. Thisistypically cdling control.addXXXListene (this) to make this
component alistener for any events handled the visual control.

The addBaseL isteners (control) function is called to set up the default set of listenea's
to listen to the visud control.

Lastly isthe processPacket function. This function handles the incoming commands to the
client coomponent. It is composed of the following parts.

It calls the super.processPacket function to handle the default commands which any
Amber control responds to. These include setVisible, setEnabled, displayM essageBox
etc.

This example contrd handles two commeands. Each of the commands highlights

different aspects of handling incoming packets. It should be noted that the command

constants are typically stored in the ComponentHandler rather than the client
component. Thistypically reduces the download size.

. MyHandl er . Fi r st Command. This command shows how a parameter is read
from the incoming packet. While it is possible to processthe packet data
directly, when the packet is received the RComponent processes the packet and
sets up an amber.type.Amberl nputStream (extending javaio.Datal nputStream)
called dataDecoder with the packet data. This alows the client code to read
this information simply by usng the stream read functions.

. MyHandl er . SecondConmmand. Thiscommand shows how aresponse packet is
assembled and transmitted back to the server. An
amber.type AmberOutputStream (extending java.io.DataOutputStream)
dataEncoder is always available for use. The reset function is called to remove
any previous data. A packet is created for transmission. The information to be
sent is streamed to the output stream and the encoded byte array is attached to
the packet using the setData function. The packet is then transmitted using the
forwardPacket function.

Panel Resident Components

A panel resident component is similar in function to an HTML resident component however it

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved Page: 59

Isdesigned to only function inside an Amber panel or frame. This object contans additional
functionality to allow the addition or removal of the component from the panel. The HTML
and panel resident components are independent of each other. It is possible to create one and
not the other depending on requirements. Both client components do however require a server
side ComponentHandler to connect to.

A panel resident component will reside in apanel or frame which uses the layout manager
amber.awt. XY Layout. This layout allows the component visual element to be placed in an
absolute location and size within the confines of the panel. It is possible for the component to
be at any size or location on the panel and this should be taken into account when designing
the visual element.

Let usnow look & an example panel resident component:
package nypackage

import amber.type.Packet ;

i mport anmber.server.conmponent.* ;

i mport java.io.* ;
i mport java.awt.* ;

i mport java.util.StringTokenizer ;

/**

* Panel Resident Conponent.

* Uses the same Conmponent Handl er as the corresponding renote component.
*
* @ee amber.client.panel.BaseContro
*/
public class MyPanel Component extends BaseContro
{
/**
* Initialize the conmponent.
*/
publ i c MyPanel Conponent ()
{
super () ;
}
/**
* This is the main initialisation function for this class.
* @aram mai nParent. RContainer handle to the panel this is a
* component of.
* @aram data. int [6] containing information useful to the
* component in the order ID, eventMask, x, y, w, h.
* @aram parameters. String containing any required parameters
* separated by '|’
*/
public void init (RContainer mainParent, int [] data,
String parameters)
{
vi sual Obj ect = new MyControl () ;
super.init (mainParent, data, parameters) ;
}
/**

* Process the parameter val ues

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved Page: 60

* @aram parameter String containing conponent specific parameters.
*/
public void parseParameters (String parameter)
{
if (paranmeter == null)
return ;

/] The parameters is just the string
/| Decode the string into the various required paraneters

/'k'k
* Add in the listener handlers to the input object.
@aram |istener The |istener which will receive the event
* messages.
*/
public void addLi steners (BaseComponent |istener)

super. addLi steners (listener) ;

/1 At this location add in the |listeners

/'l For this example we will add in an action |istener

((MyControl)visual Object).remveActionLi stener(this) ;

if (eventEnabled [RConstants.ActionEventlndex])
((MyControl)visual Obj ect).addActi onLi stener(this) ;

/**
This routine contains the logic to parse a packet and perform
* actions based on the packet's contents.
*/
public void processPacket (Packet packet)

super. processPacket (packet) ;
try
{

switch (packet.get Command())

{

case MyHandl er. First Conmand:
{
/'l Put the relevent command processing code here
/'l The dataDecoder variable contains the
/'l command parameters
int nyFirstParanmeter = dataDecoder.readlnt () ;

}

break ;

case MyHandl er. SecondConmand:
{
/] Reset the output data stream
encoder Bytes.reset () ;
Packet p = new Packet (
MyHandl er | er. SecondCommandResponse
Packet . Serverld, getTrueld(), false) ;
dat aEncoder.writelnt (
((MyControl)visual Obj ect).getValue()) ;
p.setData (encoderBytes.toByteArray ()) ;
f orwar dPacket (p) ;
}

break ;

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved Page: 61

catch (Exception err)

{
}

err.printStackTrace()

}
}

As can be seen the panel resident component wrapper has substantial similarities to the
HTML resident component. Let uslook at each section in turn.

In this case there is no global declaration area. The global panel visual element handleis
stored in aglobal variable visual Object which is declared in BaseControl. Thisisahandleto a
java.awt.Component class so it isimportant that the visual element class ultimately extend
this class. Also note that no LayoutManager is defined. Thisis handled for you by the panel
and therefore no additional coding is required.

This class contains a default constructor (i.e. a constructor with no parameters) thisis required
by the Amber system. The dass calls the supe constructor toinitialise the Amber specific
requirements.

In asimilar way to the HTML resident component, most of the complex initialisation is
performed in the init function:

public void init (RContainer mainParent, int [] data,
String paranmeters)
{

vi sual Obj ect = new MyControl ()
super.init (mainParent, data, parameters)

}

This function instantiates the visual dement and then calls the super initialisation functionto
finalise the initialisation. The parameters passed to the function include the container in which
this component is added, an int array containing the parameters used when creating the object.
Thisincludes the ID given to the component, the event mask used for messaging (which
events are sent to the server), and the parameters string which corresponds to the parameters
string in the XY Constraints class.

As part of the initialisation process two other functions are called. These are parseParameters
and addL isteners. These functions allow the component to initialise specific parts of the panel
resident component.

public void parseParanmeters (String parameter)

{
if (parameter == null)
return ;

/] The parameters is just the string
/]| Decode the string into the various required parameters

}

public void addLi steners (BaseComponent |istener)
{
super. addLi steners (listener)
/1l At this location add in the |isteners
/'l For this exanmple we will add in an action |istener

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved Page: 62

((MyControl)visual Object).remveActionLi stener(this)
if (eventEnabled [RConstants.ActionEventlndex])
((MyControl)visual Obj ect).addActionLi stener (this)

}

The parseParameters function allows theinitial parameters to be set in the component. The
string specified in the XY Constraints function is passed to the component on construction and
appears in the parseParameters function. This string can be of any format required however
the normal charecteristics of thestring is of a saries of parameters separated by ‘| charaders.

The addListeners function is called on initialisation and aso whenever the event mak is
altered under server control. For this reason it ismore complicated than that of the HTML
resident control. Old listeners must be removed and then depending on the eventEnabled array
which isinternal to BaseControl and updated before the addListeners function is called add
the required extension listeners to the visual element. Standard listeners are added for you by
calling the super.addListenea's function. The algument to the function is the ultimae
component responsible for transmitting the events however youwill almost never use this
parameter.

Finally comes the processPacket function. Ascan be seen thisfunction is amost identical to
the same function in the HTML resident component. The primary difference relates to using
the visual Object handle and coercing it to the correct type.

Creating the Server ComponentHandler

Thisisthefinal stage of creating an Amber component. This class handles the server side
requirements of connecting to the client control. Thisis acomplex operation however most of
the complex part of the connection process is hidden from sight in ComponentHandler and
other related classes.

To create the new component handler for the created client component the class must extend
the class amber.server.component.ComponentHandler. It isthis class which will handle the
messaging and connection requirements for us.

To continue with our previous example the following code would connect to the client
component:

package nyserverpackage;

i mport amber.type.* ;

i mport anber.client.* ;

i mport anber.server.exception.* ;

i mport amber.server.application. Applicationlnterface ;
i mport java.awt.event.*;

i mport java.util.?*;

i mport java.io.Serializable ;

/**

* This class handles the requirenments for the mani pulation of the packets

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved Page: 63

moving to and from my component.

*
*
* @ee amber.server.application. Applicationlnterface
* @ee amber.server.component. Conponent Handl er
* @ee amber.type.server. XYConstraints
*/
public class MyConponent Handl er extends Component Handl er i npl ements
Serializable

public static final byte
Fi rst Command = RConst ants. Ext ensi onCommandBaseld + 0
SecondCommand = RConst ants. Ext ensi onConmandBaseld + 1
SecondCommandResponse = RConstants. Extensi onCommandBaseld + 2

/**
* Default constructor.
*/
publ i c MyConponent Handl er ()
{
this (Invalidld, null) ;
}
/**
* The initialising constructor. This constructor dynam cally
* requests a valid ID value fromthe Applicationlnterface.
* @aram pageHandl er The handle to the main Applicationlnterface
* which handles the functions of page overall
*/

public MyConponent Handl er (Applicationlnterface pageHandl er)

this (pageHandler) ;

/**
* The initialising constructor.
* @aramid The int containing the id of the corresponding remote
* component residing on the browser.
* @aram pageHandl er The handle to the main Applicationlnterface
* which handles the functions of page overall.

*/

public MyConponent Handler (int id,
Applicationlnterface pageHandl er)

{
super (id, pageHandler) ;
/**
* This function handles the incom ng packets fromthe conmponent
* residing on the browser. This code may generate
* events if there is a requirenment for the Applicationlinterface to
* handl e the packet.
* @aram packet Packet containing the packet to handl e.
* @xception amber.server.exception. Component Handl er Excepti on
* containing the error informtion.
*/

protected void handl ePacket (Packet packet)
t hrows Component Handl er Excepti on
{

switch (packet.get Command ())
{

case SecondCommandResponse

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved Page: 64

/'l Do special processing here if required

break ;
default: // No idea get the super class to handle it
super. handl ePacket (packet) ;

break ;
}
}
/**
* Call the first conmand.
* @aramitem String containing the conponent information.
* @exception amber.server.exception. Conponent Handl er Excepti on
* contains any errors performng this conmand.
*/

public void setFirst (String item) throws Conponent Handl er Excepti on

/'l Encode the data
/'l Reset the output data stream
try
{
encoder Bytes.reset () ;
dat aEncoder . writeLongUTF (item) ;
byte [] data = encoderBytes.toByteArray () ;
/'l Create the packet and send it
Packet command = new Packet ((byte)FirstCommand, (short)id,
Packet . Serverld, data.length, data, false) ;
sendPacket (command) ;
} catch (Exception ex)

{
t hrow new Conponent Handl er Excepti on (
"setFirst error: " + item ex) ;
}
}
/**
* Returns the selected index
* @eturn int containing the selected index.
* @exception amber.server.exception. Conponent Handl er Excepti on
* contains any errors performng this conmand.
*/

public synchronized int getSel ectedl ndex()
t hrows Component Handl er Excepti on

{

int retValue = -1 ;

try

{
/'l C2reate the packet and send it
Packet command = new Packet ((byte)SecondConmand, (short)id,

Packet. Serverld, false) ;
/'l Block and wait for the reply, maxi num del ay 20s
Packet Dat a current Packet = sendPacket AndBl ock (command,
SecondCommandResponse) ;

if (currentPacket ! = null)
{

/I Convert the data to an int
ret Val ue = current Packet. get Dat aDecoder ().readlnt () ;
} else

{
throw new M ssi ngResponseException (“get Sel ectedl ndex:
failed to get response”);

}

} catch (Exception ex)

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved Page: 65

t hrow new Component Handl er Excepti on (
"get Sel ect edl ndex error", ex)

}

return retVal ue ;

}

/**

* This function returns the panel conponent to use with this class.
* @eturn String containing the panel type to use.

*/

public String getPanel Type ()

{

}

return "nypackage. MyPanel Component"

}

This classis broken into several sedions. Thefirst is the declaration of the command byte
values. Remember these are the command values which are used in the packet to identify
which commands the component will respond to. These must start at the value:
RConstants.ExtensionCommandBaseld which defines the starting value for user commeands.
For each command to the client component there is a corresponding command byte vaue. In
the case of commands which return a value there will be two one for the command to the
client and one for the response fram the client.

Following the declaration section are the constructors for the object. These diffe slightly
however the general functionality is the same. The constructors instantiate the internal global
objects (in this case there are none). Constructors which alow the systemto alocate an ID
number (i.e. where the ID is not passed in the constructor) cannot be used for HTML resident
components as the ID is predefined.

After the constructors is the handlePacket function. This has a similar function to the
processPacket function in the client components. It is designed to handle packets from the
client specific to this component. Standard events are handled automatically and should not be
handled here.

protected void handl ePacket (Packet packet)
t hrows Component Handl er Excepti on
{

switch (packet.get Conmand ())
{

case SecondCommandResponse:
/1 Do special processing here if required
break ;
default: // No idea get the super class to handle it
super . handl ePacket (packet)
break ;

This function checks the packet to identify wha the command is. For this example thereis
only onetype of incoming packet we are interested in, the response packet to our
SecondCommand. In the case of anormal response packet there is no spedal processing

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved Page: 66

required. In general, for normal componentsthis function need not be created. It is normally
only required where a new type of event isto be handled from the client. If the packet is not
this response the code passes the packet onto the super class to process. Should the super dass
be unable to identify the command it throws an
amber.server.exception.UnknownCommandException.

The next two functions present the command interfaceto the server applications. It presents
two functions which correspond to our command packets. The first function isacommand
which does not expedt aresponse, setHrst:

public void setFirst (String item) throws Conponent Handl er Excepti on
{

/'l Encode the data

/'l Reset the output data stream

try

{

encoderBytes.reset () ;
dat aEncoder.writeLongUTF (item)
byte [] data = encoderBytes.toByteArray ()
/'l Create the packet and send it
Packet command = new Packet ((byte)FirstConmand, (short)id,
Packet. Serverld, data.length, data, false) ;
sendPacket (conmmand) ;
} catch (Exception ex)
{
throw new Component Handl er Excepti on (
"setFirst error: " + item ex)

This function resets the encoder, writes the string into the dataEncoder which is an
AmberOutputStream which encodes the string for transmission. The encoded bytearray is
then extracted from the encoder. The packet is created using our command value and the
encoded data. Fnally the sendPacket function is called to send the packet to the remote client.

The second function (getSelectedindex) is more complex. It is similar to setFirst however the
latter part of thefunction handles the client response. The code is asfollows:

public synchronized int getSelectedl ndex()
throws Conponent Handl er Excepti on

{

int retValue = -1 ;

try

{
/'l Create the packet and send it
Packet command = new Packet ((byte)SecondCommand, (short)id,

Packet. Serverld, false) ;
/'l Block and wait for the reply, maxi num del ay 20s
Packet Data current Packet = sendPacket AndBl ock (command,
SecondConmmandResponse)

if (currentPacket ! = null)
{

/'l Convert the data to an int
retVal ue = current Packet. get Dat aDecoder ().readlnt () ;
} else

{

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved Page: 67

throw new M ssi ngResponseException (“getSel ectedl ndex:
failed to get response”);

}

} catch (Exception ex)

t hrow new Component Handl er Excepti on (
"get Sel ect edl ndex error", ex)

}

return retVal ue ;

}

The function initialises the return value to a default value. The command is sent in asimilar
manner to before however the function called to send the packet is: sendPacketAndBlock.
This takes two arguments: the packet to send and the expected response packet ID. Thisisthe
ID which will be looked for when the response is detected from the dient. This function will
not return until the response packet is received or the timeout value is exceeded. The return
from this function is the response packet or null if no responseis received. This PacketData
class contains the return response packet and the AmberlnputStream which corresponds to the
datafrom the packet. Thus by calling the getDaaDecoder() function in the PacketData, the
data held in the packet can be read.

The last part of the ComponentHandler code is a utility function used internally by Amber to
match the ComponentHandler to the corresponding panel resident component. It isignored by
HTML resident components.

public String getPanel Type ()
{

}

return "nmypackage. MyPanel Component" ;

This function returns the class which must be instantiated at the remote dient when this
ComponentHandler is added to a BasePanel. It can be overridden by specifying a different
remote class namein the XY Constraints class.

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved Page: 68

Non Visual Components

It is possible for panel resident components to be non-visual. A non-visual object actsin a
similar way to avisual object however it is not added to a panel. To create anon-visual object
Issimple, just use nonVisual Object rather than visual Object to hold the object. The
component would exist and respond to messages but would not be added to the panel.

The function canAdd is used for components such as windows which are Component
extended objects but which should not be added to the client panel. The default response for
this function is true which tells the panel to add the visual Object to the panel. By overriding
this function to return fal se the visual Object will not be added to the parel.

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved Page: 69

Appendix: Common Amber
Applet Tags

The following applet parameter tags are common to all Amber controls:

. Component. Thisisthe client class which isthe display object. In this case the display
object isapanel (amber.client.panel.BasePanel) however any of the normal
components in amber.client.panel can be used.

. Coordinates. Thisis most often used by the PFrame class however it defines a set of 4
numbers which will be passed to the panel component. These correspond to the 4
numbers which are passed in the XYConstraints class They arecomma delimited with
no spaces. If thisis not specified the numbers 0, 0, -1, -1 are used.

. ConnectionModule. Optional. Used to specify an alternative mechanism for
connecting to the Amber server (see below).
. EventMask. Optiond. Used to define which events the Amber client will transmit to

the server. Thisis used to reduce the network traffic sent over the network to that
which is absolutely required. This parameter is rarely used as the server can <t this
information also. The following are the values of the event mask and the
corresponding events they enable. Multiple events are OR’ ed together to produce the

final event mask.

. ActionEventMask = 1,

. TextEventMask = 2,

. KeyTypedEventMask = 4,

KeyPressedEventMask = 8,

KeyReleasedEventMask = 16,

MouseClickedEventMask = 32,

MousePressedEventMask = 64,

MouseReleasedEventMask = 128,

MouseEnteredEventMask = 256,

MouseExitedEventMask = 512,

[temEventMask = 1024,

WindowEventMask = 2048,

MouseDraggedEventMask = 4096,

MouseMovedEventMask = 8192,

FocusL ostEventMask = 16384,

FocusGainedEventMask = 32768 ;

. ExtensionX. Where X isamonotonically increasing integer starting & O (i.e.
Extension0). Optional. Thisis a series of properties which are to be passed back to the
Amber Server by the the ID 0 componert. These extension properties can be read from
the ApplicationHandler using the getRemoteProperties() function. The value of the
Extension param isinthe form “namelvalue’” where name is the name of the property
and vd ueistheva ue given to the property.

. ID. Thisisthe ID number of the Amber control. ThisID number is used to link the

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved Page: 70

client control with the server ComponentHandler. These numbers must be unique and
there must always be a control with an ID of 0. The ID 0 control is required to have
several other parameters which relate to its role as master control.

Pageld. Required, only used by ID 0. Thisintege is used by the Amber server to
identify thetype of application to be attached to this client.

PageSubld. May be optional, only used by ID 0. Thisinteger is used to further refine
the type of application to attach. The server can be configured to ignore this integer
when identifying the correct application. In this case the number may be ignored or
can be used to pass additional information to the starting ApplicationHandler at the
server.

Port. Optional, only used by ID 0. Thisisthe port to use when connecting to the
Amber server. The default port if oneis not specified is 21384.

Secure. Optional. Default valueis 0. When set to 1 thisindicates that the connection
will be encrypted. Implementation is specific to the connection module used (see
below).

Server. Optional, only used by ID 0. This defines the location of the server to which
the Amber client system will connect. This may be either an IP (Internet Protocol)
address or a standard dotted notation address such asanber . cl earfi el d. comIf
no address is specified then the base address of the server inthe HTML URL is used.
ServerSHA. Optional. Used for secure socket connections. Thisisthe SHA-1 of the
RSA encryption key of theserver. Thisis used to guard against man in the middle
attacks for the Amber secure connections. This value is generated using the
amber.net.HashRSA PublicK eyFile program.

Connection Modules

Amber supports an extensible system of connection modules which alow avariety of
protocols to be used connecting theclient to the server. At this point there are two available
types of module. They are:

Socket. This opens adirect socket connection to the Amber server. Thisis the most
efficient and has the lowest overhead in terms of data transfer. This system requires no
additional support from the web server. The disadvantage of this system isthat it
requires that the socket connection on the Amber ports (21384-21386) be able to be
made.

HTTP. Thisutilisesthe HTTP protocol totransfer the AATP packets. Thishas a
higher data transfer requirement and data latency, however it will work on any normal
HTTP connection allowing Amber to operate even through proxy servers. It requires
servlet support a the Web Server far the server side of the connection system.

Client

To use the connection module at the client specify the connection module to use by the
ConnectionModule parameter in the ID 0 applet. Multiple modules can be specified and the
system will iterate through the specified modules in order attempting to make a connection to
the Amber Server. The ConnectionModul e parameter specifies the main class of the

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved Page: 71

connection module. Thisis a class which implements the interface
amber.client.ConnectionModule.

Hereisarelatively complete example:

"I'D" value ="0">

"Connecti onModul e0" val ue ="anmber.client. Socket Connection">
"Connecti onModul el" val ue ="amber.client.HttpConnection">
"CONNECTI ONURL" val ue ="/servl et/ Amber Recei ver Connect " >
'SENDURL" val ue ="/servl et/ Amber Recei ver Recei ve" >

'RECEI VEURL" val ue ="/servl et/ Anber Recei ver Send" >

'SERVER" val ue ="anber.clearfield.com >

"Port" VALUE = "21384">

"PAGEI D" VALUE = "2000">

<param nane
<param nanme
<param nanme
<param nanme
<par am name
<par am name
<param name
<par am NAME
<par am NAME

As can be seen there are two connection modules avalable for this ID 0 component. Thefirst
modul e attempted will be the amber.client.SocketConnection module which attempts to use a
direct socket connection to connect to the Amber Saver. The second module
amber.client.HttpConnection will atempt an HTTP comection to the Ambe Server should
the socket connection fail. Each module uses different parameters to completely configure it.
We will now discuss each in turn.

Socket Connection Module
The properties used by the SocketConnection Module are:

. ConnectionModuleX. Where X isthe order in which this module is used starting at O.
Optional. Thisisthedefault module should no connection module be specified. This
parameter is required if more than one connection module is used. Thevalue of this
parameter is“anber . cl i ent. Socket Connecti on”.

. Port. Optional. Thisis the socket port number at the Amber Server used to atempt a
connection. The default is 21384,

. Secure. Optional. Default valueis 0. When set to 1 this indicates that the connection
will be encrypted. This option requires the additional security classes in amber.net.

. Server. Optional. This specifies the IP addressof the server to connect to. The default
iIsthe HTML URL base server address.

. ServerSHA. Optional. Used for secure socket connections. Thisisthe SHA-1 of the

RSA encryption key of theserver. Thisis used to guard against man in the middle
attacks for the Amber secure connections. This value is generated using the
anber . net . HashRSAPubl i cKeyFi | e program.

HTTP Connection Module (Enterprise edition only)

The HTTP ConnectionModule controls the interface between Amber client and server using
the HTTP protocol. The properties used by the HttpConnection Module are:

. ConnectionModuleX. Where X isthe order in which this module is used starting at O.

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved Page: 72

Required. This defines the connection module used. For the HTTP connediion module

the parameter is“anber . cl i ent. Ht t pConnecti on”.

ConnectionUrl. This property defines the URL used to access the Amber HTTP

interface connection servlet. This value can bedefined relative to the current HTML

server URL. The default value is “/servliet/ AmberReceiverConned” .

. SendUrl. This property points to the URL of the Amber HTTP interface which
receives packets from the client. The default vdueis
“/servlet/AmberReceiverReceive’.

. ReceiveUrl. This property points to the URL of the Amber HT TP interface which
sends packets to the client. The default valueis */servliet/ AmberReceiverSend”.

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved Page: 73

Appendix: Amber Server
Core Functionality

These are the avail able functions for use with theamber.server. manager.Core object.

getAmberRoot. This function returns a string containing the path to the Amber server
root directory at the server.

getDocumentRoot. Part of the functionality required by Amber is Web based. Images
loaded by image controls, HTML files loaded from within Amber etc are located
relative to the Web server document root. This function returns a string pointing to the
Web server document root. This allowsAmber applications to programmatically
generate web content.

getApplicationManager. This function returns the handle of the ApplicationM anager
class which is responsible for handling live Amber applications. This allows the
programmer to identify/access other running Amber ApplicationHandlers. This could
be useful for interconnecting dients such asin achat program.
getConnectionManager. This function returns the handle of the ConnectionManager
which isresponsibe for handling incoming connedions to the Amber saver. It is
unlikely that this function is useful to an application programmer.

getDatabaseM anager. One of the most useful functionsin the Core, it returns the
handle of the Database Manager which controls access to the various datebases
understood by the Amber server. For more information rdating to database access see
the section Using Databases below.

getDeviceManager. This function allows access to the Device Manager system. The
device manager system is part of the extended Amber server functionality allowing
access and control of remote devices.

getExtensions. This function returns a Vector of al available extension modules
registered with the Amber server.

getExtension. This function returns the first instance of a specific namein the
extension modules.

getLicenseKey. This function returns the AmberLicenseKey class containing license
conditions for this server.

getLogger. When the Amber server startsit opens aloggingfile (typically
AmberServer.log). This function returns the handle of the L og object responsible for
logging errors. Client programs can log information to this objed for transmission to
thelog file.

getManager. This function returns the ApplicationManager which matches a particular
type of incoming connection. Currently Amber understands the following types of
connections: Browser, Application, Device.

getProperties. This returns the PropertyHandler object which controls the
AmberServer properties file (config/amberserver/Amber Server.properties). This
allows properties to be set in the server properties file and accessed from an
application.

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved Page: 74

. setLoggingLevel. This changes the logging level alowing the amount of information
logged by the server to be altered.
. stopServer. Rarely used. This function terminates the server.

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved Page: 75

Appendix: Basic
ApplicationHandler
Functions

The ApplicationHandler has a number of support functions available for use. Some of the
properties returned by the ApplicationHandler are not valid when the ApplicaionHandler is
instantiated. See the section Active Parameters for more information. The functions are:

. public Dimension getClientScreenSize(). This function returns the size of the screen at
the client computer. This allows the programmer to scal e the client components
depending on the size of the client screen.

. public Log getLog(). Thisfunction returnsthe log object attached to this appli cation. It
is used to log information to the server log file.
. public int getPageld(). Returns the identifier used by the Amber server to work out

which ApplicationHandler extended class to instantiate.

. public int getPageSubld(). Returns the secondary identifier used by the Amber server
to work out the correct ApplicationHandler to create. Thisis optional and can be used
instead to carry integer information from the Web Server to the gpplication.

. public Corelnterface getParentServer (). This function returns a handle to the core
server. While thisis a Corelnterface object in aimost al casesthisislikely to be the
handle of the central Core class.

. public void logComponentStructure (). This function dumps information to the
System log onall known objects within the ApplicationHandler. It isused asan aid in
debugging.

. public void shutDown (). This shuts down the current application. All threads and
connections areterminated. This does not shutdown any panels.

. public void shutDownClient (). This function tells the client to shutdown. When

caled acommand is sent to the client to terminate.

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved Page: 76

Appendix: Basic
ComponentHandler
Functions

These are the basic functions avalable to all ComponentHandler extended classes. These
operations include:

public ApplicationHandler getParentApplication (). This function returns the parent
application.

public Containerlnterface getParentContainer (). This fundion returns any parent
container the ComponentHandler is a sub-item of.

public boolean isApplicationActive(). Returnstrueif the ComponentHandler is
connected to theremote client?

public void forceComponentGetUrl (String urlString). This function forces the
remote client browser to get an HTML URL. Thiswould overide the current page the
Amber client residesin.

public void forceComponentGetUr| (String urlString, String location). Similar to the
other form of forceComponentGetUrl, this function allows the new URL to appear in a
different page. Available location strings are:

. " _self" Show in the window and frame that contain the applet.

. " _parent" Show in the applet's parent frame. If the applet's frame has no parent
frame, actsthe sameas"_self".

. " top" Show in thetop-level frameof the applet's window. If the goplet's frame
isthe top-level frame, actsthe sameas”_self".

. " blank" Show in a new, unnamed top-level window.

. Name Show in the frame or window named name. If atarget named name does

not already exist, a new top-level window with the specified nameis created,
and the document is shown there.
public void setForeground (Color foreground). Sets the foreground color of the
control.
public void setBackground (Color background). Sets the background (fill) colour of
the control.
public void setForegroundBackground (Color foreground, Color background). This
allows the programmer to set both foreground and background colours & once.
public void setFont (Font font). Setsthe font of the control.
public void setEnabled (boolean state). Sets the control to accept/rgect input.
public void setVisible (boolean state). Sets the control as visible/invisible.
public void requestFocus (). Requests that this contrd get focus.
public void displayMessageBox (String title, String caption). Displays a window with
acaption and asingle OK button.
public int queryMessageBox (String title, String caption, int type). Allows the
programmer to ask a question and get a user response. Allowed types are:

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved Page: 77

. ComponentHandler.OkType = OK only button.

. ComponentHandler.OkCancel Type = OK/Cancel buttons.

. ComponentHandler.Y esNoType= Y es/No buttons.

. ComponentHandler.Y esNoCancel Type = Y es/No/Cancel buttons.
Returns:

. ComponentHandler.CanceReturn

. ComponentHandler.Ok'Y esReturn

. ComponentHandler.NoReturn

. public void setCursor (Cursor cursor). Sets the cursor to a defined type.

. public void setEventMask (int eventMask). Sets the event mask for the control. This
defines which events the control will send.

. public String geComponentStructure (). This retums basic information about this
control. Thisisuseful in debuggi ng.

. public String gePanel Type(). Returns the remote client type which corregponds to
this ComponentHandler. This information is rarely needed unless thedefault
behaviour of the ComponentHandler isto be altered.

. public FontCharacteristics getFontCharacteristics (...). These functions allow the
server to query some of the FontMetric type information on the client. Thisincludes
the basic font size information and optionally thewidth of a string in a specified fort.

Also included are al the event handling code which allows the addition/removal of the
various listeners supported by Amber. These listeners are:

. Action Listener. (addActionListener/removeActionListener).

. Focus Listener. (addFocusListener/renoveFocusListener).

. Item Listener. (addItemListener/removeltemListener).

. Key Listener. (addK eyListener/removeK eyListener).

. Mouse Listener. (addM ouselL istener/removeM ouselistener).

. Mouse Motion Listener. (addM ouseMotionListener/removeM ouseMotionListener).
. Text Listener. (addTextListener/removeTextListener).

. Window Listener. (addWindowListener/removeWindowListener).

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved Page: 78

Appendix: Panel Specific
Functionality

Panel Drawing Commands

Panels support drawing operationsas a series of commands to the pand which are executed in
sequence. Later drawing gperations may overlap earliee commands. Thus apiece of text could
be laid over afilled rectangle. The functions relating to drawing ae:

. setBorder. This allows the creation of a border around the entire panel. The border
may be raised, lowered or none.

. addXXX. This addsan operation to the sequence of drawing operations. The possible
operations are:

Draw Image. This allows an image to be drawn & a specified location. The
Image may be tiled in this casethe tiling occurs across the entire panel.
Draw String. This renders a string in the current font at the specified location
on the panel.

Set Colour. The drawing colour used is set to a new value.

Draw Line. Draws a line between two points on the panel.

Draw Rectangle. A Rectangle is drawn on the screen as specified. The
rectangle may be:

. An empty box.

. A filled box.

. An empty 3 dimensional raised or lowered box.

. A filled 3 dmensiond raised or lowered box.

. An empty box with rounded corners.

. A filled box with rounded corners.

Draw Oval. Draws an oval in the specified location on the panel. It can be
filled or empy.

Draw Arc. Draws a section of acircle. The arc may or may not be filled.

. removeOperation. This command removes a specified drawing operation.
. removeAllOperations. This command removes all operations specified.

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved Page: 79

Component Container Functions

The following functions relate to manipulating components on a pand.

add. This function adds a ComponentHandler to the panel. The syntax of the command
IS

public void add (ComponentHandler newComponent, Object constraints)

where newComponent is the ComponentHandler to add to the panel and constraintsis
an instance of amber.type.server.XY Constraints defining the size and location of the
control.

It isthe act of adding the component to the panel which creates the visual control at
the browser. For this reason if the component is not added to the panel it will not be
possible to useit.

remove. This fundion removes a control which was aready added to the panel. This
removes all the visual and messaging elements associated with the control. Thisis
important to note when adding visual Frames (window controls, see below) to the
panel. Only when remove is cdled is the window dsposed of. The function syntax is:

public void remove (ComponentHandler component) throws
ComponentHandlerException

where componert is the ComponentHandler to remove from the panel.

setBounds. This function redefines the X/Y /Width/Height of the control inthe panel.
Syntax:

public void setBounds (ComponentH andl er component, int x, inty,
int width, int height) throws ComponentHandlerException

public void setBounds (ComponentHandler component, Rectangle rect) throws
ComponentHandl erException

setLocation. A subset of setBounds, this function moves the componert in the panel.
The size of the control is unchanged. Function syntax is:

public void setL ocation (ComponentHandler component, int X, inty) throws
ComponentHandl erException

public void setL ocation (ComponentHandler component, Point point) throws
ComponentHandlerException

setSize. The other subset of setBounds this function leaves the component location
unchanged but resizes the control. Function syntax is:

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved Page: 80

public void setSize (ComponentHandler component, Dimension dimension) throws
ComponentHandlerException

public void setSize (ComponentHandler component, int width, int height) throws
ComponentHandl erException

getlnsets. This function returns the amount of the size which is taken up in rendering
the control itself. For example, in a Frame the top inset would be the title bar of the
window. It isimportant to note that thisinformation is not valid until the cortrol is
created. Thus the information will only be accurate once this has taken place at the
client. For example, in the case of a Frame the setVisible function isrelatively safe for
this information.

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved Page: 81

Appendix:
ComponentHandler
Hierarchy

The following diagrams describethe hierarchy of the server component architecture. In these
diagrams the following conventions are assumed:

Basze Class 4 Extending Class
i 5 Class implemerting
1 —
! Inter face ' Interface
L-

Class +7 LHilizing Class

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved Page: 82

Common ComponentHandler’s

AudioHandler
ButtonHandler FloatButtonHandler
CheckboxHandler ImageButtonHandler
CheckhoxPanelHandl

er

ChoiceHandler

Cormponert

.‘_

ComponentHandler

ComplexLiztHandler

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved

GaugeHandler

b ComplexLine

4+ Complextem

ImageHandler

LabeHandler

LiztHandler

SlidderHandler

WrappingText&reaH
TextAreaHandler andlar
TextComponent Han
dler
TextFieldHandler
TitmePlotHandler
TreeLiztHandler 4+ TreeMode
Page: 83

Menu ComponentHandler’s

Component

F 3

ComponentHandler

F 3

hMenuComponentHan
dler

F 3

MenuBarHandler

F 3

Menutembandler

MenuContainer '

L e 2

CheckhoxMenutemH
andler

MenuHandler

PopuphenuHandler

e e e e

BaseMenu

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved

Page: 84

Panel ComponentHandler’s

Component
F 3
TextinputDizlog
ComponentHandler
&
k J
PaneHandler ModalBazeFrame
& &
FileDialog
PanelTemplateGroup 4+ BazePane of BazeFrame
FileFiter
P aLGOOEE EELERRRREE FrameHandler
Ry Constraints E CartainerHandler ;
e e e e e e mmeee e eeemeed FileDirFitter
GenericPanel
FileFitterData
TabPanel

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved Page: 85

Special ComponentHandler’s

Component

ComponentHandler

GenericHandler

GenericEventHandler
i PacketListener '
LinkHandler
et
i LinkResponselnterfa |
i CE |
Y

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved

Page: 86

Appendix: Client
Component Hierarchy

The following diagrams describe the hierarchy of the components deployed on the client
browser. Conventions for the diagrams follow thoseof previous diagrams.

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved Page: 87

Basic Client Components

The following diagram shows the hierarchy of the base client components.

RBaze
RConstants

RLink

Does not need to be deployed

hblnterface . RComponent AmberException
im TR RhessageBox
! BaseComponent
H i

SocketConnection HitpConnection

ReceiveThresad SendThread HttpReceieThread HitpSendThread

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved Page: 88

Panel Client Components

The following diagram shows the hierarchy of the panel client components.

AmberException -

RMezzageBox 4

PTreeList

/

Treelist

PTextCampaonent

PTextirea

RConstants

Does not need to be deployed

BazeCantral

PTextField

Phlenu

Pirapires

l

WirapTextArea

e e e e e ey

' RContainer

U

BazePanel

/

W Layout

DrawwPanel

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved

PButton

PCheckhox

PCheckboxPanel

CheckbaxPanel

PChoice

PComplexLizt

ComplexList

PFloatButton

FloatButton

Plmage

ImagePanel

NI

FLakel

PList

PTimeFlat

TimePlot

———

PFrame

PZcrollPanel

PTabPanel

l

TakbPanel

Page: 89

Copyright © 2001-2002 Clearfidd Research Ltd. All rightsreserved Page: 90

