[image: image14.png]ccccccccccccccccc

Stock Trading

Platform

Technical Documentation

[image: image20.png]ST

[re————

Fepon

[
st

ot

st
Sescion Losr
Dormase

Uaritraion

ster Gient
ok Broneer)

.
e e -] Wbt |vtrne] e
[
I T L
e L
el e
Feport ¥ML- L]
o
o — —
s [I —

4

Setlmant Syt

Funds Transir

4

Bank

nerioe s

Authors: Peter Corin, Paulmi Patel, Sameer Mitra

TMS Marketing Student Project 2003

1 April - 16 October 2003

CONTENTS:

41. INTRODUCTION

1.1 Purpose
4
1.2 Intended Audience
5
1.3 Application Development Plan:
6
2. APPLICATION ARCHITECTURE:
7
2.1 Packages and Classes Developed:
7
2.1.1 Packages:
7
2.1.2 Classes:
7
2.2 Structure of external jar files:
11
2.3 Application Database Architecture:
12
2.3.1 Data Dictionary:
12
3. MODULES:
15
3.1 Register Module:
15
3.2 Login Module:
16
3.3 Main Module:
17
3.4 Buy Module:
19
3.5 Sell Module:
20
3.6 Update Module:
21
4. HIGH LEVEL CONTEXT DIAGRAM:
22
4.1 Abstract View:
22
4.2 High Level Context Diagram:
23
5. INSTALLATION PROCEDURES:
24
5.1 TMS Configuration:
24
5.1.1 TMS Properties:
24
5.1.2 Service Information:
24
5.1.3 Service and Rating Items’ Information:
24
5.2 Application Configuration:
25
6. APPENDICES:
26
6.1 Overview of TMS:
26
6.2 Overview of Amber:
28
AMBER Client
28
AMBER Server
29
Network
29
AATP
29
Other Business Systems
29
6.3 Example XML messages sent to TMS:
30
6.3.1 AdminAddXML:
30
6.3.2 TransactionAuthXML:
30
6.3.3 EnquiryNcbXML:
30
6.3.4 EnquiryNcbAddressXML:
31
6.3.5 AdminUpdateXML:
31
6.4 Test Cases:
32
6.4.1 Register Module:
32
6.4.2 Login Module:
33
6.4.3 Main, Buy and Sell Modules:
37
6.4.4 Update Module:
38
6.5 Unresolved Issues:
41
6.5.1 Dynamic rating of items:
41
6.5.2 Dynamic nature of the transactions:
41
6.5.3 Amber issues – TimePlotHandler:
41
6.6 References:
42

1. INTRODUCTION

1.1 Purpose

The primary purpose of the Stock Trading Platform is to demonstrate capabilities that Transaction Management System could incorporate and support in the future.

The secondary purpose of the Stock Trading Platform is to highlight the possibility of using Amber and Transaction Management System in the development of a future application.

BACKGROUND INFORMATION:

The transaction management system (TMS) is a proprietary Java platform developed by Clearfield Knowledge Solutions Ltd.

It is designed to mediate transactions by receiving transaction information from a source, and forming these transactions into bills and invoices which can be tailored to suit a businesses present billing application.

The TMS is based around four components - the Mediation Services, Rating Services, Billing and Management and Online Settlement Services.

The Stock Trading Platform effectively demonstrates the Mediation services, and widens the possibilities of future TMS use.

Stocks do not have a pre-defined rating. This meant that transactions could not be carried out using the mediation engine, as rating of items cannot be defined via XML messages. Currently TMS supports addition of rating items only through the administration pages. This is the main reason why ‘dynamic’ transactions are not supported by the present version of TMS. This point and further issues are covered in depth in the section titled “Unresolved issues” later in the Appendices section of the document.

The Stock Trading platform does, however use the mediation engine as means of storage and retrieval of user information.

1.2 Intended Audience

The intended audiences of this document are the staff of Clearfield Knowledge Solutions Ltd and the supervisors of Information Systems 340 at The University of Auckland.

It is the intention of the 2003 TMS Marketing Project Team that this document provides insight into the development procedure we have followed, and an insight into the technical workings beneath the surface of the Stock Trading Platform.

1.3 Application Development Plan:

[image: image2.png][Task Name

Duration

Start

Finish

[%C

[:] Ll [august [September [October _[November
& v Coding and testing (eoffee") days MonTOTO3 Frit0a03 100%

RN Develop User rterface Tdays Men7OTG Sun 130703 100%| B SameerMPauimip

& v Develon ava classes Tdays| Mon 1473 Sun 200703 100% Sameertpauimip

B v Iteracton wih TS Tdays| Mon210703 Sun 27073 100% SameerMpauimip

& v Decumertstion review 2cays Mon7HTNG Sun27m7ia 100% Peterc

v Testing an Ui refinemerts Sdays| MonZB07N3 Fr1DAN3 100% Peterc

CRN Cotfes Demonsiration Odeys FAIDBNS Fr10AD3 100% &1

v Coding and testing ("Stocks Comm’) Wdays? Mond0B03 Fri120903 100% —

v Develop User rterface 7days| MondDBN3 Suni0DANG 100% Sameertt

7 Ieracton wih aca Datsbase 7days| Mont10BN3 Sun17BN3 100% Sameertt

v Ineracton wilh TS (Register, Login) 7days| Mon1BBNI Sun24DBN3 100% Sameertt

KN Ineraction wih THS (Updete) 7days| Mon250BD3 Sun31DANG 100% Sameertt

% v Ineraction wih THS (Stock rading) 7Tdays| MoniDSD3 Sun7mans 100% Sameertt

% |v Decumertation Review oSy Mon4NADI Sun UGN 100% Peterc

7 v FinalInegration Tests Sdays MonomSDI 120803 100% Peterc

% v Stosk Trading Platform Demanstraion Odeys| Fri120803 120803 100% & 1208

v Coding and testing (‘P Board") Wdays? Mon40B03 Fri120903 100% —

CHN Develop User rterface 7days| MondDBN3 Suni0DANG 100% Paulnip

W v Ieracton wih aca Datsbase 7days| Mont10BN3 Sun17BN3 100% Pauimip

w2 v Interaction wih TS (Register, Login, cite) 7days| Mon1BBNI Sun24DBN3 100% Pauinip

v Messaging 7days| Mon250BD3 Sun31DANG 100% Pauinip

EHN Emaland Task ber 7Tdays| MoniDSD3 Sun7mans 100% Pauimip

& |v Doumertation Review oSy Mon4NADI Sun UGN 100% Peterc

® |v FinalInegration Tests Sy MenBDSUI 120803 100% Peterc

& v Pin Bosrd Handaver Odeys| Frif20803 120803 100% & 1208

w® v Presertation preparclion Tadays MoniSSNG Set27m9m3 100% == A
CHN Finel Pesenteion Odays| SH270303 St 270803 100% & 210
Ec) Project Handover Preparation Bdays Mon28DA3 ThutBHOD3 0% =
ER=) Froject Handover Ocdays Thu1BMOD3 Thu16AOD3 0% & 1610

Details of Development Phase

Developer: Sameer Mitra

Start Date: 4th August 2003

End Date: 12th September 2003

Procedure:

· Development of user interface - elektron assisted the development of various frames – LoginFrame, RegisterFrame, MainFrame, and UpdateFrame.

· Interaction with Application Database – mySQL database was setup to interact with the application.

· Interaction with TMS (register and login) –The classes that were developed to form XML messages and unmarshal XML messages for the Coffee Purchasing application were re-used in the Stock Trading Platform. Registration and login logic was implemented.

· Interaction with TMS (update and stock trading) – Update, buying of stocks, and selling of stocks logic was implemented.

· Testing & Documentation - Peter Corin carried out Stock Trading Platform tests, details of that are included in the appendices. User documentation and in-code comments were written in the duration of application development.

2. APPLICATION ARCHITECTURE:

2.1 Packages and Classes Developed:

2.1.1 Packages:

Package
Brief Description

AppletInterface
Hosts the jsp files which are deployed on the web server.

StocksWebContainer
Hosts StockTradingPlatform.html, which initiates the applet.

DataClasses
A set of classes, which are used to hold data and interact with the java server pages.

Validators
A set of classes, which are used for data validation.

XmlCommunication
Classes which enable formation of valid XML messages, and communication with the mediation engine of TMS.

DatabaseCommunication
Classes used to communicate with the coffee application database.

nz.co.cks.tms.xml
Classes generated by Castor, which represent the XML data types.

nz.co.cks.tms.xml.types
Classes generated by Castor, which represent the XML data types.

TestClasses
A set of test classes that were used to test specific areas of code.

2.1.2 Classes:

PACKAGE
CLASS
DESCRIPTION

AppletInterface
StockTradingApplication
The Amber Server application handler behind the frames. Manages synchronised interaction with amber server.

LoginFrame
The user interface for user login. This is the first frame that the user interacts with.

RegisterFrame
Registration of a new user is done via this frame.

MainFrame
The main frame of the application which enable a user to check stock prices, as well buy or sell his/her owned stocks.

OwnershipFrame
This frame displays detailed information about the stocks the user owns.

UpdateFrame
This frame is used to update user information.

StockTradingException
An exception that deals with all exceptions that can be thrown by the stock-trading platform.

ValidationException
Subclass of StockTradingException. Deals with only exceptions that result from unsuccessful validation(s).

StocksWebContainer
StockTradingPlatform.html
The html file on which the applet is resident.

AmberClient.jar
Amber requirement: used for identification of client.

DataClasses
UserAddress_Data
Class which holds data pertaining to the address where the user resides.

Stock_Data
Class which has data relevant to a stock type.

StockOwnership_Data
This class is similar to Stock_Data, except that it has additional fields that provide detailed information about particular purchases.

CreditCard_Data
Class which holds data pertaining to the credit card.

User_Data
Analogous to ncb in TMS. Holds information about a user.

Validators
UserAddressValidator
Validates address information.

AccountValidator
Validates user’s account, as well as the pre-billing amount.

QuantityValidator
Checks to see if the user has sufficient number of owned stocks.

CreditCardValidator
Validates credit card information.

UserValidator
Validates first name, user name, and last name of User.

LoginValidator
Used for authentication with LDAP.

NewLoginValidator
Validates the given password with verifying password.

XmlCommunication
ServletConnection
Used for sending and receiving XML messages.

XmlGenerator
Forms XML messages, which conform to the TMS schema. Marshalling using Castor is used for this.

XmlUnmarshal
Interprets the XML messages received back from TMS. Unmarshalling using Castor is used for this.

DatabaseCommunication
CreateTables
A program to populate the application database with tables relevant to the application.

StockManager
Used to execute insert, update, delete, and select SQL statements that relate to the stock information.

UserManager
Used to execute insert, update, delete, and select SQL statements that relate to the user data.

nz.co.cks.tms.xml
Castor generated classes
A series of classes that are used for the marshalling and unmarshalling of messages.

nz.co.cks.tms.xml.types
Castor generated classes
A series of classes that are used for the marshalling and unmarshalling of messages.

TestClasses
DateTest
A program, which tests some of the properties of a timestamp.

FloatTest
A program written to find an appropriate method of generation of stock values.

StringWriterTest
Program which tests writing to a StringWriter from castor’s marshal method.

DirectoryTest
A simple program which prints out the path of current working directory.

2.2 Structure of external jar files:

Directory Structure:

Folder
SubFolder
Description

data
amber
Used for communication with the Amber Server

castor
Used for conversion between java classes and XML messages.

java
Hosts tools.jar.

javamail
Not used for Stock Trading Platform.

jboss
Has Jboss related jar files.

mysql
Has the drivers enabling communication between java and mysql database.

tms
Has tmsShared.jar.

The folder ‘data’ currently resides under the root C:\. If the folder is moved, then the build paths under eclipse have to be modified accordingly.

2.3 Application Database Architecture:

2.3.1 Data Dictionary:

TABLE
COLUMN
DATA TYPE
LEN
NULL
INDEX
USAGE

stock
This table is used to store data relating to different stock types.

StockCode
varchar
4

Primary Key
Unique identifier for stock data.

CompanyName
varchar
40
Y

The stock issuing organisation’s name.

WeekHigh
decimal
10,2
Y

The highest recorded stock price in 52 weeks.

WeekLow
decimal
10,2
Y

The lowest recorded stock price in 52 weeks.

BaseValue
decimal
10,2
Y

The base value around which the stock values fluctuate.

Eps
decimal
10,2
Y

The earnings per share value of the stock.

stockinterested
Stores the stocks in which users are interested.

StockInterestedId
unsigned int
10

Primary key
Auto incrementing ID

UserName
varchar
8

Link to the user table
Unique identifier referring to the user table.

StockCode
varchar
4

Link to the stock table
Unique identifier referring to the stock table.

stockownership
Stores the owned stocks’ information.

StockOwnershipId
unsigned int
10

Primary key
Auto-incrementing ID.

UserName
varchar
8

Link to the user table
Unique identifier referring to the user table.

StockCode
varchar
4

Link to the stock table
Unique identifier referring to the stock table.

TotalQty
unsigned int
10
Y

The total quantity of particular stocks owned by a user.

TotalPrice
decimal
10,2
Y

The total investment in particular type of owned stocks.

LastPurchaseDate
datetime

Y

The date when the user last purchased this type of stock.

LastPurchaseAmount
decimal
10,2
Y

The transaction made when the user last purchased this type of stock.

LastPurchaseQty
unsigned int
10
Y

Quantity of stocks purchased by the user during the last transaction made on this particular stock.

user
Stores detailed information about the user.

UserName
char
8

Primary key
Unique identifier for the user.

NcbId
unsigned int
10

Stores the ncb Id assigned by TMS.

Type
char
20

Type of user – either ‘Person’ or ‘Organisation’

Account
decimal
10,2
Y

Account balance of the user.

3. MODULES:

3.1 Register Module:

FLOW OF EVENTS:

[image: image3.wmf]Validation of Data

Data Valid?

No

Display error

message and

return

Yes

Send AdminAdd

XML to TMS

AdminAdd

successful?

Yes

Insert user in

application

database

Interpret

NcbResponse

from TMS

No

Display error

message and

return

Display

confirmation

message

The logical flow of events while registering a new user starts with the validation of data. This is followed by sending admin add XML message to TMS and inserting the user in the application database.

3.2 Login Module:

FLOW OF EVENTS:

[image: image4.wmf]Authentication

using username

and password with

LDAP

User exists?

No

Display error

message and

return

Yes

Check if user

exists in

application

database

Send enquiry ncb

address XML to

TMS

Send enquiry ncb

XML to TMS

Display user

information in

Main Frame

User exists?

Display error

message and

return

No

Yes

Interpret ncb

response XML -

get remaining user

data

Interpret enquiry

ncb address XML

- get address data

Fetch user’s

interested stocks

information from

the application

database

Fetch user’s

stocks owned from

the application

database

The user is authenticated with the LDAP server, followed by sending enquiry ncb XML to TMS, and enquiry ncb address XML to retrieve the user’s details. Further information relating to interested stocks, owned stocks and account is retrieved from the application database.

3.3 Main Module:

FLOW OF EVENTS:

[image: image5.wmf]Add stock to graph

Update Graph

display

 EMBED Visio.Drawing.6 [image: image6.wmf]Remove stock

from graph

Update Graph

display

The interested stocks can be added or removed to/from the graph. This updates the graph display as required.

[image: image7.wmf]Select an

interested stock

Update stock

information in

the centre of

the screen

When an interested stock is selected, the information relating to the particular stock is updated in the centre of the screen.

[image: image8.wmf]Timer event

Update graph

display

Update stock

information in

the centre of

screen

Update

information in

sell panel

Update

information in

buy panel

Generate stock

values

Calculate

investment ratios

At each timer event, stock values are generated and information relating to the stocks is updated in the graph, buy panel, and sell panel.

After the generation of stock values, investment ratios like the PE ratio and dividend yield are calculated. These ratios are displayed in the center of the main screen.

3.4 Buy Module:

FLOW OF EVENTS:

[image: image9.wmf]Validate Account

Sufficient

funds?

No

Display error

message and

return

Yes

Update the Stock

Ownership

information of the

stock

Stock already

owned?

No

Yes

Update Stock

Ownership

information in

application

database

Add a new stock

ownership entry

Update user

information in

application

database

The user account is validated, followed by either updating stock ownership information (if the stock is already owned) or adding a new stock ownership entry (if the stock is not owned by the user). The user account details and stock ownership information is updated in the application database.

3.5 Sell Module:

FLOW OF EVENTS:

[image: image10.wmf]Validate Quantity

of stocks owned

Sufficient

stocks owned?

No

Display error

message and

return

Yes

Update the Stock

Ownership

information of the

stock

All stocks

being sold?

Yes

No

Update Stock

Ownership

information in

application

database

Delete the stock

ownership entry

Update user

information in

application

database

The flow of events logic is similar to the buy module.

The user account is validated, followed by either updating stock ownership information (if not all the stocks are sold) or deleting the stock ownership entry (if all the stocks are sold). The user account details and stock ownership information is updated in the application database.

3.6 Update Module:

FLOW OF EVENTS:

[image: image11.wmf]Validate Data

Data valid?

No

Display error

message and

revert to the

original data

Yes

Update the stock

interested

information in

application

database

Update user

information in

application

database

Send Admin

Update to TMS

The update module is logically similar to the registration module. The flow of events starts with the validation of data. This is followed by sending admin update XML message to TMS. Lastly, interested stock and user account details are updated in the application database.

4. HIGH LEVEL CONTEXT DIAGRAM:

4.1 Abstract View:

[image: image1.jpg]

[image: image14.png]
[image: image15.png]ccccccccccccccccc

[image: image16.wmf][image: image17.emf]
[image: image18.wmf]
[image: image19.png]

This is a brief overview of the Stock Trading Platform deployment.

4.2 High Level Context Diagram:

The first 4 interfaces are based on messages that conform to a single TMS messaging schema. While interfaces 1,3 and 4 are being used by the stock trading platform, the focus of Stock Trading Platform development was on using interfaces 3 and 4 to communicate messages between the Stock Trading Platform and the TMS mediation engine.

The interfaces (1-5) are defined in the TMS Technical Specification and are outside the scope of this document.

The diagram highlights how the Stock Trading Platform relates contextually to the Transaction Management System and Amber Server.

5. INSTALLATION PROCEDURES:

5.1 TMS Configuration:

5.1.1 TMS Properties:

Buyline was disabled. An extract from the file tms.properties:

BNZBuyLine Properties

BuyLineServerIP=127.0.0.1

BuyLineServerPort=1997

BuyLineServerOpsId=12345678

BuyLineServerOpsPass=password

BuyLine server status

0 Enabled

1 Disabled return Failure

2 Disabled return Success (For Testing without BuyLine)

BuyLineServerStatus=2

BuyLine Connection timeout is second based.

BuyLineConnectionTimeout=45

The queue where void messages are sent so that they

can keep getting sent until the bank acknowledges there

reception.

BuyLineVoidQueueBase=/tmsqueue/billing/buyline/void

BuyLineVoidScheduledPeriod period is seconds based.

Set to 0 (zero) to disable

BuyLineVoidScheduledPeriod=0

5.1.2 Service Information:

NcbService Code – StockTradingCode

New users that register on the Stock Trading Platform are associated with the StockTradingCode. This code distinguishes between different applications that are using TMS.

5.1.3 Service and Rating Items’ Information:

Rating items are currently not in use. Details are covered in the ‘unresolved issues’ section under the Appendices.

5.2 Application Configuration:

Configuration details of the stock trading platform are contained in the text file stocktrading.txt. An extract from stocktrading.txt is shown below:

URL=http://172.21.5.26:8080/tmsMediation/MediationEngine
MYSQLURL=jdbc:mysql://172.21.5.26:3306/stocktrading
The first line defines the URL to the TMS mediation engine. The ServletConnection class uses this URL to establish a connection with the TMS mediation engine.

The second line defines the URL to the mySql database, the stocktrading database to be precise. StockManager and UserManager classes use this URL to communicate with the application database.

NOTE:

stocktrading.txt should reside in the bin folder of amberserver.
6. APPENDICES:

6.1 Overview of TMS:

The transaction management system (TMS) is a proprietary Java platform developed by Clearfield Knowledge Solutions Ltd.

It is designed to mediate transactions by receiving transaction information from a source, and forming these transactions into bills and invoices which can be tailored to suit a businesses present billing application.

2.1TMS Architecture

The TMS is based around four components. The Mediation Services, Rating Services, Billing and Management and Online Settlement Services.

The Mediation Services concern the handling of messages. Functions include queuing and formatting messages in anticipation of further processing, and returning confirmation messages.

The Rating Services provide the first step in the transaction process. It receives messages from the Mediation System and applies a rating (combination of product and price information) based on a rating schedule that has been established.

The Billing and Management Services module is the next part of the process. The billing system of the TMS can interface with external systems if required.

The Online Settlement Services allow users of the system to settle their accounts online. The Online Settlement component allows the system to receive payment directly from a bank or other institution provided that the system has specific information about the user.

6.2 Overview of Amber:

AMBER is a Java technology that allows the traditional HTML-page style user interface of web applications to be replaced with a more familiar, more functional GUI, similar to that used by desktop operating systems. AMBER uses a light Java applet running in a web browser as a display mechanism. The AMBER interfaces are based on the Java Abstract Window Toolkit (AWT), and will function effectively on a browser running Java version 1.1 or higher (both Internet Explorer 4 and Netscape 4 are well suited for running AMBER).

The AMBER system has two main software components:

· The AMBER Client is a light download (approximately 100KB) that drives the user interface, while the business logic remains on the server.

· The AMBER Server is a program that handles all the business processing for the AMBER client. To build an AMBER application, a developer writes a set of AMBER handlers (in Java) that define the appearance of the interface, its behaviour, and the business logic.

AMBER uses the AMBER Application Transfer Protocol (AATP). AATP will work over any TCP-IP network, including Internet, Intranet, Extranet, WAN or LAN.

AMBER ships with all the necessary software to both develop and host an AMBER-based site.

[image: image12]
[image: image13.jpg]=
®
©

Armber Chent

Intanet, terne, Exranet, WAN Amber Server!
Weslesioa or LAN Network Web

Other
Business Sysems
sl

Figure 1 – AMBER architecture
AMBER Client

The AMBER Client is a Java applet (approx 100KB, slightly more with security enabled), which downloads to the web browsers of AMBER users. The Client contains all the visual controls that allow it to present the user with a GUI, and messaging code that allows the clients to communicate back to the AMBER Server. No business logic resides on the client - all the GUI layouts, data, behaviour, and updates are presented by the Client on demand, as directed by the AMBER Server.

The client is launched with an <APPLET> tag on a regular web page. When the client starts up, it establishes a connection back to the AMBER Server, which persists throughout the session and is used for transporting data between the Client and Server.

Once the connection has been established, the AMBER Server will direct the intelligent Java components in the AMBER Client to display the appropriate window controls and data via a series of high-level commands. Hence, a highly functional, fully featured screen can be presented on the AMBER Client with very little bandwidth utilisation.

The AMBER client component is static - all AMBER programs share the same download. The download is small enough that most browsers will cache it, so it need not be downloaded every time a user invokes your AMBER system.

The AMBER Client will run in any web browser that supports Java 1.1 or higher.

AMBER Server

The AMBER Server is the controlling core of an AMBER system. The AMBER Server is a software process, which functions in tandem with the Web Server.

When the AMBER Server detects an incoming connection from an AMBER Client, it invokes the appropriate AMBER application in a new thread.

To develop an AMBER system, set of Java classes is written which plugs into the AMBER Server. These classes, known as Handlers, provide GUI layouts, behaviour and data to the client. If desired, these classes can implement business logic or interface to other systems. AMBER programs looks very similar to standard Java AWT applications - all the concepts and names are consistent. An AMBER program may be running on the other side of a network, being simultaneously accessed by multiple users, but these facts are transparent to the Java programmer.

The AMBER Server is 100% Java, and is fully cross-platform.

Network

AMBER will operate over any TCP-IP network. If the network includes a firewall, the network administrator must open the appropriate port, or AMBER must use HTTP communication (available in the Enterprise Edition).

AATP

The AMBER Application Transfer Protocol is a socket-based light protocol for communication between the AMBER Server and Client. A lot of effort has been invested in making AATP as small and fast as possible. In the Enterprise Edition, AATP is optional - you may enable HTTP communication to allow AMBER to communicate through closed firewalls (although HTTP communication is slower).

Other Business Systems

Because AMBER applications are programmed in Java, an AMBER application can do anything Java can do - for example, utilise EJB servers, databases, message queuing services, email servers, legacy systems - with the appropriate Java library, the application can perform whatever tasks are required of it.

6.3 Example XML messages sent to TMS:

6.3.1 AdminAddXML:

<?xml version="1.0" encoding="UTF-8"?>

<tmsMessage messageId="1" messageDateTime="2003-10-07T15:21:32.023+13:00" xmlns="http://www.k.co.nz/schemas/tms">

<messageAuthBlk ncbId="0"/>

<messageAdminBlk>

<adminAdd>

<ncb ncbType="Person" name="Sameer" nameLast="Mitra" login="wise" password="abcd"/>

<ncbService serviceCode="StockTradingCode">

<attrib name="StockTrading" value="StockTrading"/>

</ncbService>

<ncbAddress selectedAddressType="Billing" streetLine1="13 Amsterdam Place" streetLine2="Avondale" streetLine3="New Zealand" city="Auckland" phoneNumber="8208136" email="mitra_sameer@yahoo.co.nz"/>

</adminAdd>

</messageAdminBlk>

</tmsMessage>

6.3.2 TransactionAuthXML:

<?xml version="1.0" encoding="UTF-8"?>

<tmsMessage messageId="2" messageDateTime="2003-10-07T15:21:39.874+13:00" xmlns="http://www.k.co.nz/schemas/tms">

<messageAuthBlk ncbId="204"/>

<messageTransactionBlk>

<transactionAuth paymentAmount="200" paymentCurrencyCode="NZD" ncbId="204">

<cardInfo cardName="Visa" cardNumber="1624688446082347" expiryDate="0104" cardHolderName="Sameer"/>

</transactionAuth>

</messageTransactionBlk>

</tmsMessage>

6.3.3 EnquiryNcbXML:

<?xml version="1.0" encoding="UTF-8"?>

<tmsMessage messageId="3" messageDateTime="2003-10-07T15:22:18.209+13:00" xmlns="http://www.k.co.nz/schemas/tms">

<messageAuthBlk ncbId="204"/>

<messageEnquiryBlk>

<enquiryNcb ncbId="204"/>

</messageEnquiryBlk>

</tmsMessage>

6.3.4 EnquiryNcbAddressXML:

<?xml version="1.0" encoding="UTF-8"?>

<tmsMessage messageId="2" messageDateTime="2003-10-07T17:29:17.345+13:00" xmlns="http://www.k.co.nz/schemas/tms">

<messageAuthBlk ncbId="204"/>

<messageEnquiryBlk>

<enquiryNcbAddress ncbId="204">

<ncbAddress selectedAddressType="Billing"/>

</enquiryNcbAddress>

</messageEnquiryBlk>

</tmsMessage>

6.3.5 AdminUpdateXML:

<?xml version="1.0" encoding="UTF-8"?>

<tmsMessage messageId="5" messageDateTime="2003-10-07T15:23:19.007+13:00" xmlns="http://www.k.co.nz/schemas/tms">

<messageAuthBlk ncbId="204"/>

<messageAdminBlk>

<adminUpdate>

<ncb ncbId="204" name="Sameer" nameLast="Mitra" login="wise" password="abcd"/>

<ncbService serviceCode="StockTradingCode"><attrib name="StockTrading" value="StockTrading"/>

</ncbService>

<ncbAddress selectedAddressType="Billing" streetLine1="13 Amsterdam Place" streetLine2="Avondale" streetLine3="New Zealand" city="Auckland" phoneNumber="8208136" email="mitra_sameer@yahoo.co.nz"/>

</adminUpdate>

</messageAdminBlk>

</tmsMessage>

6.4 Test Cases:

6.4.1 Register Module:

Key:

Test # - Identifier used to show the sequential nature of tests and to identify when a test occurred as part of the testing of the entire module.

Org/Person – This application allows either a person or organisation to register, this field specifies this.

First Name – This field specifies the first name of a person, it should be blocked if an organisation is registering.

Last Name – This field specifies the family name of a person, it should be blocked if an organisation is registering.

Organisation – If the registration is for an organisation, then the organisation will include it’s name here. This field should be blocked if the registration is

being done by a person.

Phone # - Both an organisation and a person will be required to input a phone number, this field contains this information.

Email – This field will contain the email address of an organisation or person.

Password – This field allows the person or organisation to specify a password that they will be using.

V/Password – The person or organisation should have to verify their password before they can complete registration.

Card Name – To allow funds to be credited from a credit card, firstly a name is required.

Card # - A card number is also required for funds to be credited.

Card Type – This field allows the user to specify the type of credit card they are registering (ie, amex, visa etc)

Expiry Day – This field is part of the expiry details of the card. Would normally be left blank.

Ex Month – This field is another part of the expiry details of the card.

Ex Year – This field is the final part of the expiry details of the card.

Pre Auth – This is the amount that the user wants to initially debit from the card.

Street – This field is the first part of the address information of the user.

Suburb – This is another part of the address information of the user.

City – Another field as part of the address information.

Country – The final part of the address information.

Stocks Int – This is the list of stocks that are stocks that the user is interested in.

Action – This is the action that was taken after completion of the relevant fields, will usually comprise pressing a button or a keystroke.

Result – The result is the reason we are doing the tests, to gauge the result of the action, will be either success, failure or success/u (success with unexpected result).

Other info – When something unexpected, or incorrect occurs as a result of the action, this field will contain the relevant information.

6.4.2 Login Module:

Key:

Test # - Identifier used to show the sequential nature of tests and to identify when a test occurred as part of the testing of the entire module.

Username – The username that is given to the user when they register, it must be completed correctly to ensure access to the system.
Password – The password is input by the user at registration, this must be completed correctly to ensure access to the system.

Action – This is the action that was taken after completion of the relevant fields, will usually comprise pressing a button or a key stroke.

Result – The result is the reason we are doing the tests, to gauge the result of the action, will be success, failure or success/u (success with unexpected result).

Other info – When something unexpected, or incorrect occurs as a result of the action, this field will contain the relevant information.

Tests:

Test #
Username
Password
Action
Result
Other Info

1 – 11/09/03 – 11:55am
miutt740
abcd
‘Login’ Button Pressed
Success
Main window should be maximised

Rectified this.

2 – 11/09/03 – 11:56
miut740
abcd
‘Login’ Button Pressed
Success
Appropriate error msg

3 – 11/09/03 – 12:01
miutt740
bbcd
‘Login’ Button Pressed
Success
Appropriate error msg

4 – 11/09/03 – 12:03
miutt740
abcd
‘Enter’ key Pressed
Success
-

5 – 11/09/03 – 12:06
Mmmmmmmmmmmmmmmmmmmmmmmmm
abcd
‘Login’ Button Pressed
Success
Appropriate error msg

6 – 11/09/03 – 12:07
m (x100)
abcd
‘Login’ Button Pressed
Success
Appropriate error msg

7 – 11/09/03 – 12:09
1111111111111111111111111111111111111
abcd
‘Login’ Button Pressed
Success
Appropriate error msg

9 – 11/09/03 – 12:11
1 (x100)
abcd
‘Login’ Button Pressed
Success
Appropriate error msg

10 – 11/09/03 – 12:13
miutt740
m (x100)
‘Login’ Button Pressed
Success
Appropriate error msg

11 – 11/09/03 – 12:15
miutt740
1 (x100)
‘Login’ Button Pressed
Success
Appropriate error msg

12 – 11/09/03 – 12:17
**??^^##
abcd
‘Login’ Button Pressed
Success
Appropriate error msg

13 – 11/09/03 – 12:19
miutt740
**??^^##
‘Login’ Button Pressed
Success
Appropriate error msg

14 – 11/09/03 – 12:21

‘Register’ Button Pressed
Success
-

15 – 11/09/03 – 12:22
miutt740
abcd
‘Register’ Button Pressed
Success
-

Tests:

Personal Details:

Test #
Org/Person
First Name
Last Name
Organisation
Phone #
Email
Password
V/Password

1 – 11/09/03 – 1:21
Person
Peter
Corin
-
12345678
pete@nocents.org
abcd
abcd

2 – 11/09/03 – 1:40
Person
Peter
Corin
-
12345678
pete@nocents.org
abcd
abcd

3 – 11/09/03 – 1:45
Person
Peter
Corin
-
12345678
pete@nocents.org
abcd
abcd

4 – 11/09/03 – 1:49
Person
Peter
Corin
-
12345678
pete@nocents.org
abcd
abcd

5 – 11/09/03 – 1:51
Organisation
-
-
Clearfield
12345678
me@clear.co.nz
abcd
abcd

6 – 11/09/03 – 1:58
Organisation
-
-
Clearfield
12345678
me@clear.co.nz
abcd
abcd

7 – 11/09/03 – 2:00
Organisation
-
-
Clearfield
12345678
me@clear.co.nz
abcd
abcd

8 – 11/09/03 – 2:04
Organisation
-
-
Clearfield
12345678
me@clear.co.nz
abcd
abcd

9 – 11/09/03 – 2:07
Organisation
-
-
Clearfield
12345678
me@clear.co.nz
abcd
abcd

10 – 11/09/03 – 2:33
Person
P*._?
Corin
-
12345678
pete@nocents.org
abcd
abcd

11 – 11/09/03 – 2:39
Person
Peter
C*._?
-
12345678
pete@nocents.org
abcd
abcd

12 – 11/09/03 – 2:41
Person
Peter
Corin
-
astupidnumber
pete@nocents.org
abcd
abcd

13 – 11/09/03 – 2:45
Person
Peter
Corin
-
12345678
12345678
abcd
abcd

14 – 11/09/03 – 2:47
Person
Peter
Corin
-
12345678
pete@nocents.org
1
1

15 – 11/09/03 – 2:51
Person
Peter
Corin
-
12345678
pete@nocents.org
m (x40)
m (x40)

16 – 11/09/03 – 3:01
Person
Peter
Corin
-
12345678
pete@nocents.org
abcd
bbbb

17 – 11/09/03 – 3:05
Person
Peter
Corin
-
12345678
pete@nocents.org
abcd
abcd

18 – 11/09/03 – 3:09
Person
Peter
Corin
-
12345678
pete@nocents.org
abcd
abcd

19 – 11/09/03 – 3:14
Person
Peter
Corin
-
12345678
pete@nocents.org
abcd
abcd

20 – 11/09/03 – 3:17
Person
Peter
Corin
-
12345678
pete@nocents.org
abcd
abcd

21 – 11/09/03 – 3:19
Person
Peter
Corin
-
12345678
pete@nocents.org
abcd
abcd

22 – 16/09/03 – 10:15
Person
Peter
Corin
-
12345678
pete@nocents.org
abcd
abcd

23 – 16/09/03 – 10:38
Person
Peter
Corin
-
12345678
pete@nocents.org
abcd
abcd

24 – 16/09/03 – 10:44
Person
Peter
Corin
-
12345678
pete@nocents.org
abcd
abcd

25 – 16/09/03 – 10:50
Person
Peter
Corin
-
12345678
pete@nocents.org
abcd
abcd

26 – 16/09/03 – 10:56
Person
Peter
Corin
-
12345678
pete@nocents.org
abcd
abcd

Credit Card details:

Test #
Card Name
Card #
Card Type
Expiry Day
Ex Month
Ex Year
Pre Auth

1 – 11/09/03 – 1:21
P Q Corin
49999999999
Visa
14
05
2003
200

2 – 11/09/03 – 1:40
P Q Corin
49999999999
Visa
14
05
2003
200

3 – 11/09/03 – 1:45
P Q Corin
49999999999
Visa
14
05
2003
200

4 – 11/09/03 – 1:49
P Q Corin
49999999999
Visa
14
05
2003
200

5 – 11/09/03 – 1:51
M Stenerson
48888888888
Visa
28
01
2005
5000

6 – 11/09/03 – 1:58
M Stenerson
48888888888
Visa
28
01
2005
5000

7 – 11/09/03 – 2:00
M Stenerson
48888888888
Visa
28
01
2005
5000

8 – 11/09/03 – 2:04
M Stenerson
48888888888
Visa
28
01
2005
5000

9 – 11/09/03 – 2:07
M Stenerson
48888888888
Visa
28
01
2005
5000

10 – 11/09/03 – 2:33
P Q Corin
49999999999
Visa
14
05
2003
200

11 – 11/09/03 – 2:39
P Q Corin
49999999999
Visa
14
05
2003
200

12 – 11/09/03 – 2:41
P Q Corin
49999999999
Visa
14
05
2003
200

13 – 11/09/03 – 2:45
P Q Corin
49999999999
Visa
14
05
2003
200

14 – 11/09/03 – 2:47
P Q Corin
49999999999
Visa
14
05
2003
200

15 – 11/09/03 – 2:51
P Q Corin
49999999999
Visa
14
05
2003
200

16 – 11/09/03 – 3:01
P Q Corin
49999999999
Visa
14
05
2003
200

17 – 11/09/03 – 3:05
P. Q. Corin
49999999999
Visa
14
05
2003
200

18 – 11/09/03 – 3:09
P Q Corin
44
Visa
14
05
2003
200

19 – 11/09/03 – 3:14
P Q Corin
49999999999999999
Visa
14
05
2003
200

20 – 11/09/03 – 3:17
P Q Corin
49999999999
Amex
14
05
2003
200

21 – 11/09/03 – 3:19
P Q Corin
49999999999
Visa
30
02
2003
200

22 – 16/09/03 – 10:15
P Q Corin
49999999999
Visa
14
05
2003
0.001

23 – 16/09/03 – 10:38
P Q Corin
49999999999
Visa
14
05
2003
50000000000

24 – 16/09/03 – 10:44
P Q Corin
49999999999
Visa
14
05
2003
200

25 – 16/09/03 – 10:50
P Q Corin
49999999999
Visa
14
05
2003
200

26 – 16/09/03 – 10:56
P Q Corin
49999999999
Visa
14
05
2003
200

Other Details:

Test #
Street
Suburb
City
Country
Stocks Int
Action
Result
Other Info

1 – 11/09/03 – 1:21
21a Castor Bay Road
Castor Bay
Auckland
New Zealand
-

Success
AADK added

2 – 11/09/03 – 1:40
21a Castor Bay Road
Castor Bay
Auckland
New Zealand
AADK
“Remove” Button Pressed
Success
AADK removed

3 – 11/09/03 – 1:45
21a Castor Bay Road
Castor Bay
Auckland
New Zealand
-
“Register” Button Pressed
Success/u
Relevant Error Message. At least one stock must be selected.

4 – 11/09/03 – 1:49
21a Castor Bay Road
Castor Bay
Auckland
New Zealand
APSI
“Register” Button Pressed
Success/u
Created “pecor235”, however, unnecessary messages. Rectified this.

5 – 11/09/03 – 1:51
P.O Box 345
Central
Auckland
New Zealand
-
“Add” Button Pressed
Success
SSSL added

6 – 11/09/03 – 1:58
P.O Box 345
Central
Auckland
New Zealand
SSSL
“Remove” Button Pressed
Success
SSSL removed

7 – 11/09/03 – 2:00
P.O Box 345
Central
Auckland
New Zealand
HCBI
“Register” Button Pressed
Fail
“Street cannot contain ‘.’ needs addressing. Rectified this.

8 – 11/09/03 – 2:04
Level 4, Sequent House
Central
Auckland
New Zealand
HCBI
“Register” Button Pressed
Fail
“Street cannot contain ‘,’ needs addressing. Rectified this.

9 – 11/09/03 – 2:07
Level 4 Sequent House
Central
Auckland
New Zealand
HCBI
“Register” Button Pressed
Success/u
Created “clea060”, however, unnecessary messages. Rectified this.

10 – 11/09/03 – 2:33
21a Castor Bay Road
Castor Bay
Auckland
New Zealand
AADK
“Register” Button Pressed
Success
First name cannot contain punctuation or other symbols.

11 – 11/09/03 – 2:39
21a Castor Bay Road
Castor Bay
Auckland
New Zealand
AADK
“Register” Button Pressed
Success
Last name cannot contain punctuation or other symbols.

12 – 11/09/03 – 2:41
21a Castor Bay Road
Castor Bay
Auckland
New Zealand
AADK
“Register” Button Pressed
Success
Appropriate Error Msg

13 – 11/09/03 – 2:45
21a Castor Bay Road
Castor Bay
Auckland
New Zealand
AADK
“Register” Button Pressed
Success
Appropriate Error Msg

14 – 11/09/03 – 2:47
21a Castor Bay Road
Castor Bay
Auckland
New Zealand
AADK
“Register” Button Pressed
Success
Appropriate Error Msg

15 – 11/09/03 – 2:51
21a Castor Bay Road
Castor Bay
Auckland
New Zealand
AADK
“Register” Button Pressed
Success
Would be nice if the user was blocked from entering more than 30 chars

16 – 11/09/03 – 3:01
21a Castor Bay Road
Castor Bay
Auckland
New Zealand
AADK
“Register” Button Pressed
Success
Appropriate Error Msg

17 – 11/09/03 – 3:05
21a Castor Bay Road
Castor Bay
Auckland
New Zealand
AADK
“Register” Button Pressed
Fail
Does not accept ‘,’ or ‘.’ Rectified this.

18 – 11/09/03 – 3:09
21a Castor Bay Road
Castor Bay
Auckland
New Zealand
AADK
“Register” Button Pressed
Success
Appropriate Error Msg

19 – 11/09/03 – 3:14
21a Castor Bay Road
Castor Bay
Auckland
New Zealand
AADK
“Register” Button Pressed
Success
Appropriate Error Msg. Would be nice if it constrained the user.

20 – 11/09/03 – 3:17
21a Castor Bay Road
Castor Bay
Auckland
New Zealand
AADK
“Register” Button Pressed
Success
Created “pecor006”

21 – 11/09/03 – 3:19
21a Castor Bay Road
Castor Bay
Auckland
New Zealand
AADK
“Register” Button Pressed
Success/u
Should not have accepted expiry date since this date does not exist.

Dates now limited to month and year, but does not check if expiry date has already occurred.

22 – 16/09/03 – 10:15
21a Castor Bay Road
Castor Bay
Auckland
New Zealand
AADK
“Register” Button Pressed
Success
Error Message could be more appropriate “Pre-billing amount must be a number equal to or greater than 0.01”

Now has a more appropriate error message.

23 – 16/09/03 – 10:38
21a Castor Bay Road
Castor Bay
Auckland
New Zealand
AADK
“Register” Button Pressed
Success
Created “pecor142”

24 – 16/09/03 – 10:44
21a Castor Bay Road
‘Onehunga
Auckland
New Zealand
AADK
“Register” Button Pressed
Success
Appropriate Error Message

25 – 16/09/03 – 10:50
21a Castor Bay Road
Castor Bay
‘Auckland
New Zealand
AADK
“Register” Button Pressed
Success/u
Inappropriate error msg.
Rectified this.

26 – 16/09/03 – 10:56
21a Castor Bay Road
Castor Bay
Auckland
‘New Zealand
AADK
“Register” Button Pressed
Success
Appropriate Error Message

Clean up error message font types and layouts. All should be arial and the same size.

Rectified this. All messages now in the same font and size.

6.4.3 Main, Buy and Sell Modules:

Key:

Test # - Identifier used to show the sequential nature of tests and to identify when a test occurred as part of the testing of the entire module.

Login – The user account which the test is using.

Stocks Int – This is the list of stocks that are stocks that the user is interested in, one may be selected at a time.

Stocks on Graph – Of the stocks that a user is interested in, any number of these can be displayed on the line graph, this field lists the stocks that are currently being displayed on the graph.

Buy Stock – During normal operation, a stock may be selected in the buy drop down box.

Buy Quantity – During normal operation, a quantity may also be entered in the buy text box.

Sell Stock – Similarly, during normal operation, a stock may be selected from the list of stocks that are owned, in the sell stock drop-down box.

Sell Quantity – A value may be existent in the sell quantity text box.

Action – This is the action that was taken after completion of the relevant fields, will usually comprise pressing a button or a key stroke.

Result – The result is the reason we are doing the tests, to gauge the result of the action, will be either success, failure or success/u (success with unexpected result).

Other info – When something unexpected, or incorrect occurs as a result of the action, this field will contain the relevant information.

Tests:

Test #
Login
Stocks Int
Stocks on Graph
Buy Stock
Buy Quantity
Sell Stock
Sell Quantity
Action
Result
Other Info

1 – 16/09/03 – 11:03
pecor142
AADK
-
AADK
-
-
-
-
Fail
The huge prebilling value was allowed at registration but is invalid in the main screen, displays $9.9999E8

The prebilling amount is now constrained, the total account value is constrained.

2 – 16/09/03 – 11:06
pecor142
AADK
-
AADK
-
-
-
Logout
Success/u
Should go back to the main screen so that I can log back in.
Not implemented due to security constraints.

3 – 16/09/03 – 11:08
pecor006
AADK
-
AADK
-
-
-
Add Stock 2 Graph
Success
-

4 – 16/09/03 – 11:10
pecor006
AADK
AADK
AADK
10
-
-
Buy Stock
Success
Appropriate Error Msg

5 – 16/09/03 – 11:11
pecor006
AADK
AADK
AADK
3
-
-
Buy Stock
Success
-

6 – 16/09/03 – 11:13
pecor006
AADK
AADK
AADK
3
AADK
10
Sell Stock
Success
Appropriate Error Msg

7 – 16/09/03 – 11:14
pecor006
AADK
AADK
AADK
3
AADK
2
Sell Stock
Success
-

8 – 16/09/03 – 12:22
clea060
All
All
APSI
10
APSI
-
Remove APSI from graph
Success
-

9 – 16/09/03 – 12:24
clea060
All
All
APSI
10
-
-
Buy Stock
Success
-

10 – 16/09/03 – 12:26
clea060
All – ASPI
All – APSI
APSI
10
APSI
5
Sell Stock
Success
-

6.4.4 Update Module:

Key:

Test # - Identifier used to show the sequential nature of tests and to identify when a test occurred as part of the testing of the entire module.

Login – The user account which the test is using.
Org/Person – This application allows either a person or organisation to register, this field specifies this.

First Name – This field specifies the first name of a person, it should be blocked if an organisation is registering.

Last Name – This field specifies the family name of a person, it should be blocked if an organisation is registering.

Organisation – If the registration is for an organisation, then the organisation will include it’s name here. This field should be blocked if the registration is

being done by a person.

Phone # - Both an organisation and a person will be required to input a phone number, this field contains this information.

Email – This field will contain the email address of an organisation or person.

Street – This field is the first part of the address information of the user.

Suburb – This is another part of the address information of the user.

City – Another field as part of the address information.

Country – The final part of the address information.

Add to account – Amount of money the user wishes to add to their account balance.

Stocks Int – This is the list of stocks that are stocks that the user is interested in.

Action – This is the action that was taken after completion of the relevant fields, will usually comprise pressing a button or a keystroke.

Result – The result is the reason we are doing the tests, to gauge the result of the action, will be either success, failure or success/u (success with unexpected result).

Other info – When something unexpected, or incorrect occurs as a result of the action, this field will contain the relevant information.
Test #
Login
Org/Person
First Name
Last Name
Organisation
Phone #
Email
Street

1 – 16/09/03 – 11:16
pecor006
Person
Peter
Corin
-
12345678
pete@nocents.org
21a Castor Bay Road

2 – 16/09/03 – 11:18
pecor006
Person
Peter
Corin
-
12345678
pete@nocents.org
21a Castor Bay Road

3 – 16/09/03 – 11:25
pecor006
Person
Peter
Corin
-
12345678
pete@nocents.org
21a Castor Bay Road

4 – 16/09/03 – 11:30
pecor006
Person
P*._?
Corin
-
12345678
pete@nocents.org
21a Castor Bay Road

5 – 16/09/03 – 11:33
pecor006
Person
Peter
C*._?
-
12345678
pete@nocents.org
21a Castor Bay Road

6 – 16/09/03 – 11:36
pecor006
Person
Peter
Corin
-
astup1dnumb3r
pete@nocents.org
21a Castor Bay Road

7 – 16/09/03 – 11:37
pecor006
Person
Peter
Corin
-
12345678
notanemailaddress?
21a Castor Bay Road

8 – 16/09/03 – 11:39
pecor006
Person
Peter
Corin
-
12345678
pete@nocents.org
21a, Castor Bay Road

9 – 16/09/03 – 11:42
pecor006
Person
Peter
Corin
-
12345678
pete@nocents.org
21a Castor Bay Road

10 – 16/09/03 – 11:49
pecor006
Person
Peter
Corin
-
12345678
pete@nocents.org
21a Castor Bay Road

11 – 16/09/03 – 11:51
pecor006
Person
Peter
Corin
-
12345678
pete@nocents.org
21a Castor Bay Road

12 – 16/09/03 – 11:54
pecor006
Person
Peter
Corin
-
12345678
pete@nocents.org
21a Castor Bay Road

13 – 16/09/03 – 11:59
pecor006
Person
Peter
Corin
-
12345678
pete@nocents.org
21a Castor Bay Road

14 – 16/09/03 – 12:01
pecor006
Person
Peter
Corin
-
12345678
pete@nocents.org
21a Castor Bay Road

15 – 16/09/03 – 12:03
pecor006
Person
Peter
Corin
-
12345678
pete@nocents.org
21a Castor Bay Road

16 – 16/09/03 – 12:06
clea060
Organisation
-
-
Clearfield.com
12345678
me@clear.co.nz
Level 4 Sequent House

17 – 16/09/03 – 12:09
clea060
Organisation
-
-
Clearfield
12345678
me@clear.co.nz
Level 4 Sequent House

18 – 16/09/03 – 12:11
clea060
Organisation
-
-
Clearfield
12345678
me@clear.co.nz
Level 4 Sequent House

19 – 16/09/03 – 12:14
clea060
Organisation
-
-
Clearfield
12345678
me@clear.co.nz
Level 4 Sequent House

20 – 16/09/03 – 12:16
clea060
Organisation
-
-
Clearfield
12345678
me@clear.co.nz
Level 4 Sequent House

Test #
Suburb
City
Country
Add to Account
Stocks Int
Action
Result
Other Info

1 – 16/09/03 – 11:16
Castor Bay
Auckland
New Zealand
-
AADK
Add DPNA to int stock
Success
-

2 – 16/09/03 – 11:18
Castor Bay
Auckland
New Zealand
-
AADK, DPNA
Press ‘main’ button
Success/u
Since we didn’t press the update button, the main page has not been updated. Consider deactivating the ‘main’ button or having an automatic update.

3 – 16/09/03 – 11:25
Castor Bay
Auckland
New Zealand
-
AADK, DPNA
Press ‘Update’ Button
Success
-

4 – 16/09/03 – 11:30
Castor Bay
Auckland
New Zealand
-
AADK, DPNA
Press ‘Update’ Button
Success
Appropriate Error Message

5 – 16/09/03 – 11:33
Castor Bay
Auckland
New Zealand
-
AADK, DPNA
Press ‘Update’ Button
Success
Appropriate Error Message

6 – 16/09/03 – 11:36
Castor Bay
Auckland
New Zealand
-
AADK, DPNA
Press ‘Update’ Button
Success
Appropriate Error Message

7 – 16/09/03 – 11:37
Castor Bay
Auckland
New Zealand
-
AADK, DPNA
Press ‘Update’ Button
Success
Appropriate Error Message

8 – 16/09/03 – 11:39
Castor Bay
Auckland
New Zealand
-
AADK, DPNA
Press ‘Update’ Button
Success/u
“Street cannot contain ‘,’ needs addressing.

Rectified this.

9 – 16/09/03 – 11:42
‘Castor Bay
Auckland
New Zealand
-
AADK, DPNA
Press ‘Update’ Button
Success
Appropriate Error Message

10 – 16/09/03 – 11:49
Castor Bay
Auckland
New Zealand
0.01
AADK, DPNA
Press ‘Update’ Button
Fail
Inappropriate error message

11 – 16/09/03 – 11:51
Castor Bay
Auckland
New Zealand
0.001
AADK, DPNA
Press ‘Update’ Button
Success/u
Inappropriate error message

12 – 16/09/03 – 11:54
Castor Bay
Auckland
New Zealand
5000000000
AADK, DPNA
Press ‘Update’ Button
Success/u
Inappropriate balance displayed, correct the balance, or constrain the amount which can be added.

The prebilling amount is now constrained, the total account value is constrained.

13 – 16/09/03 – 11:59
Castor Bay
Auckland
New Zealand
-100
AADK, DPNA
Press ‘Update’ Button
Success
Slightly inappropriate error msg

14 – 16/09/03 – 12:01
Castor Bay
Auckland
New Zealand
-
AADK, DPNA
Remove AADK
Success
-

15 – 16/09/03 – 12:03
Castor Bay
Auckland
New Zealand
-
AADK, DPNA
Pressed ‘Logout’ Button
Success/u
Closed ‘update’ window, but ‘main’ window remained open.

16 – 16/09/03 – 12:06
Central
Auckland
New Zealand
-
HCBI
Pressed ‘Update’ Button
Success/u
Org name cannot contain punctuation, this may be a requirement since org name is used to generate username. Skip punctuation in username generation?

User name generation is no longer used, now Organisation name, first name, and last name accept punctuations.

17 – 16/09/03 – 12:09
Central
Auckland
New Zealand
-
HCBI
Add AADK to int stocks
Success
-

18 – 16/09/03 – 12:11
Central
Auckland
New Zealand
-
HCBI, AADK
Removed HCBI
Success
-

19 – 16/09/03 – 12:14
Central
Auckland
New Zealand
1000.00
AADK
Pressed ‘Update’ Button
Fail
User should be allowed to enter two decimal points after the amount.

‘.’ character is not allowed therefore minimum value that can be updated is $1. Added a more appropriate error message.

20 – 16/09/03 – 12:16
Central
Auckland
New Zealand
1000
AADK
Pressed ‘Update’ Button
Success
-

6.5 Unresolved Issues:

There were a number of technical issues associated with the development of the Stock Trading Platform. Changing our development approach solved most of these, but there are some issues, which we did not have any control over. This section covers the most significant issues that were encountered and are not completely resolved.

6.5.1 Dynamic rating of items:

Stocks do not have a pre-defined rating. Rating items can be created only through the TMS administration pages. Prices cannot be assigned to service items via the mediation engine using XML messages.

TMS has to be capable of serving a high volume of requests at any given time. Even if rating of items was supported via the mediation engine, the sheer volume of XML messages incoming to rate each stock after each time interval would result in potentially unacceptable response times.

This is the main reason why ‘dynamic’ transactions are not supported by the present version of TMS.

6.5.2 Dynamic nature of the transactions:

Stock trading platform needs transaction processing that enable both, buying and selling of shares.

TMS supports one way transactions, i.e. ncbs can only buy items using TMS, but not sell items. This can be a possible extension to TMS, but there are a number of pre-requisites that have to be met. For instance, TMS would need to be able to associate items and their quantities to particular ncbs and keep records of, on both the sides of the transactions (i.e. the purchaser side and the vendor side). This enhancement, if viable, would be extremely complex in nature.

6.5.3 Amber issues – TimePlotHandler:

TimePlotHandler is being used for displaying share values at each timer event. This issue is purely related to the user interface.

The problem is that whenever a share is added or removed from the graph, the graph resets all the values. The root of the problem can be traced to the addSampleValues method of the TimePlotHandler. This particular method takes an array of floats as a parameter. The array specifies all the current values of added stocks. Adding or removing stocks from the graph changes the number of values to be displayed. Since arrays in java are not resizable, a new array has to be defined each time stocks are added or removed and this results in the graph being reset.

A possible solution to this is to override the current addSampleValues to accept resizable collections like vectors, but performance issues taken into consideration, especially when we are dealing with timer events which need processing times to be around a few milliseconds.

6.6 References:

· J2EE version 1.4.2, http://java.sun.com
· Online Transaction Management System Technical Specification, version 0.7.2 – 16 December 2002

· Terralink International Limited Functional and High level Design Document version 0.7.1 – 15 April 2002

· Terralink Payments System – Near Future Architecture Draft version 1.0.1 – 15 July 2002

· Castor XML Source Generator User Document, Exolab.org, July 11 2001

· Eclipse Project Release Notes, Release 2.1.0, March 27 2003.

· Amber Website, http://www.amber.clearfield.com
· Amber Development Guide, Clearfield Research Ltd. 2001

· Amber Installation Guide, Clearfield Research Ltd. 2001

· Amber API for Amber Server Version 1.4.5

Amber Server

(interface)

� EMBED Visio.Drawing.6 ���

Mediation Events

(Payment events from a complex array of application servers)

Settlement Events

(Online Settlement Complex Accounts Electronic Invoices)

XML Messages

Web Server (Application Server)

Remote Server

(Transaction Management System)

TMS Database

Client Machine

(HTTP Browser)

Application Database

PAGE
3

_1126986714.vsd
�

�

Select an interested stock�

Update stock information in the centre of the screen�

_1127070491.vsd
�

�

Timer event�

Update graph display�

Update stock information in the centre of screen�

Update information in sell panel�

Update information in buy panel�

Calculate investment ratios�

Generate stock values�

_1127071609.vsd
�

�

�

Validate Quantity of stocks owned�

Sufficient stocks owned?�

No�

Display error message and
return�

Yes�

Update user information in application database�

Update Stock Ownership information in application database�

Update the Stock Ownership information of the stock�

All stocks being sold?�

Delete the stock ownership entry�

Yes�

No�

_1127071995.vsd
�

�

�

Validate Data�

Data valid?�

No�

Display error message and revert to the original data�

Yes�

Update user information in application database�

Send Admin Update to TMS�

Update the stock interested information in application database�

_1127071204.vsd
�

�

�

Validate Account�

Sufficient funds?�

No�

Display error message and
return�

Yes�

Update user information in application database�

Update Stock Ownership information in application database�

Update the Stock Ownership information of the stock�

Stock already owned?�

Add a new stock ownership entry�

No�

Yes�

_1126986742.vsd
�

�

Remove stock from graph�

Update Graph display�

_1126985500.vsd
�

�

�

Authentication using username and password with LDAP�

User exists?�

No�

Display error message and
return�

Yes�

Check if user exists in application database�

Interpret ncb response XML - get remaining user data�

Send enquiry ncb address XML to TMS�

Send enquiry ncb XML to TMS�

Interpret enquiry ncb address XML - get address data�

Display user information in Main Frame�

User exists?�

Display error message and
return�

No�

Yes�

Fetch user�s interested stocks information from the application database�

Fetch user�s stocks owned from the application database�

_1126986693.vsd
�

�

Add stock to graph�

Update Graph display�

_1126984780.vsd
�

�

�

Validation of Data�

Data Valid?�

No�

Display error message and
return�

Yes�

Send AdminAdd XML to TMS�

AdminAdd successful?�

Yes�

Insert user in application database�

Interpret NcbResponse from TMS�

No�

Display error message and return�

Display confirmation message�

_1119167257.vsd

