BTECH Project:
Linux CRM
Jerrold Kheng Leong Poh

UPI: jpoh004

ID: 2498308

Abstract

In this paper I will first write about some background information regarding my project which needs to be explained before the rest of the paper to make sense. The background information will also include what the project is, what it's based on, and the rational behind it. I will then outline my goals and what I hope to achieve by the end of the year. After that I'll write about what I've done so far. This will be divided into two sections. Research, and stage one. The paper will then finish off with the future work which I hope to achieve, and what I've learnt so far doing this project.
1. Introduction

The goal of this project is to create a CRM package which will run on the Linux operating system. This package will be based on an existing Windows implementation called Remedi, which DataByte Software (the company which I'm working in conjunction with for my project) have already developed before hand. Currently Remedi's database structure, business logic and the interface are all at a mature stage, and is currently being sold on the market. This project will not be just a direct copy of the Remedi package, but as mentioned before will be used as a base. The Linux version will then be modified to be more generic and not just limited to the medical community.
On the way to creating this CRM package, I'll have to create a database back end as well. DataByte thought since I was going to be using the existing Remedi database back end as a base, I could try and make the Linux database back end compatible with the existing Remedi front end. That way customers who may not have the money to afford the Microsoft SQL version of Remedi can use the Linux version of Remedi
So in actual fact, I have two goals which I need to achieve in this project. The first is to modify the existing Remedi CRM package by implementing a Linux database back end which is compatible with the existing Remedi front end, and the second is to create a generic CRM package which runs on the Linux operation system.
1.1 Customer Relationship Management (CRM)
Customer Relationship Management (or CRM for short) is a software package which manages all the interactions a company has with it's customers. For instance a CRM can be used by sales teams to track how often they've talked to a customer. That way, the CRM can schedule follow up meetings and also reminders to bring certain pamphlets or brochures to the next meeting with the customer. They're also used in conjunction with call centre staff so support calls can be logged. That way it is possible for staff to see how often a client has called and how their calls have been followed up on. With everyone interacting with the CRM, it is possible to build up a huge database of your customers and perform giant queries on them to see how well your business is performing and how your customers are being treated.
This fits in well with the core philosophy of CRM, which is that everyone in a business is focused on the customer, compared to the old paradigm where the product was the centre of a business' focus.
1.2 Remedi
As mentioned before, Remedi is the package which I will be using as a template for my Linux CRM project. This package was created by DataByte Software for a company called MediMedia. What does MediMedia do? MediMedia is a media company who work very closely with the medical community, and who also specialise in data. They publish a wide range of products including drug directories, professional newspapers and patient health information. They also sell data regarding the medical community, and data which would be of interest to the medical community.

Remedi is one of their products, and is sold to firms which have an interest in marketing products to the medical community. For instance they might sell Remedi to a company along with a set of data containing a list of practises. The company can then market their data via telemarketing and send out sales people to the places which expressed interest in their product, then continually track the progress of their sales staff to see how well they're selling their product. They can then query Remedi and find out places in which they can improve their sales system.
So what is the relationship between DataByte Software and MediMedia? Quite simply, MediMedia hired DataByte Software initially to create for them the Remedi package, and then kept them on to maintain and support Remedi for them. What's in it for both the parties? DataByte get a commission for every copy of Remedi sold, and also get paid the support and maintenance costs each year by all the companies which have bought a copy of Remedi. MediMedia on the other hand sell these companies the data which goes into Remedi, which depending on how much they buy, range from $10,000 upwards.
1.3 Rational

You would think that with a product like Remedi available out in the market place, that a company like MediMedia would have a problem with someone developing a competing product. Looking at it as a whole, Remedi is essentially quite cheap when someone decides to buy data from MediMedia. Only costing a few thousand dollars, the real cost to the customer is the cost of the data. It's quite common to see companies pay a few thousand for Remedi, and then go and spend $50,000 on the data alone.
This is why MediMedia don't mind us creating another product which because at the end of the day, the data behind the interface is where MediMedia make their money. DataByte Software on the other hand are just a software company, and make most of their money from the support and maintenance fees paid by the people who use Remedi. MediMedia don't have a cut of this, so everything that DataByte Software get from this fee, they keep. Also, since the Linux CRM package that I will be making is more generic, DataByte can purchase data from other suppliers as well to fit the Linux CRM package and hopefully increasing the amount of business that DataByte gets.
So how did this product come about? Well the selling of the Remedi product isn't just the responsibility of MediMedia. DataByte Software obviously have a vested interest to have as many people using the Remedi product as possible, so while trying to find a way to sell more copies of Remedi, DataByte Software found that a lot of their customers were looking for a solution which could run on the Linux environment, and therefore cut down on their licensing costs. The thing with Remedi is that it all runs on a Microsoft environment, and every PC which is connected to this environment has to have a licence for Windows, and a licence for the Microsoft Access runtime, and a licence for running on the Microsoft SQL database backend, which on top of the more powerful hardware which is required to run all of this, can really start to add up to quite a bit. Comparing this to the Linux alternative where there aren't any licence fees at all, and where most software which run on the environment is free, it already cuts down on a significant amount of the cost to set up the platform which Remedi will run on.
Also while thinking of the idea, DataByte had a slight fear that they might have to give this Linux CRM package away for free and not make any money on selling it. After thinking about it for awhile they realised that it wasn't really that bad if they did have to give it away, considering that DataByte Software hardly make that much money from selling the existing Remedi package anyway. Most of their money is made from installation and support and maintenance. All that would change was that when they did have the Linux CRM package out was that they would increase their target audience and the disadvantage of not getting any money from selling the Linux CRM package didn't outweigh that possible increase in customers.
2. Stages

[image: image1.png]

2.1 Initial Stage

Right now the front end of Remedi is coded up in Microsoft Access 97, and linked up via ODBC to a Microsoft SQL database. As mentioned before, this set up is a lot more expensive than the Linux solution which we are producing. Hopefully though, price won't be the only factor which customers will be looking at when using the new system.
[image: image2.png]

2.2 Stage One

The first task is to port the MS SQL back end to PostgreSQL (a Linux database application). This is seen to be a complete solution within itself, and if nothing else gets completed in this project all is not lost as DataByte Software still end up with a sellable product. The savings in licence fees alone will be seen by many as a good reason to switch their Microsoft SQL server running Windows over to a server running Linux, and may even increase the sale of Remedi for people who might not have the money to afford a server which runs Microsoft SQL.
[image: image3.png]T

2.3 Stage Two

The second stage is to get the front end coded up with a Linux front end using Kylix, which is a RAD tool produced by Borland. This will get rid of the requirement to buy a Windows and Microsoft Access runtime licence for every machine which is running the Remedi front end and enable everyone to use the Linux alternative. It is also possible to port Kylix applications built in Linux over to Windows so if the Linux port is even better than the original version, a version for Windows could also be released (theoretically) very quickly.
[image: image4.png]I

2.4 Stage Three

The final stage (if we get there), is to set up an interface via a Palm. The system currently in place works like this:

Sales reps on the way to meeting usually take a pen and a pad of paper with them, so that when they meet up with the customer they are able to jot down notes with everything they did with them that day.

When the day is finally over and they a chance to get back to the office, they load up Remedi and input in everything which they've done for the day into it. Most sales people though are usually not in the office very often, and the very nature of sales people are that they don't enjoy spending their days in front of a computer and typing away. This makes it very hard to get accurate data in the system as you're never sure if the data is up to date, or if there is data in there, how correct it is because days could've passed before the sales staff have had a chance to input it.

With a Palm interface, sales staff can input the data straight away. You also know that hardly any of the data will be missing because of things like check boxes and text fields which will be presented to them when they load up the interface. Then when they get back to the office, it's only a matter of putting the Palm in the cradle and synching it with the database.
3. Work Currently Completed
3.1 Research

The first thing that I had to do before I started this project was to make sure that there wasn't already another product out there which would do the work just as well. If there wasn't another product out there, I had to find out why there wasn't and if there were any plans to release one. If there was another, I had to find out exactly what their market was and what their licence agreements were. I also had to find out if this product was an open source product and if it was, we were more than happy to just borrow the source and modify it to fit our needs.
Worse case scenario was that there were no other products out there, and the reason there wasn't was due to the fact that Linux just wasn't the right environment to develop this package in. Another scenario which we weren't hoping for was that there was a commercial CRM package released which did exactly the same thing that we were promising. Luckily, none of these scenarios popped up.
If all was good, I then had to find a database to host our backend on, and after that, find a RAD tool to create the front end in.
3.1.1 Other Linux CRM Packages

We searched for a while to find a CRM package which was going to match the functionality of the currently mature Windows equivalents, but found that none of them came close, except one called Compiere (http://www.compiere.org/). This piece of software was released as a piece of open source software and hosted on sourceforge.net (one of the more popular places that open source projects host their project pages). Most of the other CRM packages that we looked at haven't had updates done to them in months or even years in some cases, but when we looked at Compiere the latest update was done within the last month. It was also in the top 20 of the most active projects on sourceforge.net, which means a lot considering they're more than a few thousand projects on there.
It was also good because it was written in Java, and could be viewed as an applet in a browser, or as a Java application. So basically it ran on any platform imaginable, so long as it had a Java runtime for that environment.

The bad news was that firstly, Compiere was an ERP tool with a CRM add on. ERP (or Enterprise Resource Planning) is a tool used to manage every aspect of a company, from things like payroll, to accounts, human resource, etc. This made the code base very big, and if we were to use some of the code from this application, it would take awhile to get my head around it. Also it was written in Java, and they aren't a lot of RAD Java development environments around.
Secondly, Compiere was running their back end on an Oracle database and last I checked, costs just as much (if not more) than the Microsoft SQL equivalent. We also didn't have that much experience working with Oracle and I don't think at the time we had an Oracle database server on site to test.
With all of these obstacles in the way, we thought we might just be easier to abandon using the code from Compiere and continue as originally planned and base the Linux CRM package on Remedi. Since DataByte did create Remedi and support it for nearly the last 10 years, they would have a firm grasp of how the package worked and can help when I get stuck, as apposed to me getting stuck on modifying Compiere, and the people at DataByte not knowing what to do because they've never seen the code before.
3.1.2 The Right Database

There were more or less two major database players in the open source world. These are MySQL and PostgreSQL. MySQL is seen in the professional world as a personal database, with the ability to only perform a very limited amount of features compared to PostgreSQL. The advantage of MySQL though is its speed. Most web sites don't require a lot of advance database features and since it's quicker than it's counterpart, is probably why MySQL is one of the more popular databases among web site designers.

Initially when we were looking at databases, we were thinking of using MySQL because of it's popularity and huge support base, but the lack of features that MySQL had made us change our mind nearly instantly. Simple things like its in-ability to roll back transactions were one of the things which let it down. This was odd, considering that it's very difficult to find a production database system now a days which doesn't support rollbacks.

As a side note, shortly after we picked the PostgreSQL database, we found a study which showed that on some benchmarks, PostgreSQL performed better, if not as well as MySQL. Though it had no impact on our decision, it was good to know the database system we did chose was not going to be at a disadvantage compared to the database we didn't chose.
3.1.3 The Right Development Tools

One of the main things which DataByte were looking for in it's development environment was RAD. With the time period that we had, it just wasn't feasible to create a package using the traditional text editor and make file environment that most C/C++ or HTML programmers use. This didn’t mean that coding in C/C++ or HTML wasn’t an option. We just had to make sure the environment in which we coded in allowed us to create a package within the allocated time period.
I started the hunt and I basically found popular RAD tools for Linux which were Kylix (http://www.borland.com/kylix/) and Omnis (http://www.omnis.net/). Both these packages provide RAD environments to work in, and both had support for creating binaries which ran natively in Linux. I'll talk about Omnis first, because it wasn't our choice for this project.
Omnis was good in the fact that the development tools worked on a variety of platforms including Windows, MacOS and Linux. It also had the ability to generate run time binaries for all those environments as well. On top of that, it had the ability to generate a web interface to work with a web browser (after the client has installed the Omnis plug-in).
Now the bad things. It took awhile to figure out how to install the package, because it only came as an .rpm package (which is a RedHat Linux system's proprietary packaging system). After some googling though, I discovered that .rpm packages are just .cpio files, so I extracted it and it came out as binaries which I hacked into the Debian system I had set up. After that it ran fine but there were a few problems which put me even more off with this package. Firstly, the UI which was set up didn't display properly, with odd windows sizes and weird glitches which would pop up every now and again, like buttons not being able to be clicked or windows which wouldn't go away. It was also prone to crashing every so often and with the runtimes which were created weren't that reliable either. This could've been the fact that I was running a RedHat based application in a Debian environment, but as far as I could tell there were no notable difference between the two different Linux distributions.
As I started going through the Usenet forums, I also found other people with similar problems, and it seemed to be that people either just lived with the errors or switched to the Mac version, which from as far as I can tell was what Omnis was originally made for. Much like most Mac vendors though, they did a sloppy port to most other platforms, and a lot of the paradigms which the Mac platform is built on, aren't compatible with the paradigms the PC platform is built on (i.e. the one mouse button paradigm).
The Windows version worked fine though, but the thing that we were hoping for was to have this package run primarily on the Linux O/S, so it was no use to us that it worked perfect on Windows.

We also had a look at the web interface and that wasn't good either. The demos were impressive but when it came time to code up a simple front end, cycling through records on a local LAN took about half a second to go from one to the next. If you're a data entry person cycling through all the Smiths this can start to get annoying.
The second package which we were looked at was Kylix. I must admit I haven't had as much of a play with Kylix as I have had with Omnis, but the fact that Kylix was made by a company as reputable as Borland was one of the main reasons why we chose it over Omnis. Kylix was basically Borland's port of the Delphi RAD environment for the Linux platform, but unlike Delphi, Kylix comes with a flavour which allows developers to program with a C/C++ instead of Pascal. Kylix also had a licence whereby runtimes weren't needed for each of the users who were using the applications. The applications which are created with Kylix are stand alone binaries and therefore, you only pay for the development tools (which are about $250US). Even better was an Open Edition which Borland had. This was free to download and use, but had the disadvantage was that all the libraries the binaries were compiled against were native GNU libraries, which all were released under the GPL (GNU Public Licence). The GPL is a licence which states that you are allowed to view the source code of all the software which is released under the GPL for free. Anything which does use the source code of the GPL software in turn has to be released under the GPL as well. This means that all binaries compiled with Kylix have to also be licensed under the GPL, and therefore open source as well.
As already mentioned this doesn't really matter in this case, since DataByte Software plan to make their money charging for the installation, support and maintenance of their product, instead of the product itself.
3.2 Stage One
I'm sad to say it, but all that I've done so far is just nearly finish stage one of this project. I was actually surprised at the number of stumbling blocks which I had to overcome to do something which I thought was going to be quite simple task.
The first thing I did on stage one was I started to search on the Internet for tools which would perform a conversion from a Microsoft SQL database to a PostgreSQL database. Remedi is about 200 tables large, and I didn't want to spend my time creating all those tables by hand and importing the data over, so I thought finding tools might be the smart way to work.

After downloading and testing a few programs, I didn't find anything which would do the job in properly. Either some of them would import half way, and stop, or some of them would import the tables in the wrong order and because of relationships, PostgreSQL would complain and bail. One reason or the other, none of them would work straight off. I did though, find an Access 97 to PostgreSQL converter which worked quite well from Seva Inc (http://www.sevainc.com). I talked to Colin and he said that Remedi actually did come out with a demo version with an Access 97 backend, but with some functionality cut out of it. So what I thought I'd do was convert the Access 97 backend of Remedi, and add in the missing functionality which the Microsoft SQL version had. So I ran the converter, and started adding the missing tables one at a time into PostgreSQL and I soon found out that a lot of the missing tables had actually quite complicated relationships associated with them. Some tables were already created, some relied on tables which weren't created and it was actually starting to get quite frustrating, so I went and looked for another solution.
After awhile I found a package called DataArchitect. DataArchitect was different from most the other tools because it was primarily a modelling tool. This meant that it was able to connect to a database and with a click of a button, draw an ERD diagram of the database. You were then able to click the export button and export the .sql scripts which would re-create the database in PostgreSQL, MySQL, Oracle, etc. This was good because we needed an up to date ERD of the Remedi database, and this tool would be ideal to provide it instead of doing it by hand.
Of course this package didn't work as expected either. On my workstation which was running Windows 2000, it would importing about 80 - 100 tables and after that DataArchitect would crash with an error regarding denied write to memory, but this shouldn't have happened considering that the machine I was running it on had 384 MB of RAM. We were really keen on this package so I tried other operating systems as well such as Windows 95, Windows 98, even Windows XP all crashed at more or less the same place. There was no mention of it on their website, or on the message boards so we could only guess what was wrong with it.
At this time I was getting really annoyed, so what I thought what I'd do now was manually script the .sql script by hand. A .sql script is basically just a plain text file which contains CREATE statements in it. If it is piped through to the database engine, it is possible to re-create the whole database (minus the data), so it's real convenient to have them around in case you needed to re-create the database for a clean install. So I opened up Microsoft Enterprise Manager and exported the original Remedi database to an .sql file. I then went through all the tables and every time I found something which wasn't compatible with PostgreSQL I did a search and replace of the whole .sql file and changed it to it's PostgreSQL equivalent.
So after about the 40th table I started to get really sick of going through the tables and scripting them out so I took another time out to figure out what exactly I should be doing instead of doing it by hand. I had a look at some of the tools and looked at this one tool in particular which I was looking at before called the database migration wizard which was a plug-in for the pgAdminII package used to maintain PostgreSQL packages from a Windows machine. This tool recreated the tables and imported the data perfect, till it got to about the 50th table where it would stop and roll back it's changes. This was because it wasn't putting the tables in the order of their dependencies. So I though, I've tried everything else, why not try this? So what I did was I printed out all the tables on four sheets of paper, and ran SQL Enterprise Manager to figure out all the tables which didn't have any dependencies, and imported them in first. Then slowly, bit by bit, I finally imported every single table into the PostgreSQL database except for the 20 or 30 odd views, which the plug-in didn't seem to know how to import, and also the autonumber data type, which is implemented differently in PostgreSQL which I had to manually add.
4. Work to be Completed
As I mentioned before, I've nearly finished the first stage of the project and all that is required now is to finish up the views which I've done about half of. Then get started on developing an actual front end for this package.
Retrospectively, I've noticed that I may have been a little over ambitious in what I was able to achieve during the two semesters. I think if I was able to finish stage two by the end of the year it would be a really good effort by realistically, I won't. Either way it has been good experience working in the work force, and has taught me so far that just because something looks simple to do, doesn't necessarily mean that it is.

